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A B S T R A C T

Despite advances in data augmentation and transfer learning, convolutional neural networks (CNNs) difficultly
generalise to unseen domains. When segmenting brain scans, CNNs are highly sensitive to changes in resolution
and contrast: even within the same MRI modality, performance can decrease across datasets. Here we introduce
SynthSeg, the first segmentation CNN robust against changes in contrast and resolution. SynthSeg is trained
with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a
domain randomisation strategy where we fully randomise the contrast and resolution of the synthetic training
data. Consequently, SynthSeg can segment real scans from a wide range of target domains without retraining
or fine-tuning, which enables straightforward analysis of huge amounts of heterogeneous clinical data. Because
SynthSeg only requires segmentations to be trained (no images), it can learn from labels obtained by automated
methods on diverse populations (e.g., ageing and diseased), thus achieving robustness to a wide range of
morphological variability. We demonstrate SynthSeg on 5,000 scans of six modalities (including CT) and ten
resolutions, where it exhibits unparallelled generalisation compared with supervised CNNs, state-of-the-art
domain adaptation, and Bayesian segmentation. Finally, we demonstrate the generalisability of SynthSeg by
applying it to cardiac MRI and CT scans.
1. Introduction

1.1. Motivation

Segmentation of brain scans is of paramount importance in neu-
roimaging, as it enables volumetric and shape analyses (Hynd et al.,
1991). Although manual delineation is considered the gold standard
in segmentation, this procedure is tedious and costly, thus preventing
the analysis of large datasets. Moreover, manual segmentation of brain
scans requires expertise in neuroanatomy, which, even if available,
suffers from severe inter- and intra-rater variability issues (Warfield
et al., 2004). For these reasons, automated segmentation methods have
been proposed as a fast and reproducible alternative solution.
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1 Data used in this article are partly from the Alzheimer’s Disease Neuroimaging Initiative database (http://adni.loni.usc.edu). Investigators in the ADNI
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Most recent automated segmentation methods rely on convolutional
neural networks (CNNs) (Ronneberger et al., 2015; Milletari et al.,
2016; Kamnitsas et al., 2017b). These are widespread in research,
where the abundance of high quality scans (i.e., at high isotropic
resolution and with good contrasts between tissues) enables CNNs to
obtain accurate 3D segmentations that can then be used in subsequent
analyses such as connectivity study (Müller et al., 2011).

However, supervised CNNs are far less employed in clinical set-
tings, where physicians prefer 2D acquisitions with a sparse set of
high-resolution slices, which enables faster inspection under time con-
straints. This leads to a huge variability in image orientation (axial,
coronal, or sagittal), slice spacing, and in-plane resolution. Moreover,
such 2D scans often use thick slices to increase the signal-to-noise
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Fig. 1. (a) Representative samples of the synthetic 3D scans used to train SynthSeg
for brain segmentation, and contours of the corresponding ground truth. (b) Test-time
segmentations for a variety of contrasts and resolutions, on subjects spanning a wide
age range, some presenting large atrophy and white matter lesions (green arrows). All
segmentations are obtained with the same network, without retraining or fine-tuning.

ratio, thus introducing considerable partial voluming (PV). This effect
arises when several tissue types are mixed within the same voxel,
resulting in averaged intensities that are not necessarily representative
of underlying tissues, often causing segmentation methods to under-
perform (Van Leemput et al., 2003). Additionally, imaging protocols
also span a huge diversity in sequences and modalities, each studying
different tissue properties, and the resulting variations in intensity dis-
tributions drastically decrease the accuracy of supervised CNNs (Chen
et al., 2019).

Overall, the lack of tools that can cope with the large variability
in MR data hinders the adoption of quantitative morphometry in the
clinic. Moreover, it precludes the analysis of vast amounts of clinical
scans, currently left unexplored in picture archiving and communi-
cation systems (PACS) in hospitals around the world. The ability to
derive morphometric measurements from these scans would enable
neuroimaging studies with sample sizes in the millions, and thus much
higher statistical power than current research studies. Therefore, there
is a clear need for a fast, accurate, and reproducible automated method,
for segmentation of brain scans of any contrast and resolution, and that
can adapt to a wide range of populations.

1.2. Contributions

In this article, we present SynthSeg, the first neural network to seg-
ment brain scans of a wide range of contrasts and resolutions, without
having to be retrained or fine-tuned (Fig. 1). Specifically, SynthSeg is
trained with synthetic scans sampled on the fly from a generative model
inspired by the Bayesian segmentation framework, and is thus never
exposed to real scans during training. Our main contribution is the
adoption of a domain randomisation strategy (Tobin et al., 2017), where
all the parameters of the generative model (including orientation,
contrast, resolution, artefacts) are fully randomised. This exposes the
2

network to vastly different examples at each mini-batch, and thus forces
it to learn domain-independent features. Moreover, we apply a random
subset of common preprocessing operations to each example (e.g., skull
stripping, bias field correction), such that SynthSeg can segment scans
with or without preprocessing.

With this domain randomisation strategy, our method only needs
to be trained once. This is a considerable improvement over supervised
CNNs and domain adaptation strategies, which all need retraining or
fine-tuning for each new contrast or resolution, thus hindering clini-
cal applications. Moreover, training SynthSeg is greatly facilitated by
the fact that it only requires a set of anatomical label maps to be
trained (and no real images, since all training scans are synthetic).
Furthermore, these maps can be obtained automatically (rather than
manually), since the training scans are directly generated from their
ground truths, and are thus perfectly aligned with them. This enables us
to greatly improve the robustness of SynthSeg by including automated
training maps from highly diverse populations.

Overall, SynthSeg yields almost the accuracy of supervised CNNs
on their training domain, but unlike them, exhibits a remarkable gen-
eralisation ability. Indeed, SynthSeg consistently outperforms state-of-
the-art domain adaptation strategies and Bayesian segmentation on
all tested datasets. Moreover, we demonstrate the generalisability of
SynthSeg by obtaining state-of-the-art results in cross-modality cardiac
segmentation.

This work extends our recent articles on contrast-adaptiveness (Bil-
lot et al., 2020a) and PV simulation at a specific resolution (Billot et al.,
2020b; Iglesias et al., 2021), by building, for the first time, robustness
to both contrast and resolution without retraining. Our method is
thoroughly evaluated in four new experiments. The code and trained
model are available at https://github.com/BBillot/SynthSeg as well as
in the widespread neuroimaging package FreeSurfer (Fischl, 2012).

2. Related works

Contrast-invariance in brain segmentation has traditionally been
addressed with Bayesian segmentation. This technique is based on a
generative model, which combines an anatomical prior (often a sta-
tistical atlas) and an intensity likelihood (typically a Gaussian Mixture
Model, GMM). Scans are then segmented by ‘‘inverting’’ this model with
Bayesian inference (Wells et al., 1996; Fischl et al., 2002). Contrast-
robustness is achieved by using an unsupervised likelihood model,
with parameters estimated on each test scan (Van Leemput et al.,
1999; Ashburner and Friston, 2005). However, Bayesian segmentation
requires approximately 15 min per scan (Puonti et al., 2016), which
precludes its use in time-sensitive settings. Additionally, its accuracy
is limited at low resolution (LR) by PV effects (Choi et al., 1991).
Indeed, even if Bayesian methods can easily model PV (Van Leemput
et al., 2003), inferring high resolution (HR) segmentations from LR
scans quickly becomes intractable, as it requires marginalising over all
possible configurations of HR labels within each LR supervoxel. While
simplifications can be made (Van Leemput et al., 2003), PV-aware
Bayesian segmentation may still be infeasible in clinical settings.

Supervised CNNs prevail in recent medical image segmentation
(Milletari et al., 2016; Kamnitsas et al., 2017b), and are best rep-
resented by the UNet architecture (Ronneberger et al., 2015). While
these networks obtain fast and accurate results on their training do-
main, they do not generalise well to unseen contrasts (Karani et al.,
2018) and resolutions (Ghafoorian et al., 2017), an issue known as
the ‘‘domain-gap’’ problem (Pan and Yang, 2010). Therefore, such
networks need to be retrained for any new combination of contrast
and resolution, often requiring new costly labelled data. This problem
can partly be ameliorated by training on multi-modality scans with
modality dropout (Havaei et al., 2016), which results in a network able
to individually segment each training modality, but that still cannot be
applied to unseen domains.

https://github.com/BBillot/SynthSeg
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Fig. 2. Overview of a training step. At each mini-batch, we randomly select a 3D label map from a training set {𝑆𝑛} and sample a pair {𝐼, 𝑇 } from the generative model. The
obtained image is then run through the network, and its prediction 𝑌 is used to compute the average soft Dice loss, that is backpropagated to update the weights of the network.
Data augmentation improves the robustness of CNNs by applying
simple spatial and intensity transforms to the training data (Zhang
et al., 2020). While such transforms often relies on handcrafted (and
thus suboptimal) parameters, recent semi-supervised methods, such
as adversarial augmentation, explicitly optimise the augmentation pa-
rameters during training (Zhang et al., 2017; Chaitanya et al., 2019;
Chen et al., 2022). Alternatively, contrastive learning methods have
been proposed to leverage unsupervised data for improved general-
isation ability (Chaitanya et al., 2020; You et al., 2022b). Overall,
although these techniques improve generalisation in intra-modality
applications (Zhao et al., 2019), they generally remain insufficient in
cross-modality settings (Karani et al., 2018).

Domain adaptation explicitly seeks to bridge a given domain gap
between a source domain with labelled data, and a specific target
domain without labels. A first solution is to map both domains to
a common latent space, where a classifier can be trained (Kamnit-
sas et al., 2017a; Dou et al., 2019; Ganin et al., 2017; You et al.,
2022a). In comparison, generative adaptation methods seek to match
the source images to the target domain with image-to-image translation
methods (Sandfort et al., 2019; Huo et al., 2019; Zhang et al., 2018).
Since these approaches are complementary, recent methods propose to
operate in both feature and image space, which leads to state-to-the-
art results in cross-modality segmentation (Chen et al., 2019; Hoffman
et al., 2018). In contrast, state-of-the-art results in intra-modality adap-
tation are obtained with test-time adaptation methods (Karani et al.,
2021; He et al., 2021), which rely on light fine-tuning at test-time.
More generally, even though domain adaptation alleviates the need for
supervision in the target domain, it still needs retraining for each new
domain.

Synthetic training data can be used to increase robustness by
introducing surrogate domain variations, either generated with physics-
based models (Jog and Fischl, 2018), or adversarial generative net-
works (Frid-Adar et al., 2018; Chartsias et al., 2018), possibly condi-
tioned on label maps for improved semantic content (Mahmood et al.,
2020; Isola et al., 2017). These strategies enable to generate huge
training datasets with perfect ground truth obtained by construction
rather than human annotation (Richter et al., 2016). However, al-
though generated images may look remarkably realistic, they still suffer
from a ‘‘reality gap’’ (Jakobi et al., 1995). In addition, these methods
still require retraining for every new domain, and thus do not solve the
lack of generalisation of neural networks. To the best of our knowledge,
no current learning method can segment medical scans of any contrast
and/or resolution without retraining.

Domain randomisation is a recent strategy that relies on physics-
based generative models, which, unlike learning-based methods, offer
full control over the generation process. Instead of handcrafting (Jog
and Fischl, 2018) or optimising (Chen et al., 2022) this kind of gener-
ative model to match a specific domain, Domain Randomisation (DR)
3

proposes to considerably enlarge the distribution of the synthetic data
by fully randomising the generation parameters (Tobin et al., 2017). This
learning strategy is motivated by converging evidence that augmenta-
tion beyond realism leads to improved generalisation (Bengio et al.,
2011; Zhao et al., 2019). If pushed to the extreme, DR yields highly
unrealistic samples, in which case real images are encompassed within
the landscape of the synthetic training data (Tremblay et al., 2018).
As a result, this approach seeks to bridge all domain gaps in a given
semantic space, rather than solving this problem for each domain gap
separately. So far, DR has been used to control robotic arms (Tobin
et al., 2017), and for car detection in street views (Tremblay et al.,
2018). Here we combine DR with a generative model inspired by
Bayesian segmentation, in order to achieve, for the first time, segmen-
tation of brain MRI scans of a wide range of contrasts and resolutions
without retraining.

3. Methods

3.1. Generative model

SynthSeg relies on a generative model from which we sample syn-
thetic scans to train a segmentation network (Billot et al., 2020a,b;
Iglesias et al., 2021). Crucially, the training images are all generated
on the fly with fully randomised parameters, such that the network is
exposed to a different combination of contrast, resolution, morphology,
artefacts, and noise at each mini-batch (Fig. 2). Here we describe the
generative model, which is illustrated in Fig. 3 and exemplified in
Supplement 1.

3.1.1. Label map selection and spatial augmentation
The proposed generative model assumes the availability of 𝑁 train-

ing label maps {𝑆𝑛}𝑁𝑛=1 defined over discrete spatial coordinates (𝑥, 𝑦, 𝑧)
at high resolution 𝑟𝐻𝑅. Let all label maps take their values from a set
of 𝐾 labels: 𝑆𝑛(𝑥, 𝑦, 𝑧) ∈ {1,… , 𝐾}. We emphasise that these training
label maps can be obtained manually, automatically (by segmenting
brain scans with an automated method), or even can be a combination
thereof – as long as they share the same labelling convention.

The generative process starts by randomly selecting a segmentation
𝑆𝑖 from the training dataset (Fig. 3a). In order to increase the variability
of the available segmentations, 𝑆𝑖 is deformed with a random spatial
transform 𝜙, which is the composition of an affine and a non-linear
transform.

The affine transformation 𝜙aff is the composition of three rotations
(𝜃𝑥, 𝜃𝑦, 𝜃𝑧), three scalings (𝑠𝑥, 𝑠𝑦, 𝑠𝑧), three shearings (𝑠ℎ𝑥, 𝑠ℎ𝑦, 𝑠ℎ𝑧),
and three translations (𝑡𝑥, 𝑡𝑦, 𝑡𝑧), whose parameters are sampled from
uniform distributions:

𝜃 , 𝜃 , 𝜃 ∼  (𝑎 , 𝑏 ), (1)
𝑥 𝑦 𝑧 𝑟𝑜𝑡 𝑟𝑜𝑡
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Fig. 3. Intermediate steps of the generative model: (a) we randomly select an input label map from the training set, which we (b) spatially augment in 3D. (c) A first synthetic
image is obtained by sampling a GMM at HR with randomised parameters. (d) The result is then corrupted with a bias field and further intensity augmentation. (e) Slice spacing
and thickness are simulated by successively blurring and downsampling at random LR. (f) The training inputs are obtained by resampling the image to HR, and removing the
labels we do not wish to segment (e.g., extra-cerebral regions).
𝑠𝑥, 𝑠𝑦, 𝑠𝑧 ∼  (𝑎𝑠𝑐 , 𝑏𝑠𝑐), (2)

𝑠ℎ𝑥, 𝑠ℎ𝑦, 𝑠ℎ𝑧 ∼  (𝑎𝑠ℎ, 𝑏𝑠ℎ), (3)

𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ∼  (𝑎𝑡𝑟, 𝑏𝑡𝑟), (4)

𝜙aff = Aff(𝜃𝑥, 𝜃𝑦, 𝜃𝑧, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝑠ℎ𝑥, 𝑠ℎ𝑦, 𝑠ℎ𝑧, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧), (5)

where 𝑎𝑟𝑜𝑡, 𝑏𝑟𝑜𝑡, 𝑎𝑠𝑐 , 𝑏𝑠𝑐 , 𝑎𝑠ℎ, 𝑏𝑠ℎ, 𝑎𝑡𝑟, 𝑏𝑡𝑟 are the predefined bounds of the
uniform distributions, and Aff(⋅) refers to the composition of the afore-
mentioned affine transforms.

The non-linear component 𝜙nonlin is a diffeomorphic transform ob-
tained as follows. First, we sample a small vector field of size 10 × 10 ×
10 × 3 from a zero-mean Gaussian distribution of standard deviation
𝜎SVF drawn from  (0, 𝑏nonlin). This field is then upsampled to full
image size with trilinear interpolation to obtain a stationary velocity
field (SVF). Finally, we integrate this SVF with a scale-and-square
approach (Arsigny et al., 2006) to yield a diffeomorphic deformation
field that does not produce holes or foldings:

𝜎𝑆𝑉 𝐹 ∼  (0, 𝑏nonlin), (6)

SVF′ ∼ 10×10×10×3(0, 𝜎SVF), (7)

SVF = Resample(SVF′; 𝑟𝐻𝑅), (8)

𝜙nonlin = Integrate(SVF). (9)

Finally, we obtain an augmented map 𝐿 by applying 𝜙 to 𝑆𝑖 using
nearest neighbour interpolation (Fig. 3b):

𝐿 = 𝑆𝑖◦𝜙 = 𝑆𝑖◦(𝜙aff◦𝜙nonlin). (10)

3.1.2. Initial HR synthetic image
After deforming the input segmentation, we generate an initial syn-

thetic scan 𝐺 at HR by sampling a GMM conditioned on 𝐿 (Fig. 3c). For
convenience, we regroup all the means and standard deviations of the
GMM in 𝑀𝐺 = {𝜇𝑘}1≤𝑘≤𝐾 and 𝛴𝐺 = {𝜎𝑘}1≤𝑘≤𝐾 respectively. Crucially,
in order to randomise the contrast of 𝐺, all the parameters in 𝑀𝐺 and
𝛴𝐺 are sampled at each mini-batch from uniform distributions of range
{𝑎𝜇 , 𝑏𝜇} and {𝑎𝜎 , 𝑏𝜎}, respectively. We highlight that 𝛴𝐺 jointly models
tissue heterogeneities as well as the thermal noise of the scanner. 𝐺
is then formed by independently sampling at each location (𝑥, 𝑦, 𝑧) the
distribution indexed by 𝐿(𝑥, 𝑦, 𝑧):

𝜇 ∼ (𝑎 , 𝑏 ), (11)
4

𝑘 𝜇 𝜇
𝜎𝑘 ∼ (𝑎𝜎 , 𝑏𝜎), (12)

𝐺(𝑥, 𝑦, 𝑧) ∼ (𝜇𝐿(𝑥,𝑦,𝑧), 𝜎2𝐿(𝑥,𝑦,𝑧)). (13)

3.1.3. Bias field and intensity augmentation
We then simulate bias field artefacts to make SynthSeg robust to

such effects. We sample a small volume of shape 43 from a zero-
mean Gaussian distribution of random standard deviation 𝜎𝐵 . We then
upsample this small volume to full image size, and take the voxel-wise
exponential to obtain a smooth and non-negative field 𝐵. Finally, we
multiply 𝐺 by 𝐵 to obtain a biased image 𝐺𝐵 (Fig. 3d), where the
previous exponential ensures that division and multiplication by the
same factor are equally likely (Van Leemput et al., 1999; Ashburner
and Friston, 2005):

𝜎𝐵 ∼  (0, 𝑏𝐵), (14)

𝐵′ ∼ 4×4×4(0, 𝜎2𝐵), (15)

𝐵 = Upsample(𝐵′), (16)

𝐺𝐵(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑦, 𝑧) × exp[𝐵(𝑥, 𝑦, 𝑧)]. (17)

Then, a final HR image 𝐼𝐻𝑅 is produced by rescaling 𝐺𝐵 between 0
and 1, and applying a random Gamma transform (voxel-wise exponen-
tiation) to further augment the intensity distribution of the synthetic
scans. This transform enables us to skew the distribution while leaving
intensities in the [0, 1] interval. In practice, the exponent is sampled
in the logarithmic domain from a zero-mean Gaussian distribution of
standard deviation 𝜎𝛾 . As a result, 𝐼𝐻𝑅 is given by:

𝛾 ∼ (0, 𝜎2𝛾 ), (18)

𝐼𝐻𝑅(𝑥, 𝑦, 𝑧) =
( 𝐺(𝑥, 𝑦, 𝑧) − min𝑥,𝑦,𝑧 𝐺
max𝑥,𝑦,𝑧 𝐺 − min𝑥,𝑦,𝑧 𝐺

)exp(𝛾)

. (19)

3.1.4. Simulation of resolution variability
In order to make the network robust against changes in resolution,

we now model differences in acquisition direction (i.e., axial, coronal,
sagittal), slice spacing, and slice thickness. After randomly selecting a
direction, the slice spacing 𝑟𝑠𝑝𝑎𝑐 and slice thickness 𝑟𝑡ℎ𝑖𝑐𝑘 are respec-
tively drawn from  (𝑟𝐻𝑅, 𝑏𝑟𝑒𝑠) and  (𝑟𝐻𝑅, 𝑟𝑠𝑝𝑎𝑐 ). Note that 𝑟𝑡ℎ𝑖𝑐𝑘 is
bound by 𝑟𝑠𝑝𝑎𝑐 as slices very rarely overlap in practice.

Once all resolution parameters have been sampled, we first simulate
slice thickness by blurring 𝐼𝐻𝑅 into 𝐼𝜎 with a Gaussian kernel that
approximates the real slice excitation profile. Specifically, its standard
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deviation 𝜎𝑡ℎ𝑖𝑐𝑘 is designed to divide the power of the HR signal by
0 at the cut-off frequency (Billot et al., 2020b). Moreover, 𝜎𝑡ℎ𝑖𝑐𝑘 is

multiplied by a random coefficient 𝛼 to introduce small deviations from
he nominal thickness, and to mitigate the Gaussian assumption.

Slice spacing is then modelled by downsampling 𝐼𝜎 to 𝐼𝐿𝑅 at the
prescribed low resolution 𝑟𝑠𝑝𝑎𝑐 with trilinear interpolation (Fig. 3e)
Van Leemput et al., 2003). Finally, 𝐼𝐿𝑅 is upsampled back to 𝑟𝐻𝑅

(typically 1mm), such that the CNN is trained to produce crisp HR
segmentations, regardless of the simulated resolution. This process can
be summarised as:

𝑟𝑠𝑝𝑎𝑐 ∼  (𝑟𝐻𝑅, 𝑏𝑟𝑒𝑠), (20)

𝑟𝑡ℎ𝑖𝑐𝑘 ∼  (𝑟𝐻𝑅, 𝑟𝑠𝑝𝑎𝑐 ), (21)

𝛼 ∼  (𝑎𝛼 , 𝑏𝛼), (22)

𝜎𝑡ℎ𝑖𝑐𝑘 = 2𝛼 log(10)(2𝜋)−1𝑟𝑡ℎ𝑖𝑐𝑘∕𝑟𝐻𝑅, (23)

𝐼𝜎 = 𝐼𝐻𝑅 ∗  (0, 𝜎𝑡ℎ𝑖𝑐𝑘), (24)

𝐼𝐿𝑅 = Resample
(

𝐼𝜎 ; 𝑟𝑠𝑝𝑎𝑐
)

, (25)

𝐼 = Resample
(

𝐼𝐿𝑅; 𝑟𝐻𝑅
)

. (26)

.1.5. Model output and segmentation target
At each training step, our method produces two volumes: an image 𝐼

ampled from the generative model, and its segmentation target 𝑇 . The
atter is obtained by taking the deformed map 𝐿 in (10), and resetting
o background all the label values that we do not wish to segment
i.e., labels for the background structures, which are of no interest to
egment). Thus, 𝑇 has 𝐾 ′ ≤ 𝐾 labels (Fig. 3f).

We emphasise that the central contribution of this work lies in the
dopted domain randomisation strategy. The values of the hyperparam-
ters controlling the uniform priors (listed in Supplement 2) are tuned
sing a validation set, and are the object of a sensitivity analysis in
ection 5.2.

.2. Segmentation network and learning

Given the described generative model, a segmentation network is
rained by sampling pairs {𝐼, 𝑇 } on the fly. Here we employ a 3D UNet
rchitecture (Ronneberger et al., 2015) that we used in previous works
ith synthetic scans (Billot et al., 2020a). Specifically, it consists of

ive levels, each separated by a batch normalisation layer (Ioffe and
zegedy, 2015) along with a max-pooling (contracting path), or upsam-
ling operation (expanding path). All levels comprise two convolution
ayers with 3 × 3 × 3 kernels. Every convolutional layer is associated
ith an Exponential Linear Unit activation (Clevert et al., 2016), except

or the last one, which uses a softmax. While the first layer counts
4 feature maps, this number is doubled after each max-pooling, and
alved after each upsampling. Following the UNet architecture, we use
kip connections across the contracting and expanding paths. Note that
he network architecture is not a focus of this work: while we employ
UNet (Ronneberger et al., 2015) (the most widespread network for
edical images), it could in principle be replaced with any other

egmentation architecture.
We use the soft Dice loss for training (Milletari et al., 2016):

oss(𝑌 , 𝑇 ) = 1 −
𝐾′
∑

𝑘=1

2 ×
∑

𝑥,𝑦,𝑧 𝑌𝑘(𝑥, 𝑦, 𝑧)𝑇𝑘(𝑥, 𝑦, 𝑧)
∑

𝑥,𝑦,𝑧 𝑌𝑘(𝑥, 𝑦, 𝑧)2+𝑇𝑘(𝑥, 𝑦, 𝑧)2
, (27)

where 𝑌𝑘 is the soft prediction for label 𝑘 ∈ {1,… , 𝐾 ′}, and 𝑇𝑘 is
its associated ground truth in one-hot encoding. We use the Adam
optimiser (Kingma and Ba, 2017) for 300,000 steps with a learning
rate of 10−4, and a batch size of 1. The network is trained twice, and
the weights are saved every 10,000 steps. The retained model is then
selected relatively to a validation set. In practice, the generative model
and the segmentation network are concatenated within a single model,
which is entirely implemented on the GPU in Keras (Chollet, 2015)
with a Tensorflow backend (Abadi et al., 2016). In total, training takes
around seven days on a Nvidia Quadro RTX 6000 GPU.
5

t

3.3. Inference

At test time, the input is resampled to 𝑟𝐻𝑅 with trilinear interpola-
tion (such that the output of the CNN is at HR), and its intensities are
rescaled between 0 and 1 with min–max normalisation (using the 1st
and 99th percentiles). Preprocessed scans are then fed to the network
to obtain soft predictions maps for each label. In practice, we also
perform test-time augmentation (Moshkov et al., 2020), which slightly
improved results on the validation set. Specifically, we segment two
versions of each test scan: the original one, and a right-left flipped
version of it. The soft predictions of the flipped input are then flipped
back to native space (while ensuring that right-left labels end up on the
correct side), and averaged with the predictions of the original scan.
Once test-time augmentation has been performed, final segmentations
are obtained by keeping the biggest connected component for each
label. On average, inference takes ten seconds on a Nvidia TitanXP GPU
(12 GB), including preprocessing, prediction, and postprocessing.

4. General experimental setup

4.1. Brain scans and ground truths

Our experiments employ eight datasets comprising 5000 scans of six
different modalities and ten resolutions. The splits between training,
validation, and testing are given in Table 1.
T1-39: 39 T1-weighted (T1) scans with manual labels for 30 struc-
tures (Fischl et al., 2002). They were acquired with an MP-RAGE
sequence at 1mm isotropic resolution.
HCP: 500 T1 scans of young subjects from the Human Connectome
Project (Van Essen et al., 2012), acquired at 0.7mm resolution, and that
we resample at 1mm isotropic resolution.
ADNI: 1500 T1 scans from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI.2) All scans are acquired at 1mm isotropic resolution
from a wide array of scanners and protocols. In contrast to HCP, this
dataset comprises ageing subjects, some diagnosed with mild cognitive
impairment (MCI) or Alzheimer’s Disease (AD). As such, many subjects
present strong atrophy patterns and white matter lesions.
T1mix: 1000 T1 scans at 1mm isotropic resolution from seven datasets:
ABIDE (Di Martino et al., 2014), ADHD200 (The ADHD-200 Con-
sortium, 2012), GSP (Holmes et al., 2015), HABS (Dagley et al.,
2017), MCIC (Gollub et al., 2013), OASIS (Marcus et al., 2007), and
PPMI (Marek et al., 2011). We use this heterogeneous dataset to assess
robustness against intra-modality contrast variations due to different
acquisition protocols.
FSM: 18 subjects with T1 and two other MRI contrasts: T2-weighted
(T2) and a sequence used for deep brain stimulation (DBS) (Iglesias
et al., 2018). All scans are at 1mm resolution.
MSp: 8 subjects with T1 and proton density (PD) acquisitions at 1mm
isotropic resolution (Fischl et al., 2004). These scans were skull stripped
prior to availability, and are manually delineated for the same labels
as T1-39.
FLAIR: 2393 fluid-attenuated inversion recovery (FLAIR) scans at 1 ×
1 × 5mm axial resolution. These subjects are from another subset of
the ADNI database, and hence also present morphological patterns
related to ageing and AD. This dataset enables assessment on scans that
are representative of clinical acquisitions with real-life slice selection
profiles (as opposed to simulated LR, see below). Matching 1mm T1
scans are also available, but they are not used for testing.

2 The ADNI was launched in 2003 by the National Institute on Ageing, the
ational Institute of Biomedical Imaging and Bioengineering, the Food and
rug Administration, pharmaceutical companies and non-profit organisations,
s a 5-year public–private partnership. The goal of ADNI is to test if MRI, PET,
ther biological markers, and clinical and neuropsychological assessment can
nalyse the progression of MCI and early AD, develop new treatments, monitor

heir effectiveness, and decrease the time and cost of clinical trials.
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Table 1
Summary of the employed brain datasets. The 10 test resolutions are 1 mm3 and
/5/7mm in either axial, coronal, or sagittal direction. SynthSeg is trained solely on
abel maps (no intensity images).
Dataset Subjects Modality Resolution

Training

T1-39 20 SynthSeg: Label maps
1mm isotropicBaselines: T1

HCP 500 SynthSeg: Label maps
1mm isotropicBaselines: T1

ADNI 500 SynthSeg: Label maps
1mm isotropicBaselines: T1

Validation

T1–39 4 T1 all tested resolutions
FSM 3 T2, DBS all tested resolutions

Testing

T1–39 15 T1 all tested resolutions
ADNI 1,000 T1 1mm isotropic
T1mix 1,000 T1 1mm isotropic
FSM 15 T1, T2, DBS all tested resolutions
MSp 8 T1, PD all tested resolutions
FLAIR 2,393 FLAIR 5mm axial
CT 6 CT 3mm axial

CT: 6 computed tomography (CT) scans at 1 × 1 × 3mm axial resolu-
tion (West et al., 1997), with the aim of assessing SynthSeg on imaging
modalities other than MRI. As for the FLAIR dataset, matching 1mm T1
cans are also available.

In order to evaluate SynthSeg on more resolutions, we artificially
ownsample all modalities from the T1-39, FSM, and MSp datasets (all
t 1mm isotropic resolution) to nine different LR: 3, 5 and 7mm spacing
n axial, coronal, and sagittal directions. These simulations do not use
eal-life slice selection profiles, but are nonetheless very informative
ince they enable to study the segmentation accuracy as a function of
esolution.

Except for T1-39 and MSp, which are available with manual labels,
egmentation ground truths are obtained by running FreeSurfer (Fischl,
012) on the T1 scans of each dataset, and undergo a thorough visual
uality control to ensure anatomical correctness. FreeSurfer has been
hown to be very robust across numerous independent T1 datasets
nd yields Dice scores in the range of 0.85–0.88 (Fischl et al., 2002;
ae et al., 2008). Therefore, its use as silver standard enables reli-
ble assessment of Dice below 0.85; any scores above that level are
onsidered equally good. Crucially, using FreeSurfer segmentations
nables us to evaluate SynthSeg on vast amounts of scans with very
iverse contrasts and resolutions, which would have been infeasible
ith manual tracings only.

.2. Training segmentations and population robustness

As indicated in Table 1, the training set for SynthSeg comprises 20
abel maps from T1-39, 500 from HCP, and 500 from ADNI. Mixing
hese label maps considerably increases the morphological variety of
he synthetic scans (far beyond the capacity of the proposed spatial
ugmentation alone), and thus enlarges the robustness of SynthSeg
o a wide range of populations. We emphasise that using automated
abel maps for training is possible because synthetic images are by
esign perfectly aligned with their segmentations. We highlight that
he training data does not include any real scan.

Because SynthSeg requires modelling all tissue types in the im-
ges, we complement the training segmentations with extra-cerebral
abels (Supplement 3) obtained with a Bayesian segmentation ap-
roach (Puonti et al., 2020). Note that these new labels are dropped
ith 50% chances during generation, to make SynthSeg compatible
ith skull stripped images. Moreover, we randomly ‘‘paste’’ lesion
6

abels from FreeSurfer with 50% probability, to build robustness against
white matter lesions (Supplement 4). Finally, we further increase
the variability of the training data by randomly left/right flipping
segmentations and cropping them to 1603 volumes.

4.3. Competing methods

We compare SynthSeg against five other approaches:
T1 baseline (Zhang et al., 2020): A supervised network trained on real
T1 scans ( Table 1). This baseline seeks to assess the performance of
supervised CNNs on their source domain, as well as their generalisation
to intra-modality (T1) contrast variations. For comparison purposes, we
use the same UNet architecture and augmentation scheme (i.e., spa-
tial deformation, intensity augmentation, bias field corruption) as for
SynthSeg.
nnUNet (Isensee et al., 2021)3: A state-of-the-art supervised approach,
very similar to the T1 baseline, except that the architecture, augmenta-
tion, pre- and postprocessing are automated with respect to the (real)
T1 input data.
Test-time adaptation (TTA) (Karani et al., 2021)4: A state-of-the-art
domain adaptation method relying on fine-tuning. Briefly, this strategy
uses three CNN modules: an image normaliser (five convolutional
layers), a segmentation UNet, and a denoising auto-encoder (DAE). At
first, the normaliser and the UNet are jointly trained on supervised
data of a source domain, while the DAE is trained separately to correct
erroneous segmentations. At test time, the UNet and DAE are frozen,
and the normaliser is fine-tuned on scans from different target domains
by using the denoised predictions of the UNet as ground truth.
SIFA (Chen et al., 2019)5: A state-of-the-art unsupervised domain adap-
tation strategy, where image-to-image translation and segmentation
modules are jointly trained (with shared layers). SIFA seeks to align
each target domain to the source data in both feature and image spaces
for improved adaptation.
SAMSEG (Puonti et al., 2016): A state-of-the-art Bayesian segmentation
framework with unsupervised likelihood. As such, SAMSEG is contrast-
adaptive, and can segment at any resolution, albeit not accounting
for PV effects. SAMSEG does not need to be trained as it solves an
optimisation problem for test each scan. Here we use the version
distributed with FreeSurfer 7.0, which runs in approximately 15 min.

The predictions of all methods are postprocessed as in Section 3.3,
except for nnUNet, which uses its own postprocessing. We use the de-
fault implementation for all competing methods, except for a few minor
points that are listed in Supplement 5. All learning-based methods are
trained twice, and models are chosen relatively to the validation set.
Segmentations are assessed by computing (hard) Dice scores and the
95th percentile of the surface distance (SD95, in millimetres).

5. Experiments and results

Here we present four experiments that evaluates the accuracy and
generalisation of SynthSeg. First, we compare it against all competing
methods on every dataset. Then, we conduct an ablation study on
the proposed method. The third experiment validates SynthSeg in a
proof-of-concept neuroimaging group study. Finally, we demonstrate
the generalisability of our method by extending it to cardiac MRI and
CT.

3 https://github.com/MIC-DKFZ/nnUNet
4 https://github.com/neerakara/test-time-adaptable-neural-networks-for-

omain-generalization
5 https://github.com/cchen-cc/SIFA

https://github.com/MIC-DKFZ/nnUNet
https://github.com/neerakara/test-time-adaptable-neural-networks-for-domain-generalization
https://github.com/neerakara/test-time-adaptable-neural-networks-for-domain-generalization
https://github.com/cchen-cc/SIFA
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Table 2
Mean Dice scores and 95th percentile surface distances (SD95) obtained by all methods for every dataset. The best score for each dataset is in bold, and marked with
a star if significantly better than all other methods at a 5% level (two-sided Bonferroni-corrected non-parametric Wilcoxon signed-rank test). Supervised methods cannot
segment non-T1 modalities, and domain adaptation strategies are not tested on the source domain.

T1–39 ADNI T1mix FSM-T1 MSp-T1 FSM-T2 FSM-DBS MSp-PD FLAIR CT

T1 baseline Dice 0.91 0.83 0.86 0.84 0.82 – – – – –
SD95 1.31 2.63 2.14 2.09 3.55 – – – – –

nnUNet (Isensee et al., 2021) Dice 0.91 0.82 0.84 0.84 0.81 – – – – –
SD95 1.31 2.8 2.32 2.11 3.71 – – – – –

TTA (Karani et al., 2021) Dice – 0.83 0.87 0.87 0.85 0.82 0.71 0.8 0.71 0.46
SD95 – 2.26 1.73 1.72 2.14 2.35 4.48 3.71 3.95 19.43

SIFA (Chen et al., 2019) Dice – 0.8 0.82 0.84 0.84 0.82 0.82 0.74 0.73 0.62
SD95 – 3.03 2.24 2.21 2.57 2.32 2.09 4.41 3.30 4.51

SAMSEG (Puonti et al., 2016) Dice 0.85 0.81 0.86 0.86 0.83 0.82 0.81 0.81 0.64 0.71
SD95 1.85 3.09 1.77 1.81 2.47 2.21 2.34 2.99 3.67 3.36

SynthSeg (ours) Dice 0.88 0.84 0.87 0.88 0.86* 0.86* 0.86* 0.84* 0.78* 0.76*
SD95 1.5 2.18* 1.69* 1.59* 1.89* 1.83* 1.81* 2.06* 2.35* 3.29*
Fig. 4. Box plots showing Dice scores obtained by all methods for every dataset. For
each box, the central mark is the median; edges are the first and third quartiles; and
outliers are marked with ⧫.

5.1. Robustness against contrast and resolution

In this experiment, we assess the generalisation ability of SynthSeg
by comparing it against all competing methods for every dataset at
native resolution (Fig. 4, Table 2).

Remarkably, despite SynthSeg has never been exposed to a real
image during training, it reaches almost the same level of accuracy as
supervised networks (T1 baseline and nnUNet) on their training domain
(0.88 against 0.91 Dice scores on T1-39). Moreover, SynthSeg gener-
alises better than supervised networks against intra-modality contrast
variations, both in terms of mean (average difference of 2.5 Dice points
with the T1 baseline for T1 datasets other than T1-39) and robustness
(much higher lower-quartiles for SynthSeg). Crucially, the employed
DR strategy yields very good generalisation, as SynthSeg sustains a
remarkable accuracy across all tested contrasts and resolutions, which
is infeasible with supervised networks alone. Indeed, SynthSeg outputs
high-quality segmentations for all domains, even for FLAIR and CT
scans at LR (Fig. 6). Quantitatively, SynthSeg produces the best scores
for all nine target domains, six of which with statistical significance
for Dice and nine for SD95 ( Table 2). This flexibility is exemplified in
Fig. 5, where SynthSeg produces features that are almost identical for
a 1 mm T1 and a 5 mm axial T2 of the same subject, the latter being
effectively super-resolved to 1mm.

Although the tested domain adaptation approaches (TTA, SIFA) con-
siderably increase the generalisation of supervised networks, they are
still outperformed by SynthSeg for all contrasts and resolutions. This is
a remarkable result since, as opposed to domain adaptation strategies,
SynthSeg does not require any retraining. We note that fine-tuning
the TTA framework makes it more robust than supervised methods for
intra-modality applications (noticeably higher lower-quartiles), but its
7

Fig. 5. Representative features of the last layer of the network for two scans of different
contrast and resolution for the same subject. While the T1 baseline only produces noise
outside its training domain, SynthSeg learns a consistent representation across contrasts
and resolutions.

results can substantially fluctuate for larger domain gaps (e.g., on FSM-
DBS, FLAIR, and CT). This is partly corrected by SIFA (improvement of
14.92 mm in SD95 for CT), which is better suited for larger domain
gaps (Karani et al., 2021), albeit some abrupt variations (e.g., MSp-
PD). In comparison, SAMSEG yields much more constant results across
MR contrasts at 1mm resolution (average Dice score of 0.83). However,
because it does not model PV, its accuracy greatly declines at low
resolution: Dice scores decrease to 0.71 on the 3mm CT dataset (5
points below SynthSeg), and to 0.64 on the 5mm FLAIR dataset (14
points below SynthSeg).

To further validate the flexibility of the proposed approach to
different resolutions, we test SynthSeg on all artificially downsampled
data (Table 1), and we compare it against T1 baselines retrained at
each resolution, as well as SAMSEG. The results show that SynthSeg
maintains a very good accuracy for all tested resolutions (Fig. 7).
Despite the considerable loss of information at LR and heavy PV
effects, SynthSeg only loses 3.8 Dice points between 1mm and 7mm
slice spacing on average, mainly due to thin structures like the cortex
(Fig. 8). Meanwhile, SAMSEG is strongly affected by PV, and loses
7.6 Dice points across the same range. As before, the T1 baselines
obtain remarkable results on scans similar to their training data, but
generalise poorly to unseen domains (i.e., FSM-T1 and MSp-T1), where
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Fig. 6. Sample segmentations from the first experiment. Major segmentation mistakes are indicated with yellow arrows. SynthSeg produces very accurate segmentations for all
contrasts and resolutions. The T1 baseline makes small errors outside its training domain and cannot be applied to other modalities. While the TTA approach yields very good
segmentations for T1mix, its results degrade for larger domain gaps, where it is outperformed by SIFA. Finally, SAMSEG yields coherent results for scans at 1 mm resolution, but
is heavily affected by PV effects at low resolution.
Fig. 7. Dice scores for data downsampled at 3, 5, or 7 mm in either axial, coronal,
or sagittal direction (results are averaged across directions).

SynthSeg is clearly superior. Moreover, the gap between them on the
training data progressively narrows with decreasing resolution, until it
almost vanishes at 7mm, thus making SynthSeg particularly useful for
LR scans.

5.2. Ablations on DR and training label maps

We now validate several aspects of our method, starting with the
DR strategy. We first focus on the intensity profiles of the synthetic
scans by training four variants: (i) SynthSeg-R, which is resolution-
specific; (ii) SynthSeg-RC, which we retrain for every new combination
of contrast and resolution by using domain-specific Gaussian priors
for the GMM and resolution parameters (Billot et al., 2020b, 2021),
8

(iii) a variant using slightly tighter GMM uniform priors (𝜇 ∈ [10, 240],
𝜎 ∈ [1, 25], instead of 𝜇 ∈ [0, 255], 𝜎 ∈ [0, 35]); and (iv) a variant
with even tighter priors (𝜇 ∈ [50, 200], 𝜎 ∈ [1, 15]). SynthSeg-R and
SynthSeg-RC assess the effect of constraining the synthetic intensity
profiles to look more realistic, whereas the two last variants study the
sensitivity of the chosen GMM uniform priors. Finally, we train three
more networks by ablating the lesion simulation, bias field, and spatial
augmentation, respectively.

Fig. 9 shows that, crucially, narrowing the distributions of the
generated scans in SynthSeg-R and SynthSeg-RC to simulate a specific
contrast and/or resolution, leads to a consistent decrease in accuracy:
despite retraining them on each target domain, they are on average
lower than SynthSeg by 1.4 and 2.6 Dice points respectively. Inter-
estingly, the variant with slightly tighter GMM priors obtains scores
almost identical to the reference SynthSeg, whereas further restricting
these priors (at the risk of excluding intensities encountered in real
scans) leads to poorer performance (2.1 fewer Dice points on average).
Finally, the bias and deformation ablations highlight the impact of
those two augmentations (loss of 3.7 and 4.3 Dice points, respectively),
whereas ablating the lesion simulation mainly affects the ADNI and
FLAIR datasets, where the ageing subjects are more likely to present
lesions (average loss of 3.9 Dice points).

In a second set of experiments, we evaluate the effect of using
different numbers of segmentations during training. Hence, we retrain
SynthSeg on increasing numbers of label maps randomly selected from
T1-39 (𝑁 ∈ {1, 5, 10, 15, 20}, see Supplement 6). Moreover, we include
the version of SynthSeg trained on all available maps, to quantify the
effect of adding automated segmentations from diverse populations. All
networks are evaluated on six representative datasets (Fig. 10). The
results reveal that using only one training map already attains decent
Dice scores (between 0.68 and 0.80 for all datasets). As expected, the
accuracy increases when adding more maps, and Dice scores plateau at
𝑁 = 5 (except for MSp-PD, which levels off at 𝑁 = 10). Interestingly,
Fig. 10 also shows that SynthSeg requires fewer training examples than
the T1 baseline to converge towards its maximum accuracy.
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Fig. 8. Examples of segmentations obtained by SynthSeg for two scans artificially downsampled at decreasing LR. SynthSeg presents an impressive generalisation ability to all
resolutions, despite heavy PV effects and important loss of information at LR. However, we observe a slight decrease in accuracy for thin and convoluted structures such as the
cerebral cortex (red) or the white cerebellar matter (dark yellow).
Fig. 9. Mean Dice scores obtained for SynthSeg and ablated variants.

Fig. 10. Dice vs. number of training label maps for SynthSeg (circles) on representative
datasets. The last points are obtained by training on all available labels maps (20
manual plus 1000 automated). We also report scores obtained on T1mix by the T1
baseline (triangles).

Meanwhile, adding a large amount of training automated maps
enables us to improve robustness to morphological variability, espe-
cially for the ADNI and FLAIR datasets with ageing and diseased
subjects (Dice scores increase by 1.9 and 2.0 points respectively). To
confirm this trend, we study the 3% of ADNI subjects with the largest
ventricular volumes (relatively to the intracranial volume, ICV), whose
morphology substantially deviates from the 20 manual training maps.
For these ADNI cases (30 in total), the average Dice score increases by
4.7 Dice points for the network trained on all label maps compared with
9

Fig. 11. Close-up on the hippocampus for an ADNI testing subject with atrophy
patterns that are not present in the manual training segmentations. Hence, training
SynthSeg on these manual maps only leads to limited accuracy (red arrows). However,
adding a large number of automated maps from different populations to the training
set enables us to improve robustness against morphological variability (green arrow).

the one trained on manual maps only. This result further demonstrates
the gain in robustness obtained by adding automated label maps to the
training set of SynthSeg (Fig. 11).

5.3. Alzheimer’s disease volumetric study

In this experiment, we evaluate SynthSeg in a proof-of-concept vol-
umetric group study, where we assess its ability to detect hippocampal
atrophy related to AD (Chupin et al., 2009). Specifically, we study
whether SynthSeg can detect similar atrophy patterns for subjects who
have been imaged with different protocols. As such, we run SynthSeg
on a separate set of 100 ADNI subjects (50 controls, 50 AD), all with
1mm isotropic T1 scans as well as FLAIR acquisitions at 5mm axial
resolution.

We measure atrophy with effect sizes in predicted volumes between
controls and diseased populations. Effect sizes are computed with
Cohen’s 𝑑 (Cohen, 1988):

𝑑=
𝜇𝐶 − 𝜇𝐴𝐷

𝑠
, 𝑠=

√

(𝑛𝐶 − 1)𝑠2𝐶 + (𝑛𝐴𝐷 − 1)𝑠2𝐴𝐷
𝑛𝐶 + 𝑛𝐴𝐷 − 2

, (28)

where 𝜇𝐶 , 𝑠2𝐶 and 𝜇𝐴𝐷, 𝑠2𝐴𝐷 are the means and variances of the volumes
for the two groups, and 𝑛𝐶 and 𝑛𝐴𝐷 are their sizes. Hippocampal
volumes are computed by summing the corresponding soft predictions,
thus accounting for segmentation uncertainties. All measured volumes
are corrected for age, gender, and ICV (estimated with FreeSurfer) using
a linear model.

In addition to SynthSeg, we evaluate the performance of SAMSEG,
and all Cohen’𝑑 are compared to a silver standard obtained by running
FreeSurfer on the T1 scans (Fischl, 2012). The results, reported in
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Table 3
Effect size (Cohen’s d) obtained by FreeSurfer (Ground Truth, GT), SAMSEG and
SynthSeg for hippocampal volumes between controls and AD patients for different types
of scans.

Contrast Resolution FreeSurfer (GT) SAMSEG SynthSeg

T1 1mm3
1.38 1.46 1.40

FLAIR 5mm axial 0.53 1.24

Table 3, reveal that both methods yield a Cohen’s 𝑑 close to the ground
truth for the HR T1 scans. We emphasise that, while segmenting the
hippocampus in 1mm T1 scans is of modest complexity, this task is
much more difficult for 5mm axial FLAIR scans, since the hippocampus
only appears in two to three slices, and with heavy PV. As such, the
accuracy of SAMSEG greatly degrades on FLAIR scans, where it obtains
less than half the expected effect size. In contrast, SynthSeg sustains a
high accuracy on the FLAIR scans, producing a Cohen’s 𝑑 much closer
to the reference value, which was obtained at HR.

5.4. Extension to cardiac segmentation

In this last experiment, we demonstrate the generalisability of
SynthSeg by applying it to cardiac segmentation. With this purpose,
we employ two new datasets: MMWHS (Zhuang et al., 2019), and
LASC13 (Tobon-Gomez et al., 2015). MMWHS includes 20 MRI scans
with in-plane resolutions from 0.78 to 1.21mm, and slice spacings
between 0.9 and 1.6mm. MMWHS also contains 20 CT scans of non-
overlapping subjects at high resolution (0.28-0.58mm in-plane, 0.45-
0.62mm slice spacing). All these scans are available with manual labels
for seven regions (see Table 4). On the other hand, LASC13 includes 10
MRI heart scans at 1.25 × 1.25× 1.37mm axial resolution, with manual
labels for the left atrium only. We form the training set for SynthSeg by
randomly drawing 13 label maps from MMWHS MRI. For consistency,
these training segmentations are all resampled at a common 1mm
isotropic resolution. Finally, the validation set consists of two more
scans from MMWHS, while all the remaining scans are used for testing.

Nevertheless, the training labels maps only model the target regions
to segment, whereas SynthSeg requires labels for all the tissues present
in the test images. Therefore, we enhance the training segmentations by
subdividing all their labels (background and foreground) into finer sub-
regions. This is achieved by clustering the intensities of the associated
image with the Expectation Maximisation algorithm (Dempster et al.,
1977). First, each foreground label is divided into two regions to model
blood pools. Then, the background region is split into a random number
of 𝑁 regions (𝑁 ∈ [3, 10]), which aim at representing the surrounding
structures with different levels of granularity (Supplement 6). All these
label maps are precomputed to alleviate computing resources during
training. We also emphasise that all sub-labels are merged back with
their initial label for the loss computation during training. The network
is trained twice as described in Section 3.2 with hyperparameters values
obtained relatively to the validation set (see values in Supplement 8).
Inference is then performed as in Section 3.3, except for the test-time
flipping augmentation that is now disabled.

The results are reported in Table 4, and show that SynthSeg seg-
ments all seven regions with very high precision (all Dice scores are
above 0.8). Moreover, it maintains a very good accuracy across all
tested datasets, with mean Dice scores of 0.84 and 0.88 for MMWHS
MRI and CT respectively. Interestingly, these scores are similar to the
state-of-the-art results in cross-modality cardiac segmentation obtained
by Chen et al. (2019) (Dice score of 0.82), despite not being directly
comparable due to differences in resolution (2mm for Chen et al.
(2019), 1mm for SynthSeg). Overall, segmenting all datasets at such a
level of accuracy (Fig. 12) is remarkable for SynthSeg, since, as opposed
to Chen et al. (2019), it is not retrained on any of them.
10
Table 4
Dice scores for seven cardiac regions: left atrium (LA), right atrium (RA), left ventricle
(LV), right ventricle (RV), myocardium (MYO), ascending aorta (AA), and pulmonary
artery (PA). LASC13 only has ground truth for LA.

LA LV RA RV MYO AA PA

MMWHS MRI 0.91 0.89 0.9 0.84 0.81 0.86 0.86
MMWHS CT 0.92 0.89 0.86 0.88 0.85 0.94 0.84
LASC13 0.9 – – – – – –

Fig. 12. Representative cardiac segmentations obtained by SynthSeg on three datasets,
without retraining on any of them, and without using real images during training.
LASC13 only has ground truth for LA (pink).

6. Discussion

We have proposed a method for segmentation of brain MRI scans
that is robust against changes in resolution and contrast (including
CT) without retraining or fine-tuning. Our main contribution lies in
the adopted domain randomisation strategy, where a segmentation
network is trained with synthetic scans of fully randomised contrast
and resolution. By producing highly diverse samples that make no
attempt at realism, this approach forces the network to learn domain-
independent features.

The impact of the DR strategy is demonstrated by the domain-
constrained SynthSeg variants, for which training contrast and resolution
specific networks yields poorer performance (Section 5.2). We be-
lieve this outcome is likely a combination of two phenomena. First,
randomising the generation parameters enables us to mitigate the
assumptions made when designing the model (e.g., Gaussian intensity
distribution for each region, slice selection profile, etc.). Second, this
result is consistent with converging evidence that augmenting the data
beyond realism often leads to better generalisation (Tobin et al., 2017;
Chaitanya et al., 2019; Bengio et al., 2011).

Additionally, SynthSeg enables to greatly alleviate the labelling
labour for training purposes. First, it is only trained once and only
requires a single set of anatomical segmentations (no real images), as
opposed to supervised methods, which need paired images and labels
for every new domain. Second, our results show that SynthSeg typically
requires less training examples than supervised CNNs to converge to its
maximum performance (Section 5.2). And third, parts of the training
dataset can be acquired at almost no cost, by including label maps
obtained by segmenting real brain scans with automated methods, and
visually checking the results to ensure reasonable quality and anatom-
ical plausibility. We highlight that while automated segmentations are
generally not used for training (since they are prone to errors), this
is made possible here by the fact that synthetic scans are, by design,
perfectly aligned with their ground truths. We also emphasise that using
automated segmentations to train SynthSeg is not only possible, but
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recommended, as the inclusion of such segmentations greatly improves
robustness against highly different morphologies caused by anatomical
variability (e.g., ageing subjects).

Nevertheless, the employed Gaussian model imposes that the train-
ing label maps encompass tracings of all tissues present in the test scans.
However, this is not a limitation in practice, since automated labels
can be obtained for missing structures by simple intensity clustering.
This strategy enabled us to obtain state-of-the-art results for cardiac
segmentation, where the original label maps did not describe the com-
plex distribution of finer structures (blood pools in cardiac chambers)
and surrounding tissues (vessels, bronchi, bones, etc.). Moreover, our
results show that SynthSeg can handle deviations from the Gaussian
model within a given structure if they are mild (like the thalamus in
brain MRI), or far away from the regions to segment (like the neck in
brain MRI).

A limitation of this work is the high proportion of automated
label maps used for evaluation. This choice was initially motivated
by the wish to evaluate SynthSeg on a wide variety of contrasts and
resolutions, which would have been infeasible with manual labels only.
Nonetheless, we emphasise that a lot of testing datasets still use manual
segmentations (T1-39, and MSp for brain segmentation; MMWHS and
LASC13 for the heart experiment), and that the remaining datasets have
all undergone thorough visual quality control. Importantly, SynthSeg
has shown the same remarkable generalisation ability when evaluated
with manual or automated ground truths. Finally, the conclusions of
this paper are further reinforced by the indirect evaluation performed
in Section 5.3, which demonstrates the accuracy and clinical utility of
SynthSeg.

Thanks to its unprecedented generalisation ability, SynthSeg yields
direct applications in the analysis of clinical scans, for which no gen-
eral segmentation routines are available due to their highly variable
acquisition procedures (sequence, resolution, hardware). Indeed, cur-
rent methods deployed in the clinic include running FreeSurfer on
companion 1mm T1 scans and/or using such labels to train a super-
vised network (possibly with domain adaptation) to segment other
sequences. However, these methods preclude the analysis of the ma-
jority of clinical datasets, where 1mm T1 scans are rarely available.

oreover, training neural networks in the clinic is difficult in practice,
ince it requires corresponding expertise. In contrast, SynthSeg achieves
omparable results to supervised CNNs on their training domain (espe-
ially at LR), and can be deployed much more easily since it does not
eed to be retrained.

. Conclusion

In this article, we have presented SynthSeg, a learning strategy for
egmentation of brain MRI and CT scans, where robustness against a
ide range of contrasts and resolutions is achieved without any re-

raining or fine-tuning. First, we have demonstrated SynthSeg on 5000
cans spanning eight datasets, six modalities and 10 resolutions, where
t maintains a uniform accuracy and almost attains the performance
f supervised CNNs on their training domain. SynthSeg obtains slightly
etter scores than state-of-the-art domain adaptation methods for small
omain gaps, while considerably outperforming them for larger domain
hifts. Additionally, the proposed method is consistently more accurate
han Bayesian segmentation, while being robust against PV effects
nd running much faster. SynthSeg can reliably be used in clinical
euroimaging studies, as it precisely detects AD atrophy patterns on
R and LR scans alike. Finally, by obtaining state-of-the-art results in
ardiac cross-modality segmentation, we have shown that SynthSeg has
he potential to be applied to other medical imaging problems.

While this article focuses on the use of domain randomisation to
uild robustness against changes in contrast and resolution, future work
ill seek to further improve the accuracy of the proposed method. As

uch, we will explore the use of adversarial networks to enhance the
uality of the synthetic scans. Then, we plan to investigate the use
11
of CNNs to ‘‘denoise’’ output segmentations for improved robustness,
and we will examine other architectures to replace the UNet employed
in this work. Finally, while the ablation of the lesion simulation in
Section 5.2 is a first evidence of the robustness of SynthSeg to the
presence of lesions, future work will seek to precisely quantify the
performance of SynthSeg when exposed to various types of lesions,
tumours, and pathologies.

The trained model is distributed with FreeSurfer. Relying on a single
model will greatly facilitate the use of SynthSeg by researchers, since it
eliminates the need for retraining, and thus the associated requirements
in terms of hardware and deep learning expertise. By producing robust
and reproducible segmentations of nearly any brain scan, SynthSeg
will enable quantitative analyses of huge amounts of existing clinical
data, which could greatly improve the characterisation and diagnosis
of neurological disorders.
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