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Age being the main risk factor for Alzheimer’s disease, it is particularly challenging to disentangle structural changes related to normal

brain ageing from those specific to Alzheimer’s disease. Most studies aiming to make this distinction focused on older adults only and on

a priori anatomical regions. Drawing on a large, multi-cohort dataset ranging from young adults (n = 468; age range 18–35 years), to

older adults with intact cognition (n = 431; age range 55–90 years) and with Alzheimer’s disease (n = 50 with late mild cognitive

impairment and 71 with Alzheimer’s dementia, age range 56–88 years), we investigated grey matter organization and volume differences

in ageing and Alzheimer’s disease. Using independent component analysis on all participants’ structural MRI, we first derived morpho-

metric networks and extracted grey matter volume in each network. We also derived a measure of whole-brain grey matter pattern

organization by correlating grey matter volume in all networks across all participants from the same cohort. We used logistic regressions

and receiver operating characteristic analyses to evaluate how well grey matter volume in each network and whole-brain pattern could

discriminate between ageing and Alzheimer’s disease. Because increased heterogeneity is often reported as one of the main features

characterizing brain ageing, we also evaluated interindividual heterogeneity within morphometric networks and across the whole-brain

organization in ageing and Alzheimer’s disease. Finally, to investigate the clinical validity of the different grey matter features, we

evaluated whether grey matter volume or whole-brain pattern was related to clinical progression in cognitively normal older adults.

Ageing and Alzheimer’s disease contributed additive effects on grey matter volume in nearly all networks, except frontal lobe networks,

where differences in grey matter were more specific to ageing. While no networks specifically discriminated Alzheimer’s disease from

ageing, heterogeneity in grey matter volumes across morphometric networks and in the whole-brain grey matter pattern characterized

individuals with cognitive impairments. Preservation of the whole-brain grey matter pattern was also related to lower risk of developing

cognitive impairment, more so than grey matter volume. These results suggest both ageing and Alzheimer’s disease involve widespread

atrophy, but that the clinical expression of Alzheimer’s disease is uniquely associated with disruption of morphometric organization.
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Introduction
Alzheimer’s disease and normal ageing are both characterized

by considerable atrophy. Age is the main risk factor for

Alzheimer’s disease (Alzheimer’s Association, 2017), suggest-

ing these two processes may be closely intertwined.

Disentangling brain changes specific to ageing versus

Alzheimer’s disease has been a challenge (Jagust, 2013;

Fjell et al., 2014). For example, whether Alzheimer’s dis-

ease-related neurodegeneration represents accelerated ageing

or a process distinct from ageing has not been fully resolved

(Brayne and Calloway, 1988; Buckner, 2004; Ghosh et al.,

2011; Toepper, 2017). We sought further insight into this

topic by examining grey matter differences across the lifespan

and clinical Alzheimer’s disease conjointly.

Alzheimer’s disease brings neurodegeneration in several

regions, especially the hippocampus, the temporal lobe

and associative areas (Du et al., 2001; Dickerson et al.,

2011; Bakkour et al., 2013; Wirth et al., 2013b; Besson

et al., 2015; Jack et al., 2015). In ageing, grey matter at-

rophy in the frontal lobe is consistently reported as a prin-

cipal contributor to age-related cognitive changes (Resnick

et al., 2003; Fjell and Walhovd, 2010), but the temporal

lobe seems also particularly vulnerable to advancing age,

even in elderly at low risk of Alzheimer’s disease (Fjell

et al., 2013b). While studies investigating large-scale struc-

tural networks are less numerous, the pattern of atrophy in

Alzheimer’s dementia seems to mimic functional and grey

matter covariance networks (Seeley et al., 2009). Grey

matter covariance networks may also change with advan-

cing age (DuPre and Spreng, 2017; Koini et al., 2018), and

possibly more so in clinical Alzheimer’s disease relative to

ageing (Spreng and Turner, 2013). Together, these findings

suggest an additive effect of ageing and disease on volume

loss in certain brain regions and/or on the whole-brain

structural organization. This raises questions as to which

grey matter features, if any, are specific to ageing or

Alzheimer’s disease (Jagust, 2013). Discerning features spe-

cific to Alzheimer’s disease beyond those of ageing could

suggest novel ways to consider neurodegeneration in re-

search frameworks.

We applied independent component analysis (ICA) to

grey matter maps from individual structural MRI of par-

ticipants from a large, multi-cohort dataset spanning

young adults, older adults with intact cognition, and

older adults with late mild cognitive impairment and

Alzheimer’s dementia (here referred to as clinical

Alzheimer’s disease). Complementary analyses were also

conducted on individuals with early mild cognitive impair-

ment (MCI) and cognitively normal individuals with evi-

dence for brain amyloid-b. Through this process, we

derived morphometric networks, a term used as an ana-

logy to functional networks created by ICA of functional

MRI data. We investigated grey matter volume differences

within these morphometric networks, along with changes

in their intrinsic organization. Our analyses were framed

around a hypothetical model that relegated grey matter

differences between groups into three classes, one being

disease-specific (Fig. 1A), one being characteristic of

ageing alone (Fig. 1B), and one representing an additive

effect of both (Fig. 1C).

We first uncovered data-driven morphometric networks

that were stable across all individuals using ICA. Age had

an impact on all networks, and grey matter volume loss in

most networks showed an additive effect of age and

Alzheimer’s disease. The interindividual variability of grey

matter volume across networks was similar in young and

cognitively normal older adults, but increased specifically in

clinical Alzheimer’s disease. Looking at measures of the

whole-brain grey matter pattern also revealed a loss of or-

ganization specific to clinical Alzheimer’s disease, and not

to ageing. Furthermore, having a whole-brain grey matter

pattern less similar to young adults was associated with

increased risk of developing cognitive impairment. Grey

matter volume and organization did not differ between

groups of early MCI and cognitively normal older adults

with or without amyloid-b, leading us to conclude that

disruption in whole-brain organization is a late disease phe-

nomenon that precedes the onset of clinical Alzheimer’s

disease. These findings suggest that whole-brain grey

matter organization is important for maintaining good cog-

nition in old age.
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Material and methods

Participants

We assembled a cross-sectional dataset from four different

studies (n = 1019) to include cognitively normal young adults

(18–35 years old), cognitively normal older adults (55–90

years old), as well as individuals who represented the clearly

symptomatic portion of the Alzheimer’s disease clinical con-

tinuum (late MCI and Alzheimer’s dementia, 56–88 years

old) to disentangle the effect of age and Alzheimer’s disease

on grey matter changes. Demographics of this multi-cohort

dataset are detailed in Table 1. Written informed consent

was obtained from all participants or their legal representatives

under protocols approved by the Institutional Review Boards

at all participating institutions.
Young adults came from two independent open access data-

bases: the 1000 Functional Connectomes Project (FCP) and the

Human Connectome Project (HCP). The FCP is a large-scale
initiative combining resting state and structural scans from

adult participants from 33 sites worldwide (Biswal et al.,
2010). We specifically used data from the 198 subjects be-
tween 18 and 30 years of age collected at the Cambridge

site (FCP-Cambridge; PI: Buckner, R.L., http://fcon\_1000.pro-

jects.nitrc.org/). The HCP consortium of several universities

provides a large dataset of participants aged 18 to 35 (Van
Essen et al., 2013) (http://www.humanconnectome.org/). From

these, we used 270 HCP individuals aged between 30 and 35

years old who were gender-matched to the PREVENT-AD
cohort (PRe-symptomatic EValuation of Experimental or

Novel Treatments for Alzheimer’s Disease).
Cognitively normal older individuals were selected from two

independent databases: the PREVENT-AD cohort (https://dou-

glas.research.mcgill.ca/prevent-alzheimer-program) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(http://adni.loni.usc.edu). PREVENT-AD enrols older adults

with intact cognition who have a parent or two siblings with
well-documented histories of Alzheimer’s disease-like demen-
tia, and are therefore at increased risk of the disease
(Breitner et al., 2016). At enrolment, they must be at least
60 years of age, or between 55 and 59 if 515 years from
their relative’s age of symptom onset, and must be free of
major neurological and psychiatric diseases. Data from the
baseline visits of 295 PREVENT-AD participants (Data
Release 2.0, November 2015) were used in the present
study. All MRI scans were acquired at the Brain Imaging
Centre of the Douglas Mental Health University Institute,
Montreal, Canada. Cognitive performance was assessed using
the Repeatable Battery for Assessment of Neuropsychological
Status (RBANS) (Randolph et al., 1998). We selected a
memory task of list learning (10 words over four trials) and
a test of executive function (coding) to investigate relationships
between cognition and grey matter features. These tests have
been shown previously to be sensitive to MCI related to
Alzheimer’s disease (Villeneuve et al., 2009; Peters et al.,
2014). Cognitive data were available for 291 participants.

ADNI is a multisite study launched in 2003 as a public-
private partnership. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early
Alzheimer’s disease. For up-to-date information, see
www.adni-info.org. The ADNI study is divided into dif-
ferent phases, and data for the present analyses came from
ADNI2 only. ADNI2 baseline visits for continuing partici-
pants or initial visits for newly enrolled participants were
selected. One hundred and thirty-five cognitively normal
participants (Controls-ADNI) were included in the pre-
sent study (Clinical Dementia Rating = 0 and no signs
of depression, cognitive impairment, or dementia).
Additionally, control subjects who converted to MCI
during their subsequent follow-up visits (including visits
up to ADNI3) (n = 18) were identified for exploratory ana-
lyses aiming at comparing different grey matter features
between Controls-ADNI converters and those who re-
mained cognitively normal. As a measure of cognition,
we used the Alzheimer’s Disease Assessment Scale-cogni-
tive subscale (ADAS-Cog) (Rosen et al., 1984), where
higher scores represent higher degree of cognitive
impairment.

Clinically impaired participants were selected from the
ADNI2 database. The present study includes 50 participants
with late MCI, and 71 with Alzheimer’s dementia. Because we
sought grey matter changes characteristic of the clinical expres-
sion of Alzheimer’s disease, we included individuals with
severe cognitive impairment only in the primary analysis.

Complementary analyses

Preclinical and early prodromal Alzheimer’s disease

Complementary analyses were performed in a restricted set

of participants while splitting the group of cognitively

normal older adults by their amyloid-b status (Jansen

et al., 2015). This procedure was done to test if and how

preclinical Alzheimer’s disease influenced grey matter fea-

tures, and more importantly if preclinical Alzheimer’s dis-

ease influenced our main results.

Young 
adults
Young 
adults

Older
adults

Alzheimer’s
dementia

Young 
adults
Young 
adults

Alzheimer’s
dementia

Young 
adults
Young 
adults

Alzheimer’s
dementia

Effect of disease Effect of ageing Additive effect of ageing
and disease

A B C

Older
adults

Older
adults

Figure 1 Three proposed trajectories of grey matter

changes between groups. (A) Effect of disease: a grey matter

feature similar between young and older adults, but altered in

Alzheimer’s dementia. (B) Effect of ageing: a grey matter feature

similar between older adults with and without Alzheimer’s demen-

tia, but different compared to young adults. (C) Additive effect of

ageing and disease: a grey matter feature changing gradually across

lifespan and Alzheimer’s dementia continuum. The y-axis represents

the magnitude of change in morphometric networks and/or intrinsic

organization. The x-axis represents different conditions.
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In PREVENT-AD, only half of the participants had a lumbar
puncture and/or an amyloid-b-PET scan (n = 150) to assess
their amyloid status. Amyloid-b-PET scans were done using
the tracer 18F-NAV4694, and CSF was analysed with ELISA.
More information on the PET processing and CSF analysis is
available in the Supplementary material. To determine a
threshold of positivity, Gaussian mixture-models were run on
the amyloid-b CSF and PET values. The values representing
the 90% probability to be in the high distribution for PET and
low distribution for CSF were chosen as thresholds, resulting
in standardized uptake value ratio (SUVR) = 1.4 for PET and
800 pg/ml for CSF. Forty-four participants had both CSF and
PET assessments, and only one participant had a discordant
status between CSF and PET; we classified this individual as
being amyloid-b+ . Overall, there were 20 amyloid-b+ indi-
viduals of 150 in PREVENT-AD.

For Controls-ADNI, amyloid-b PET was available for 133 of
136 participants, and thus we did not use the CSF values. The
tracer used was 18F-AV45 and global amyloid-b SUVR was
available from the ADNI database. PET processing was done
at UC Berkeley and the pipeline is similar to the one we
applied to the PREVENT-AD group. We used the threshold
of 1.11 provided by ADNI to dichotomize participants in
amyloid-b+ and amyloid-b– groups (Jagust et al., 2015),
which resulted in 43 amyloid-b + individuals.

Finally, we also repeated the main analyses in a group of
early MCI participants (n = 65; mean age = 70 � 7). As per
ADNI criteria, early or late MCI status is determined using the
Wechsler Memory Scale Logical Memory II. While late MCI
are at the boundary of dementia, early MCI are at the bound-
ary of normal cognition.

Lifespan validation cohort

One limitation of the multi-cohort dataset is that partici-

pants from different studies were pooled together, bringing

effects inherent to different sites, scanners and image acqui-

sitions. To validate our morphometric networks and some

of our results, we performed similar analyses using data

from the Cambridge Centre for Ageing and Neuroscience

(Cam-CAN) study. The Cam-CAN study is a large lifespan

monocentric cross-sectional population-based study in

the UK (Taylor et al., 2015). This cohort is ideal to char-

acterize age-related grey matter changes. We included 647

participants aged between 18 and 88 years old with

T1-weighted structural scans, from the Cam-CAN Stage 2

repository. There were 100 participants or more in each

decade, except for the age ranges 18–30 and 80–88,

which included 80 and 44 participants, respectively. See

Supplementary Table 1 for a breakdown of participants

per decade.

MRI acquisition and processing

Image acquisition

T1-weighted structural images were acquired at 3 T for all

individuals. The different MRI sequences from each study

are detailed in Supplementary Table 2.

Processing of the grey matter maps

T1-weighted structural images were segmented into grey

matter, white matter, and CSF images using Statistical

Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/

spm/software/spm12/), running on MATLAB version

2012a. Grey matter images went through Diffeomorphic

Anatomical Registration through Exponentiated Lie

Algebra toolbox (DARTEL) (Ashburner, 2007), in which

inputs are iteratively aligned to create a group-specific tem-

plate. Each template underwent non-linear registration with

modulation for linear and non-linear deformations to the

MNI-ICBM152 template. As a first step, a template was

created for each group separately, resulting in six group-

specific templates [FCP-Cambridge, HCP, PREVENT-AD,

Controls-ADNI, late MCI-ADNI, Alzheimer’s disease

(AD)-ADNI]. Then the six templates were themselves itera-

tively aligned using DARTEL to create one common tem-

plate in MNI space. Importantly, this common template

equally weighted each group, as an attempt to reduce the

bias towards healthy adults and to have a final template

more representative of all subjects. A second registration

was done on each participant’s grey matter map to warp

it with modulation to the final common template. Lastly,

grey matter images were smoothed with an 8 mm3 isotropic

Gaussian kernel.
The Cam-CAN dataset was analysed as a separate group,

but underwent similar steps. All images were segmented and
underwent DARTEL to create a Cam-CAN-specific template.

Table 1 Demographics

Young adults Older adults Alzheimer’s dementia

FCP-Cambridge HCP PREVENT-AD Controls-ADNI Late MCI ADNI AD ADNI

n 198 270 295 135 50 71

Age, mean � SD

(range)

23 � 5 (18–30) 33 � 2 (31–35) 64 � 5 (55–84) 74 � 6 (56–90) 73 � 7 (58–85) 74 � 7 (56–88)

Sex, female, n (%) 123 (62) 196 (7) 214 (73) 67 (50) 22 (44) 31 (44)

APOE e4 carriers, n (%) - - 104 (35)a 36 (27) 24 (48) 52 (73)

Ab+ : Ab– individuals

(% Ab+ )

- - 20: 130 (13) 43: 90 (32) 24: 17 (50) 62: 8 (89)

Individuals were classified as APOE4 carriers if at least one allele was "4.
aAPOE status was available for 287 PREVENT-AD participants.
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Every grey matter image was aligned to the Cam-CAN tem-
plate, warped with modulation to the MNI space and
smoothed.

All images underwent visual quality control after segmenta-
tion to make sure the grey matter map was well-defined and
after non-linear transformation to make sure each participant
was properly aligned to the common grey matter template.
Two PREVENT-AD and one AD-ADNI participant failed the
template registration step and were removed. Six Cam-CAM
participants failed the grey matter segmentation step and were
removed. The sample size mentioned above already excluded
the failed participants.

Independent component analysis

ICA is a computational method to decompose multivariate

data into different components by maximizing statistical

independence (Beckmann and Smith, 2004). We performed

ICA on the grey matter maps of all individuals to derive

data-driven regions of grey matter covariance. To apply

such a method on structural data, we concatenated the

modulated and smoothed grey matter maps to create a

4D file, which became the input for the ICA. To ensure

that only grey matter voxels were retained for the ICA,

the maps were masked with a maximum probability grey

matter mask. This mask was generated from the group-

average grey matter, white matter, and CSF images and

consists of voxels with highest probability of being grey

matter (grey matter 4 white matter and grey matter 4
CSF). ICA was performed using the toolbox MELODIC

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) from the

FSL analysis package (Jenkinson et al., 2012) version 5.0.8.
To derive common data-driven components spanning life-

span and the Alzheimer’s disease spectrum, the ICA was per-
formed on all subjects (n = 1019). There is no clear rule as to
how many components to extract from an ICA (Cole et al.,
2010) and we set the output at 30 components as done in
Zeighami et al. (2015), to investigate a more fine-grained
structural organization. In supplementary analyses, we also
show the results when setting the output at 10 or 20 compo-
nents (Supplementary Fig. 4). Each component was thresh-
olded at z = 3.5 (Beckmann et al., 2009) and binarized to
retain the voxels that contributed significantly to the compo-
nent. These thresholded IC maps are hereafter referred to as
‘morphometric networks’. The grey matter volume in each of
the morphometric networks was then extracted for each par-
ticipant for further analysis.

To ensure the morphometric networks we derived were
not specific to our multisite, multi-cohort sample and were
representative of grey matter organization across the life-
span, we implemented the same ICA technique in the mono-
centric lifespan Cam-CAN dataset (n = 647). We repeated
the main analysis in our six groups of interest when extract-
ing grey matter volume from the unbiased morphometric
networks derived in the Cam-CAN cohort.

Finally, to investigate whether similar morphometric net-
works were also present in participants with severe cognitive
impairment, two ICAs were fit separately taking only the late
MCI- and AD-ADNI groups to derive 30 morphometric net-
works specific to these groups. Grey matter volume in these
morphometric networks was extracted for each participant

and the main analyses were repeated in our six groups of
interest using these late MCI- and Alzheimer’s disease-derived
networks.

Statistical analysis

Grey matter volume

To assess group effect on grey matter volume across brain

networks, we used repeated measures ANOVA with grey

matter volume in the 30 networks as intra-subject measure

and the six groups as the inter-subject measure. From grey

matter volume in each of the 30 morphometric networks,

we aimed to identify which networks were affected most

specifically by ageing and by Alzheimer’s disease. We

grouped the FCP-Cambridge and HCP samples together

as ‘Young adults’ (n = 468), the PREVENT-AD and

Controls-ADNI as ‘Older adults’ (n = 430), and the late

MCI- and AD-ADNI as ‘Alzheimer’s dementia’ (n = 121).

We used binary logistic regression models with 10-fold

cross-validation to classify: (i) Young adults versus Older

adults; and (ii) Older adults versus Alzheimer’s dementia,

with the average grey matter volume in each of the 30

networks as input. We then used receiver operating char-

acteristic (ROC) analyses and measured the area under the

curve (AUC) to assess the model performance across the

collated test sets. AUC were classified as follows: excellent

= 0.90–1, good = 0.80–0.89, fair = 0.70–0.79, poor =

0.60–0.69, or fail = 0.50–0.59 (Safari et al., 2016).
The Cam-CAN dataset was used to validate the effect of

age on grey matter volume. Age was entered in a voxelwise
regression analysis using SPM12, including sex and total
intracranial volume as nuisance variables. Results are re-
ported with a P5 0.05 family-wise error (FWE) correction.

Whole-brain grey matter pattern

Next, we assessed how measures of whole-brain grey

matter pattern were influenced by ageing and Alzheimer’s

disease. We derived measures of grey matter pattern simi-

larity by correlating the grey matter volume in the 30 mor-

phometric networks of each individual to the grey matter

volume in the 30 brain networks of every other subject.

These correlations indicate how one’s whole-brain organ-

ization is similar to every other individual. This resulted in

a 1019 � 1019 matrix of whole-brain grey matter pattern

between all subjects (Fig. 3B).
We evaluated whether there was a coherent grey matter

pattern within each group (intrinsic pattern). Within the dif-
ferent groups, we calculated the average and standard devi-
ation of correlation coefficients of grey matter pattern across
all individuals. We then compared the difference in correl-
ation coefficients between groups using z-test statistic

z1 � z2ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3
þ

1

n2 � 3

s
ð1Þ

to test if the intrinsic grey matter pattern remained orga-

nized with ageing and Alzheimer’s dementia at the group

level. The z-test statistic formally tests if the coefficient of
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correlation is greater in a group compared to another given

the sample size.
To obtain a measure at the individual level, for each partici-

pant, grey matter volume in the 30 networks was correlated to
the mean grey matter volume in the 30 networks of their re-
spective group. We then used binary logistic regression and
ROC analyses with 10-fold cross-validation to identify
whether the grey matter pattern within-group could differenti-
ate young adults from older adults, and older adults from
Alzheimer’s dementia. This tested if whole-brain pattern
homogeneity within the groups characterized ageing or
Alzheimer’s disease (Fig. 3F). Second, to obtain a measure of
whether the pattern itself differed with ageing and dementia,
for each participant, grey matter volumes in the 30 networks
were correlated to the mean grey matter volume in the 30
networks of the older adults group. This tested if the whole-
brain pattern between groups (with older adults as the com-
parison point) can distinguish young from older adults and
older adults from Alzheimer’s dementia (Supplementary Fig.
2).

Heterogeneity of grey matter volumes

To assess variability of grey matter volume in ageing and

Alzheimer’s dementia, we calculated the coefficient of

variation (standard deviation/mean of grey matter

volume in each network) in the 30 networks. We used

the modified signed-likelihood ratio (MSLR) test from

the R software package cvequality version 0.1.3

(Marwick and Krishnamoorthy, 2019) to test for signifi-

cant differences in the coefficients of variation of grey

matter volume between groups. A P-value 5 0.002 was

considered significant, accounting for 30 comparisons.
To assess variability of grey matter volume across lifespan,

coefficients of variation in the 30 morphometric networks were
also calculated in the Cam-CAN dataset. The 30 networks
were registered on the Cam-CAN maps and coefficients of
variation in grey matter volume were compared across
decades.

Clinical impact of grey matter volume and whole-

brain pattern in cognitively normal older adults

In cognitively normal older adults, we also evaluated

whether grey matter volume or whole-brain grey matter

pattern were related to cognitive performance and clinical

progression. We focused on grey matter volume in the net-

work with the best discrimination between young and older

adults (age-related network) and between older adults and

Alzheimer’s dementia (Alzheimer’s dementia-related net-

work), and on a metric representing preserved whole-

brain grey matter pattern, i.e. pattern similarity to young

adults. To test the degree to which older adults had a pat-

tern similar/dissimilar to young adults, we correlated the

grey matter volume in the 30 brain networks for each

older adult with the mean grey matter volume in the 30

networks of the young adults group. Correlation coeffi-

cients were Fisher z-transformed.
We investigated whether the different grey matter features

were related to cognitive performance using linear regression
models. Memory and executive function performance were the

dependent variables in PREVENT-AD. ADAS-Cog was the de-
pendent variable in Controls-ADNI. Models included age, edu-
cation and total grey matter as covariates. Six tests were
performed in PREVENT-AD and three in Controls-ADNI.
Analyses were run on SPSS version 20 (IBM Corp., Armonk,
NY). A two-sided P-value 5 0.05 was considered significant.

We then compared differences in grey matter features be-
tween Controls-ADNI stable and converters using Mann-
Whitney U-tests. We also performed binary logistic regression
with stable or converter status as the dependent variable and
grey matter feature as the predictor, followed by ROC ana-
lyses to evaluate the discriminative accuracy of the different
features. Given the small number of converters, those analyses
were conducted with leave-one-out cross-validation. ROC
curves were calculated across the collated test sets.

Data availability

The 10, 20 and 30 morphometric networks derived across

all participants are available at https://github.com/villeneu-

velab/projects. The values of grey matter volume in all

those networks along with the total intracranial volume

and amyloid status are also provided.

Results

Deriving morphometric networks

Different cohorts of young adults, older adults with intact

cognition, and along the Alzheimer’s disease clinical con-

tinuum (n = 1019, Table 1), were processed under a unified

pipeline in which each participant’s grey matter map was

registered to a common template. The resulting 1019 grey

matter maps were used as input for an ICA to derive 30

principal components, which explained 62% of variance in

the data. The principal components were thresholded and

binarized to retain the most significant voxels and are here-

after referred to as morphometric networks. The 30 mor-

phometric networks are shown in Fig. 2A and their

anatomical description can be found in Supplementary

Table 3. Most morphometric networks were reminiscent

of clearly defined anatomical regions, such as the precu-

neus, basal ganglia, occipital cortex or the thalamus. All

networks showed a bilateral distribution, except

Networks 23 and 26, which encompassed part of the left

occipital lobe and the right temporal lobe, respectively. The

average grey matter volume was extracted from each of

the 30 morphometric networks, and these values formed

the basis of all subsequent analyses.

Additive effect of age and Alzheimer’s
disease on grey matter volume was
found in most morphometric
networks

The grey matter volume across morphometric networks dif-

fered between cohorts (see repeated measures ANOVA in
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Supplementary Fig. 1), showing effects of age and disease.

To reduce the potential confound of site effects, we com-

bined the six cohorts into three groups: ‘Young adults’

(FCP-Cambridge and HCP), ‘Older adults’ (PREVENT-

AD and Controls-ADNI) and ‘Alzheimer’s dementia’ (late

MCI- and AD-ADNI), and examined the general differ-

ences between these three groups.

We used a 10-fold cross-validated logistic regression pro-

cedure to determine if the grey matter volume in each of

these morphometric networks could classify young adults

versus older adults and older adults versus Alzheimer’s de-

mentia in the left-out subjects. The AUCs from the ROC

analyses represent the overall performance of each morpho-

metric network to classify participants across the collated

test sets (Fig. 2A).

Many of the AUCs showed excellent (AUCs 4 90,

n = 11) or good (805AUCs 5 90, n = 10) performance

for classifying young versus older adults (Fig. 2B). Only

three networks including the motor cortex (Network 15),

the visual cortex (Network 17) and the thalamus/brainstem

(Network 22) performed poorly (AUCs 5 69). The medial

prefrontal cortex (Network 1, Fig. 2C) was the best to

discriminate young from older adults (AUC = 0.96) and

could not discriminate older adults from Alzheimer’s de-

mentia (AUC = 0.58). Grey matter decreased from youth

to old age in this network but was stable from older adult-

hood to dementia, suggesting that this network is more

specific to ageing than to Alzheimer’s disease (Fig. 2C).

The AUCs of the classifiers stratifying older adults versus

Alzheimer’s dementia were lower, with no AUC being ex-

cellent and only two being good discriminators (Fig. 2D).

The medial temporal network, including the hippocampus

and amygdala (Network 10, Fig. 2E), best discriminated

older adults from Alzheimer’s dementia (AUC = 0.83).

Interestingly, the second best network to discriminate

older adults and Alzheimer’s dementia (Network 18)

included part of the supramarginal and angular gyri,

brain regions that have repeatedly been shown to be af-

fected in Alzheimer’s disease (Dickerson et al., 2011;

Landau et al., 2011). However, grey matter volume in

these networks (Fig. 2E showing Network 10), as in most

other networks, showed an additive effect of age and

disease.

Disruption of intrinsic whole-brain
grey matter pattern in Alzheimer’s
dementia

Grey matter volume signatures across morphometric net-

works for each participant are shown in Fig. 3A. Based

on those values, we derived metrics reflecting whole-brain

grey matter pattern similarity by correlating the grey matter

volume signatures of the 30 morphometric networks be-

tween every other participant (Fig. 3B shows a signature

for two participants). This multivariate analysis captured

the variability of individuals with their own group as well

as with other groups. We averaged the subject-to-subject

grey matter signature correlations for each pair-wise

group, as a measure of the intrinsic grey matter pattern

within-group (diagonal elements of matrix, Fig. 3C),

which ranged from 0.64 to 0.82. The intrinsic grey

matter patterns within the groups of young and within

the groups of older adults were homogeneous, while the

pattern was less organized in Alzheimer’s dementia, with

lower mean correlation values (Fig. 3C and D) and higher

standard deviation (Fig. 3E). At the individual level, intrin-

sic grey matter pattern measure (within-group correlation)

discriminated older adults versus Alzheimer’s dementia

(AUC = 0.72), but not young versus older adults (AUC

= 0.57; Fig. 3F).

Young and older adults showed a coherent pattern

within their respective groups, but the whole-brain pattern

itself differed with ageing and with dementia (off-diagonal

elements Fig. 3C). Supplementary Fig. 3 shows that the

whole-brain signature correlation values can differentiate

between young and older adults (AUC = 0.94) and be-

tween older adults and Alzheimer’s dementia (AUC =

0.85).

Our results therefore suggest that grey matter volume

changes happen in a coherent way across networks in

ageing, and that this coherence is lost only with severe

cognitive impairment. Thus, higher heterogeneity and a dis-

rupted whole-brain pattern are specific characteristics of

clinical Alzheimer’s disease, in line with the disease model

(Fig. 1A).

Grey matter volume heterogeneity is
higher in Alzheimer’s disease but not
in normal ageing

In line with the loss of grey matter pattern organization

with Alzheimer’s dementia, there was higher heterogeneity

of grey matter volumes across morphometric networks in

Alzheimer’s dementia, as assessed by comparing coefficients

of variation of grey matter volume. There was a main effect

of group on coefficients of variation on the 30 networks

(all MSLR tests 4 33.4, P-values 5 0.001). Young and

older adults showed lower variation (mean coefficient of

variation in the 30 networks of 10.8 and 11.8%, respect-

ively), while Alzheimer’s dementia groups showed higher

heterogeneity (mean coefficient of variation of 17.8%)

(Fig. 3G). The absence of higher heterogeneity over the

course of ageing was validated using the Cam-CAN study

(n = 647; age range 18–88 years old) (Fig. 4A). The coeffi-

cients of variation of grey matter volume were similar

across decades in 26 of 30 morphometric networks (all

P-values 4 0.004 from MSLR tests; mean coefficient of

variation across decades ranged from 10.5 to 14.1%)

(Fig. 4B). Such results challenge the proposition that

normal ageing significantly amplifies heterogeneity of grey

matter volume. Instead, our results suggest that higher
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Figure 2 Performance of each morphometric network to discriminate ageing and Alzheimer’s dementia. (A) The 30 anatom-

ically derived morphometric networks from the ICA thresholded at Z4 3.5. Ten-fold cross-validation was used to determine the performance of

each network to discriminate between young and older adults (blue ROC curves) and older adults and Alzheimer’s dementia (red ROC curves).

AUC values are reported on each graph. The blue square highlights the most discriminative network for normal ageing and the red square

highlights the most discriminative network for Alzheimer’s dementia. Results remained the same when total intracranial volume was added as a

covariate in the statistical models. (B) Networks with excellent (AUC 4 90) and good (AUC 4 80) accuracy to discriminate normal ageing. (C)

Average grey matter volume in the best age-related network. (D) Networks with good accuracy to discriminate Alzheimer’s dementia. (E)

Average grey matter volume in the best Alzheimer’s dementia-related network. GM = grey matter.
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interindividual variability in grey matter volume may be a

hallmark of Alzheimer’s dementia.

Using the Cam-CAN study, a voxel-wise analysis of age

confirmed a whole brain reduction of grey matter volume

(Fig. 4C). Unsurprisingly, the peaks showing the strongest

relationship with advancing ageing were located in the

morphometric networks with the highest accuracy to dis-

criminate young from older adults.

Minimal effect of preclinical and
prodromal Alzheimer’s disease on
grey matter metrics

An important aspect to consider in the aforementioned

results is the presence of amyloid-b in the brain of cog-

nitively normal older adults (Jansen et al., 2015), which

could affect structural changes and bias our results

related to cognitively normal older adults. We repeated

the main analyses by splitting older adults into

amyloid-b + and amyloid-b– where biomarker status

was available (20 of 150 individuals were classified as

amyloid-b + in PREVENT-AD and 43 of 133 individuals

in Controls-ADNI). There were no differences in

grey matter volume between the amyloid-b + and amyl-

oid-b– cognitively normal individuals in PREVENT-AD

(P-values from t-tests between 0.28 and 0.91) and no

difference in 29 of 30 morphometric networks in

ADNI-Controls (morphometric network 22 P = 0.03;

other networks’ P-values were between 0.07 and 0.83).

The AUCs to discriminate ageing or Alzheimer’s disease

did not differ between the two groups (Supplementary

Fig. 3A). Regarding the whole-brain grey matter pattern,

the within-group correlation did not differ between amyl-

oid-b– and amyloid-b + older adults, but only the former

differed from the Alzheimer’s dementia group

(Supplementary Fig. 3B).

Another aspect to consider is the heterogeneous group

formed by the MCI participants. Following the ADNI diag-

nosis, we used the early and late MCI classification to iden-

tify a group of MCI that is closer to normal cognition

(early MCI) and a group of MCI that is closer to the

onset of dementia (late MCI). Post hoc tests from a re-

peated measure ANOVA using grey matter volume in the

30 morphometric networks revealed that the group of early

MCI (46% of participants being amyloid-b + ) had grey

matter volumes similar to the two groups of cognitively

normal older adults, while late MCI and AD-ADNI

groups were similar to one another (Supplementary Fig.

5B). Similarly, the discrimination accuracy of grey matter

volume of the early MCI group versus young adults and

versus older adults was highly similar to the groups of

older adults (Supplementary Fig. 3A). As with the amyl-

oid-b + older adults, the whole-brain organization of the

early MCI group was only slightly more heterogeneous

than the amyloid-b– older adults, in the sense that only

the amyloid-b– older adults were statistically different

from the Alzheimer’s dementia group (Supplementary Fig.

3B). Overall, amyloid-b status in the asymptomatic phase

or the addition of early MCI participants has a minimal

effect on the main results, suggesting that while a loss of

organization is specific to Alzheimer’s disease, this brain

feature is not apparent in the asymptomatic or early pro-

dromal phase of the disease.

Results are robust to different sets of
morphometric networks

Multiple confirmatory analyses were performed to ensure

that the results were robust and not dependent on the way

morphometric networks were derived. First, we repeated

the same analytical approach when deriving 10 and 20

networks instead of 30 and the main results remained the

same (Supplementary Fig. 4). Second, we used the Cam-

CAN cohort as an independent monocentric lifespan

dataset to derive morphometric networks. These new mor-

phometric networks recapitulated those found in the main

analysis and extracting grey matter volume from the six

groups of interest within these new networks revealed the

main results (Supplementary Fig. 5). Lastly, even when

deriving morphometric networks in cognitively impaired

individuals, the top ageing and Alzheimer’s dementia re-

gions were highly consistent with the networks from the

main analysis (Supplementary Fig. 6). However, as we

could expect given the high atrophy in those groups, the

morphometric networks were smaller and more often uni-

lateral in individuals with advanced disease.

A slower rate of clinical progression is
related to a preserved grey matter
pattern

Finally, in an effort to relate the descriptive results of grey

matter volume and pattern to clinical changes, we evalu-

ated whether different grey matter features were related to

cognitive outcomes in older adults. We focused on grey

matter volume in the most discriminative morphometric

network between young and older adults (age-related net-

work, Network 1) and the most discriminative between

older adults and Alzheimer’s dementia (Alzheimer’s demen-

tia-related network, Network 10), along with a metric of

preserved whole-brain pattern (similarity to young adults,

i.e. correlation between grey matter volume in the 30 net-

works to the mean grey matter volumes of young adults in

the 30 networks).

In PREVENT-AD, there was no association between cog-

nition and grey matter volume or grey matter pattern

(Supplementary Table 5). In Controls-ADNI, participants

showing a grey matter pattern more similar to young

adults had better cognitive performance. Grey matter

volume in the age- or Alzheimer’s dementia-related networks

was not related to cognition (Supplementary Table 5).
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In Controls-ADNI, a proportion of cognitively normal

participants converted to MCI (n = 18), most of them be-

tween 2 to 4 years later. When compared to Controls-

ADNI who remained cognitively normal (n = 117), these

converters displayed a grey matter pattern less similar to

young adults (Fig. 5A). Trends towards lower grey matter

volume in the age- and the Alzheimer’s dementia-related

networks were found in converters when compared to

stable older adults (Fig. 5B and C). Using leave-one-out

cross-validation analyses, we showed that whole-brain pat-

tern similarity to young adults differentiated Controls-

ADNI converters from stable with a fair accuracy (AUC

= 0.71), whereas grey matter volume in the age- and

Alzheimer’s dementia-related networks yielded poor accur-

acy (Fig. 5, bottom row). These findings support the previ-

ous results suggesting that whole-brain grey matter

organization is an important feature of clinical manifest-

ation of cognitive impairment.

Discussion
Using a large, multi-cohort dataset, we identified a set of

30 morphometric networks, and evaluated grey matter

volume differences in these networks, individually and in

concert, in ageing versus Alzheimer’s disease. We used

cross-validation procedures to determine how each feature

could discriminate young from cognitively normal older

adults (effect of age) and cognitively normal older adults

from Alzheimer’s dementia (effect of the disease). Across

the whole brain, we observed an important decrease in

grey matter volume in the course of ageing, as almost

all morphometric networks could accurately stratify

young adults from older adults. Atrophy related to

Alzheimer’s dementia added to that of ageing in most

brain systems, excluding those in the medial frontal

cortex. Importantly, Alzheimer’s dementia, but not

ageing, was associated with increased heterogeneity in

grey matter volume across the morphometric networks

and in whole-brain grey matter pattern. The robustness

of the results was validated in the Cam-CAN monocentric

lifespan cohort, where grey matter volume variability was

consistent across the decades. Finally, having a grey

matter pattern less similar to young adults was related

to progression to MCI in Controls-ADNI.

How does the brain age? Is Alzheimer’s dementia a form

of accelerated ageing? What features distinguish changes of

normal ageing from those seen in early Alzheimer’s demen-

tia? To disentangle changes of normal ageing versus those

leading to neurodegenerative diseases, large longitudinal

studies monitoring structural and pathological brain

changes across lifespan would be needed. While such stu-

dies do not exist, several lifespan and disease cohorts are

now available, making it possible to infer longitudinal

changes based on large, cross-generational data. Using

more than a thousand structural MRI scans from adults

aged 18 to 89 years old, among which 12% were diag-

nosed with late MCI or Alzheimer’s dementia, we differen-

tiated grey matter features more specific to Alzheimer’s

disease from those more specific to ageing, and identified

those vulnerable to both phenomena. We were interested in

both the magnitude (volume) and the pattern (whole-brain

organization) of grey matter features. Also, rather than tar-

geting a priori structural brain regions, we used ICA to

uncover morphometric networks that were robust and rep-

resentative of our sample (Bassett et al., 2008; Hafkemeijer

et al., 2014; Zeighami et al., 2015).

Frontal systems are preferentially affected by age but not

by Alzheimer’s dementia, and therefore our results do not

support the hypothesis that Alzheimer’s disease-related neu-

rodegeneration simply reflects an extension or acceleration

of normal ageing processes. Traditionally, the dissociation
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between fronto-striatal and temporal lobe atrophy has been

proposed as reflecting different underlying processes in

ageing and Alzheimer’s dementia (Ohnishi et al., 2001;

Buckner, 2004). Many studies also showed that the tem-

poral lobes are preferentially affected by age (Fjell et al.,

2009; Raz et al., 2010; Pfefferbaum et al., 2013), even

when focusing only on older adults at very low risk of

Alzheimer’s disease (Fjell et al., 2013a). In the current

study, we showed that the medial prefrontal networks are

relatively specific to ageing, and already show low grey

matter volume by the age individuals typically develop

Alzheimer’s dementia. However, grey matter volume in

most of the other morphometric networks decreased

almost linearly from young to old adulthood, and was

accelerated with Alzheimer’s dementia, resulting in an addi-

tive effect of both phenomena across most of the cortex. In

fact, our results suggest that even the regions most closely

related to Alzheimer’s disease are probably confounded by

a strong influence of ageing. These findings emphasize that

by the time an individual develops sporadic dementia, the

atrophy due to age, which has spanned over decades, is

quantitatively similar, or even greater, to the effect of

Alzheimer’s disease neurodegeneration.

Grey matter volume in the temporal lobe was the best

network to dissociate older adults from Alzheimer’s demen-

tia, but it was not specific to the disease. Only increased

heterogeneity in the grey matter pattern and grey matter

volume across morphometric networks was more specific

to Alzheimer’s dementia. We showed that the whole-brain

pattern was different over the course of ageing and

Alzheimer’s disease, but while cognitively normal older

adults maintained a coherent pattern, this homogeneity

was lost in Alzheimer’s patients. These results suggest

that it is not the ‘magnitude’ of atrophy in temporal

brain systems that is specific to the disease, but rather the

‘heterogeneity’ that characterizes Alzheimer’s disease.
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Following this idea, having a grey matter pattern more

similar to young adults was related to less progression to

MCI, more so than grey matter volume in individual mor-

phometric networks. Such results accord well with the con-

cept of brain maintenance, postulating that maintaining

youth-like brain integrity is associated with ‘healthier’

ageing (Nyberg et al., 2012). It has been suggested that

older adults who exhibit more youth-like functional char-

acteristics had higher cognitive performance (Sun et al.,

2016; Samu et al., 2017). Adding to this idea of functional

maintenance, it is possible that structural maintenance is

also an important factor of successful ageing. We hypothe-

size that preserved grey matter volume in the frontal cortex

more specifically might contribute to maintaining a whole-

brain pattern more similar to young adults, and, in turn,

better cognition. In effect, the prefrontal cortex and anter-

ior cingulate, or networks involving those regions, are often

related to preserved cognition in old age or even ‘super

ageing’ (Sun et al., 2016; Arenaza-Urquijo et al., 2019).

These alternative ways of exploring age and Alzheimer’s

disease differences reinforce the importance of looking

across the lifespan to untangle underlying processes of

normal and pathological ageing.

There are considerable interindividual differences in grey

matter volumes (Alexander-Bloch et al., 2013), and it is

often assumed that such differences increase with ageing,

due in part to early neurodegenerative processes (Jagust,

2013). Looking at changes across the lifespan and dementia

allowed us to directly compare heterogeneity in grey matter

volume across different age and disease groups. Refuting

the popular view that age is associated with increased vari-

ability, we found that grey matter volumes across all brain

networks were as variable in young adulthood as in old

adulthood. Similar findings have previously been shown

when only focusing on the hippocampal volume (Lupien

et al., 2007), perhaps the brain region most commonly

used as a structural proxy of Alzheimer’s disease neurode-

generation (Jack et al., 2015). More generally, interindivi-

dual differences may influence some cross-sectional

differences attributed to age- or disease-related changes.

Heterogeneity in grey matter volume in young adults

could reflect cortical endophenotypes, being present since

childhood (Shaw et al., 2007). Late MCI- and AD-ADNI

groups showed higher grey matter variability than young

and cognitively normal older adults, suggesting that

increased variability is associated with disease stage.

While part of this increased heterogeneity might arise

from multiple underlying pathologies, the clinical profile

of cognitively impaired participants in ADNI is nevertheless

quite uniform, i.e. primarily amnestic type. These results

also highlight the importance to consider the vast interindi-

vidual differences when classifying a biomarker as being

normal or abnormal, without refuting that diseases increase

interindividual brain variability, at least in advanced stages.

Another important aspect to consider when studying

ageing and Alzheimer’s disease is the underlying brain

pathologies, with amyloid-b being the key pathological

measure to define preclinical Alzheimer’s disease (Sperling

et al., 2011). In the current sample of cognitively normal

older adults, 23% of them were amyloid-b + , in line with

the expected proportion of �20% given the age range of

our sample (Jack et al., 2017). We found minimal differ-

ences between the amyloid-b + and amyloid-b– groups,

which aligns with other studies finding little brain struc-

tural differences with amyloid-b load in the presympto-

matic stage at a cross-sectional level (Wirth et al., 2013a;

Dubois et al., 2018). We also assessed the grey matter fea-

tures of early MCI, a group of individuals with mild

memory deficits among which about half have entered the

prodromal phase of Alzheimer’s disease dementia based on

their amyloid status. In line with previous findings, we

found that this group had grey matter features more similar

to cognitively older adults than demented individuals (Wei

et al., 2018; Ofori et al., 2019). Taken together, we believe

these findings highlight that Alzheimer’s disease grey matter

changes happen late in the disease continuum.

There are important methodological confounds to con-

sider in this study, notably the multiple sites and scanners.

To minimize the effect of scanner acquisition strength, we

included images acquired at 3 T only. Similar to another

multi-cohort study on structural covariance (DuPre and

Spreng, 2017), we optimized the common grey matter tem-

plate by averaging the template of each different group so

that each group is represented equally. Also, the main find-

ings were consistent across multiple cohorts, both mono-

and multi-centric studies. The results were also robust to

morphometric networks derived at different resolutions, in

an independent lifespan cohort or in individuals with severe

cognitive impairments only.

Overall, while atrophy occurred throughout ageing and

disease in an additive manner, grey matter volume loss was

not specific to clinical Alzheimer’s disease in any brain re-

gions. Instead, Alzheimer’s disease compounds the effects of

normal ageing, but was specifically characterized by higher

heterogeneity in both grey matter volume and whole-brain

pattern signature. By leveraging structural analyses from a

large lifespan dataset, we highlighted the overall brain dis-

organization that occurs only with severe cognitive impair-

ment. The dissociation between grey matter volume and the

intrinsic pattern of morphometric networks could provide

new perspectives in our understanding of Alzheimer’s dis-

ease and might apply to other neurodegenerative diseases.

Atrophy of individual brain regions has been studied exten-

sively, and recognizing the importance of whole-brain

changes might be as important.
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