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Abstract

Introduction: Given study-specific inclusion and exclusion criteria, Alzheimer’s dis-

ease (AD) cohort studies effectively sample fromdifferent statistical distributions. This

heterogeneity can propagate into cohort-specific signals and subsequently bias data-

driven investigations of disease progression patterns.

Methods:We built multi-state models for six independent AD cohort datasets to sta-

tistically compare disease progression patterns across them. Additionally, we propose

a novel method for clustering cohorts with regard to their progression signals.

Results:We identified significant differences in progression patterns across cohorts.

Models trained on cohort data learned cohort-specific effects that bias their estima-

tions. We demonstrated how six cohorts relate to each other regarding their disease

progression.

Discussion: Heterogeneity in cohort datasets impedes the reproducibility of data-

driven results and validation of progression models generated on single cohorts. To

ensure robust scientific insights, it is advisable to externally validate results in indepen-

dent cohort datasets. The proposed clustering assesses the comparability of cohorts in

an unbiased, data-drivenmanner.
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1 BACKGROUND

In the last decade, understanding the progressive dynamics of

Alzheimer’s disease (AD) and AD clinical syndrome,1 proved to be one

of the fundamental challenges in our field.2,3 Comprehensive knowl-

edge on AD progression opens crucial opportunities for medical inter-

vention to counteract or delay impediments to activities of daily living.4

One path to facilitate this understanding manifests in the extraction of

longitudinal progression signals from patient-level datasets collected

in cohort studies. In this context, data mining and machine learning

methods can be used to build mathematical models that elucidate and

predict progression patterns hidden in the data. In the past, such pro-

gression models were used, for example, to approximate biomarker

trajectories,5 to identify distinct progression subtypes,6 and to assess

patient risk of progression toward more impaired disease stages.7

However, to demonstrate that progression patterns identified in one

cohort generalize beyond the discovery dataset itself, it is imperative

to externally validate them in an independent dataset.8 External vali-

dation data should originate froma separate cohort study independent

from the training data used for building the model. Especially in the

context of multifactorial and heterogenous diseases such as AD, exter-

nal validation turns out to be a non-trivial undertaking.

The key limitation encountered in external validation manifests in

the characteristics of clinical AD cohort data.9 By nature of the dis-

ease, AD cohorts are very heterogeneous with respect to their exhib-

ited progression,10 for example, with respect to brain atrophy11 and

age of disease onset.12 Furthermore, cohort study participants are

recruited according to specific inclusion and exclusion criteria defined

based on the goals of the study (e.g., selection of specific age ranges or

risk factors). These specific sampling procedures shape potentially dis-

tinct statistical distributions from which each study’s participants are

recruited and, in turn, inevitably introduce cohort-specific statistical

biases into the collected dataset itself.13,14 These aspects potentially

violate the fundamental assumption behind data mining and machine

learning approaches that the participants of a validation dataset con-

stitute a representative sample of the same population from which

the original training data were drawn (Figure S1 in supporting infor-

mation). Consequently, this indicates that training and validation data

must be independently and identically distributed (i.i.d.) samples.15 As

such, a well-trained model should show similar performance on a vali-

dationdataset thatwasdrawn from the identical statistical distribution

as the training data, while an overfitted model would fail such valida-

tion. However, on a validation dataset that is violating the assumption

of being sampled from the same statistical distribution as the training

data even a well-trained model would fail, because the validation data

falls outside the domain of the model (Figure S1). In conclusion, data-

drivenmodels trained on cohort datasets cannot be expected to gener-

alize appropriately beyond the statistical distribution from which this

cohort’s participants were sampled.16,17

The heterogeneity found in AD cohort datasets, therefore, raises

several important questions with respect to data-driven modeling of

AD. First, it warrants an evaluation as to whether exhibited trends of

disease progression are consistent across cohorts despite possible dif-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed relevant liter-

ature using standard bibliographic search engines. Acces-

sible cohort datasets have been discovered through data

portals and citations in literature (primarily https://adata.

scai.fraunhofer.de/).

2. Interpretation: The presented results illustrate the com-

parability of Alzheimer’s disease (AD) progression across

six major AD cohorts. We identified evident differ-

ences in progression patterns between cohorts and, fur-

thermore, observed that data-driven approaches learn

cohort-specific effects from their training data. These

findings can impede the generalization of results gener-

ated on single cohorts. We propose a novel clustering

approach for cohort data that helps to better understand

which cohorts are comparablewith respect to their exhib-

ited disease progression.

3. Future directions: This work emphasizes the need for

thorough validation of data-driven results. To eventu-

ally support clinical decision-making using data-driven

approaches, it might be more promising to build models

specific for disease subtypes or use domain adaptation

techniques to address the encountered heterogeneity in

cohort datasets.

ferences in their underlying populations. Further investigation should

also determine whether progression models fitted on such datasets

learn potential cohort-specific biases that could impede the general-

izability of findings. Finally, as of now, there is no way to measure

and express the general comparability between patient-level datasets

on the level of disease progression. In the past, researchers mainly

relied on comparing baseline study characteristics of their studied

datasets.7,18,19 However, for obvious reasons, evaluating variable dis-

tributions at a singular time point is a very limited comparison in the

scope of disease progression. Deriving a quantitative measure to com-

pare longitudinal progression patterns across multiple clinical studies

could aid researchers to better understand the landscape of existing

studies and to identify datasets that might fulfill the i.i.d. assumption.

Furthermore, it could be used to investigatewhether the cause of a sig-

nificant drop in prediction performance lies in systematic differences

between the training and validation datasets (i.e., a probable violation

of the i.i.d. assumption) or simply in an overfittedmodel.

In this work, we evaluated the heterogeneity of disease progres-

sion patterns encountered in six longitudinal clinical AD cohort stud-

ies. Relying on multi-state models (MSM),20 a well-established data

mining approach in the AD field,7,21–24 we performed a system-

atic comparison of progression patterns extracted from these stud-

ies to assess whether discovered signals are robust. Furthermore, we

investigated whether cohort-specific biases propagate into trained

https://adata.scai.fraunhofer.de/
https://adata.scai.fraunhofer.de/
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progression models. Finally, we propose a novel method for clustering

cohorts based on their exhibited progression patterns. This approach

reveals the similarity of cohort studies in a data-driven and unbiased

manner. It allows researchers to adequately understand and char-

acterize performances measured via external validation of statistical

and machine learning models developed on another cohort. In con-

clusion, our approach allows for better understanding of statistical

differences that have previously been reported between various AD

studies.13

2 METHODS

2.1 Data selection

Six longitudinal datasets stemming from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI),25 AddNeuroMed (ANMerge),26

Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing

(AIBL),27 Japanese Alzheimer’s Disease Neuroimaging (J-ADNI),28

National Alzheimer’s Coordinating Center (NACC),29 and the Reli-

gious Orders Study and RushMemory and Aging Project (ROSMAP)30

were used as training datasets for our progression models. All of

these studies obtained ethical approval for human data collection and

informed patient consent for data sharing. We excluded participants

whose mild cognitive impairment (MCI) diagnoses were not attributed

to AD. Information on the cohorts with respect to key variables, as well

as the number of participants, can be found in Table S1 in supporting

information.

2.2 Progression models applied for statistical
analysis

To extract disease progression patterns from the investigated datasets,

we fitted one MSM per cohort using the msm R package.20 The states

in our models represent the three commonly assessed stages for AD

progression: cognitively unimpaired (CU), MCI, and AD. Consequently,

transitionsbetween states illustrate conversions fromoneclinical diag-

nosis stage to another. We modeled AD as an absorbing state, that is,

we assumed that patients were not able to recover once deterioration

was advanced enough to receive an AD diagnosis. However, because

the classification of patients into CU, MCI, and AD in all cohorts had

been performed based on clinical assessments, reversions from AD

were observed in the data. These reversions were modeled as misclas-

sifications. A graphical representation of the model can be seen in Fig-

ure S3 in supporting information. Each transition rate was estimated

based on a set of covariates to account for the individual compositions

of the cohorts. For determining the most informative combination of

covariates, we performed a rigorousmodel selection using theAkaike’s

information criterion (AIC). The choice of covariates was mainly lim-

ited by their availability across the cohorts (Figure S2 in supporting

information). Ultimately, the selected covariates comprised partici-

pant’s age, biological sex, completed years of education, apolipoprotein

E (APOE) ε4 status, and the Mini-Mental State Examination (MMSE).

Likelihood-ratio tests comparing each MSM to a null model demon-

strated that all models extracted progression signals from their train-

ing dataset (P < .05). To rule out potential overfitting of the models,

we built 150models on repeated bootstrap samples from each respec-

tive cohort and observed low variation in model estimates (Table S3 in

supporting information). Application of interval censoring allowed for

the inclusionof participantswithmissing intermediate visitswhile right

censoring was used for individuals who did not receive an AD diagno-

sis during study runtime. More details on the methodology and model

selection are presented in the supporting information.

2.3 Comparison of data mined progression
patterns across cohorts

To explore and assess the heterogeneity in disease progression trends

across cohorts, we estimated several progression patterns using each

cohort’s MSM: the state transition probabilities, probability of stay-

ing AD diagnosis free over time, and sojourn times (i.e., the expected

time a participant spends in a considered state). All patterns were

separately investigated for the CU and MCI states. For estimation

of a cohort’s progression patterns starting in the CU state, we used

the covariate values observed at the study baseline of each of the

respective cohort’s CU participants. Similarly, for estimating transi-

tions from the MCI state, we relied on the covariate values of par-

ticipants at their first MCI diagnosis. Where appropriate, uncertainty

of estimates was quantified using 95% confidence intervals (CI). Dif-

ferences between cohort-specific distributions of the aforementioned

progression estimates were determined using Kruskal-Wallis and pair-

wise Mann-Whitney U tests employing a confidence level of 95%. P-

values were corrected for multiple testing using the Bonferroni-Holm

method.

2.4 Evaluation of cohort biases in statistical
models

The second set of analyses aimed at elucidating whether MSMs fitted

to data from a single cohort would learn cohort-specific effects that

reduce generalizability to other cohorts. Hazard ratios, for example,

are covariate-specific parameters of a model that quantify the influ-

ence of covariates onto the transition risk between two states. Com-

paring these ratios, it becomes apparent whether models learned the

same covariate influences from distinct cohorts. Furthermore, we used

each cohort’s previously trainedMSM to estimate the progression pat-

terns for the same, combined set of participants from all cohorts. By

fixing the data to be estimated across models, all variability in the

progression patterns stems from the cohort-specific effects learned

by the model. To evaluate the existence of these cohort-specific

biases,weperformedKruskal-Wallis tests andpairwiseMann-Whitney
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F IGURE 1 Probabilities to transition from one state to another are estimated for a 10-year period. Median probabilities aremarkedwith
white points. Statistical distributions are shown as box plots as well as superimposed kernel density estimates, resulting in violin plots. Because
most deviations between depicted distributions were significant, we omit indication of significance for brevity. A-C, Transition probabilities
starting from the cognitively unimpaired (CU) state. D-F, Transition probabilities starting from themild cognitive impairment (MCI) state. AD,
Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing;
ANMerge, AddNeuroMed; J-ADNI, Japanese Alzheimer’s Disease Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center;
ROSMAP, Religious Orders Study and RushMemory and Aging Project

U tests, again correcting for multiple testing using Bonferroni-Holm

and assuming a confidence level of 95%.

2.5 Cohort similarity clustering

Whereas previous analyses focused on statistical differences between

cohorts, we additionally developed an approach to cluster cohorts

based on their global similarity across progression patterns. More

specifically, each cohort’sMSMwas used to calculate the log-likelihood

of observing the actual transitions of all the participants of each other

cohort. These pairwise log-likelihoodswere afterward averaged across

the number of participants per cohort to eliminate biases toward

cohort size. This resulted in a pairwise similarity matrix between

cohorts which was subsequently transformed into a symmetric dis-

tance matrix. Mathematical details can be found in the supporting

information. The resulting distancematrix was then used in an agglom-

erative hierarchical clustering approach using average linkage.

3 RESULTS

3.1 Progression patterns differ across cohorts

Transition probabilities estimated for a 10-year period varied signifi-

cantly between cohorts (Figure 1). While we observed in all cohorts

that participants in theCUstateweremost likely to remainCUover the

next 10 years, the proportions of probabilities showed evident differ-

ences (Figure 1A-C).Wediscovered a rangeof 25%difference between

the maximum and minimum observed median probability to remain

CU (J-ADNI, > 99%; ADNI, 75%). All observed differences between

pairwise combinations of cohorts were significant (P < .001), with the

exception of ROSMAP–NACC for remaining in the CU state (P= .3).

When investigating the estimated transition probabilities from the

MCI state (Figure 1D-F), all cohorts exhibited theirmost probable tran-

sition toward the AD state. J-ADNI showed the highest median proba-

bility across cohorts with 85%, while ROSMAP held the lowest median

probability with 50%, exposing a difference of 35% between them.
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F IGURE 2 Average probability of staying AD diagnosis free over time for each cohort. Dashed lines indicate the standard errors of the
estimates. A, Starting from cognitively unimpaired. B, Starting frommild cognitive impairment. ADNI, Alzheimer’s Disease Neuroimaging Initiative;
AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; ANMerge, AddNeuroMed; J-ADNI, Japanese Alzheimer’s Disease
Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center; ROSMAP, Religious Orders Study and RushMemory and Aging Project

Additionally, compared to the other cohorts, ROSMAP showed a con-

siderably higher median probability to revert from MCI back to CU of

23%. All pairwise differences across cohorts proved to be significant

(P < .001). Numerical values for the transition probabilities are pre-

sented in Table S4 in supporting information.

In concordance with the transition probabilities, the probability

of staying AD diagnosis free over time differed substantially across

cohorts. Starting in the CU state (Figure 2A), the trajectories of

cohorts deviated significantly after approximately 4 years. NACC and

ROSMAP exhibited the steepest decline (respectively, 85% and 87%

after 10 years), while the probability for ANMerge stayed relatively

stable (99%). Considering the MCI state as a starting point, the proba-

bility of remaining AD diagnosis free exhibited a steeper decline (Fig-

ure 2B). After 10 years, the most extreme estimates were made for

ROSMAP (48%) and J-ADNI (20%), while no significant differences

were observed between J-ADNI and NACC (both 20%), as well as

between AIBL and ADNI (both 42%). Ultimately, we discovered a max-

imum deviation of 14% for the CU state and 28% for theMCI state.

All pairwise comparisons between the cohorts’ sojourn time esti-

mates turned out to be significant for the CU state (P < .001,

with exception of ADNI–ROSMAP, P < .05; Figure 3A). Given their

respective MSMs, ROSMAP displayed the shortest sojourn time

with a median of 27.5 years, followed by ADNI (29.7 years), NACC

(38.7 years), AIBL, ANMerge, and J-ADNI (all > 100 years). In the MCI

state, again,most deviationswere found to be significant (P< .001; Fig-

ure 3B). The only exception to this was ANMerge, which did not differ

significantly fromADNI (P= .9) and AIBL (P= .88). Themedian sojourn

time in the MCI state showed relatively lower values for J-ADNI (3.8

years) and NACC (3.1 years), while ADNI, AIBL, and ANMerge showed

relatively higher values (7.7, 6.5, and 6.9 years, respectively). ROSMAP

is placed in between with a median of 5 years. Detailed descriptions of

the sojourn times distributions can be found in Table S5 in supporting

information.

3.2 Comparison of cohort-specific models

In the second set of analyses, we explored the cohort-specific

biases learned by our MSMs from their respective training datasets.

We observed that the cohort-specific models learned significantly

different relationships between covariate values and the disease

progression. Non-overlapping CIs indicated significant differences in

hazard ratios for the transition from CU to MCI between ROSMAP

(CI: 1.05 to 1.1), NACC (1.0 to 1.04), and ADNI (0.86 to 0.99) regarding

education level. With respect to the MMSE, significant differences

were found for ROSMAP, NACC, J-ADNI, and ADNI (CIs: 0.60 to 0.67,

0.76 to 0.81, 0.11 to 0.58, and 0.76 to 0.98, respectively; Figure 4A).

The influence of education in J-ADNI (CI: 1.15 to 1.92) differed signif-

icantly from ADNI (0.93 to 1.12), NACC (0.94 to 1.04), and ROSMAP

(0.93 to 1.03) with respect to reverting from MCI to CU (Figure 4B).

Regarding the conversion fromMCI toAD, significant differenceswere

discovered in the hazard ratios for age between ROSMAP (1.02 to

1.05) andNACC (1.00 to1.01), forAPOE ε4 status betweenNACC (1.10

to 1.31) and ADNI (1.34 to 1.82), and for MMSE between NACC (0.83

to 0.87), ADNI (0.7 to 0.76), and ROSMAP (0.74 to 0.79; Figure 4C).

In several cases, large CIs hampered the interpretation of the hazard

ratios. The exact estimates of all hazard ratios are presented in Table

S6 in supporting information.

When applying each MSM to the same set of data, the difference

in the estimated progression patterns across models resembled

the consequences of the learned cohort-specific biases (Figure 5).

Numerical descriptions of the distributions in Figure 5 can be found in
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F IGURE 3 Sojourn times of cohort participants on a log10-scale. Becausemost deviations between depicted distributions were significant, we
omit indication of significance for brevity and refer to the text. A, Occupying the cognitively unimpaired state. B, Occupying themild cognitive
impairment state. ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing;
ANMerge, AddNeuroMed; J-ADNI, Japanese Alzheimer’s Disease Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center;
ROSMAP, Religious Orders Study and RushMemory and Aging Project

Tables S6 and S7 in supporting information. For all evaluated patterns

(i.e. the transition probabilities, Figure 5A; sojourn times, Figure 5B;

and estimated probability of staying AD diagnosis free, Figure 5C),

significant Kruskal-Wallis tests underlined the presence of cohort-

specific effects (P < .001). Additional pairwise comparisons using

Mann-Whitney U tests are presented in the supporting information.

We observed that naive pooling of datasets and training models on

a combination of multiple, complete cohorts expectedly biases the

estimates toward the cohort with the largest sample size (Figure S4 in

supporting information).

We also found differences between cohorts when extracting pro-

gression patterns for a cohort’s representative individual (Figure S5 in

supporting information) and even when applying the same exemplary

patients to each cohort’s specific MSM (Figure S6 in supporting

information).

3.3 Clustering reveals overall similarity of studies

Figure 6 presents the results achieved by clustering the investi-

gated cohorts based on the similarity of their progression patterns.

ANMerge, AIBL, and NACC displayed close proximity indicating that

their participants exhibited similar disease progression in combination

with their trained MSMs. Furthermore, ADNI and J-ADNI formed a

cluster that connected with the previously mentioned cluster in rela-

tively high distance. ROSMAP was placed far from all other cohorts,

constituting its own cluster.

4 DISCUSSION

In this work, we explored the heterogeneity in AD progression across

multiple, independent cohort datasets and the implications for data-

driven approaches for progression modeling. Evident differences in

minedprogression patterns surfacedbetween six investigated cohorts.

This finding raises concerns regarding the reliability of results discov-

ered in single data resources and underlines the need for external

validation. Furthermore, we demonstrated that models learn cohort-

specific effects from their training dataset, which can impede model

generalization. Last, we proposed a novel approach to identify similar

cohort datasets that could help to find datasets that come closer to

fulfilling the i.i.d. assumption.We demonstrated this approach by high-

lighting how six major AD cohorts relate to each other with regard to

their exhibited disease progression.

4.1 Progression trends differ across cohort
datasets

Analyzing the characteristic progression trends extracted from the

investigated cohorts revealed substantial differences among them. The

observation of lower variability in estimates for theCUstate compared

to theMCI state can be explained by the fact that only a fraction of the

CU participants will eventually develop cognitive symptoms. Thus, a

substantial amount of CU participants are expected to show no signals

of AD progression at all. Overall, the discovered heterogeneity could

likely stem from differences in the recruitment processes of cohort

studies. Compositional shifts across sampled populations pose a crit-

ical confounder comparing cohort datasets and model performance.13

Here, statisticalmatching could potentially help to identify comparable

subsets.

4.2 Data-driven models learn systematic biases
present in cohort datasets

Using all cohort-specific MSMs to estimate progression patterns

for the same set of participants revealed the presence of strong
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F IGURE 4 Covariate hazard ratios learned per cohort-specific multi-state models. For readability, significant deviations are not indicated
visually. Instead, we refer to the text for the corresponding evaluations. A, B, C, Impact on transition from cognitively unimpaired (CU) tomild
cognitive impairment (MCI), MCI to CU, andMCI to Alzheimer’s disease (AD), respectively. ADNI, Alzheimer’s Disease Neuroimaging Initiative;
AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; ANMerge, AddNeuroMed; J-ADNI, Japanese Alzheimer’s Disease
Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center; ROSMAP, Religious Orders Study and RushMemory and Aging Project

cohort-specific effects that the models learned from their training

datasets. The estimated covariate hazard ratios are an integral com-

ponent of the cohort-specific progression signals and while we could

observe commonalities in the directional influence of covariates,

partially described by previous studies as well,7,21 the magnitude of

these influences exposed several significant differences. With regard

to education, even contradicting influences were found. Differences in

such fundamental parameters of a model propagate into, and thereby

bias, their estimates; this became apparent in the subsequently

estimated progression patterns.

Naive pooling of data from several cohorts does not necessar-

ily pose a solution for addressing the biases but leads to an over-

shadowing of signals in smaller cohorts by larger ones. Instead,

more considerate methods must be applied, such as sampling the

same number of participants from each cohort, weighting of sub-

jects to favor smaller datasets, or ensemble techniques that combine
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dataset-specific models. Future work should explore these options in

more detail.

4.3 Clustering allows assessment of cohort
similarities

Our proposed approach to measure cohort similarity with regard to

their global disease progression trends (informed by neuropsycholog-

ical tests, biological sex, completed years of education, APOE ε4 sta-

tus) elicited commonalities across cohorts that mirror the design of

these studies. FindingADNI and J-ADNI in one cluster together is reas-

suring as J-ADNI was designed as a complementary cohort to ADNI,

and similar trends have been observed in both cohorts.28 Their use of

equal eligibility criteria for participant recruitment counteracts the risk

of sampling from two distinct populations. The distance we observe

between them could be explained partially due to differences in eth-

noracial composition31 and lifestyle.32 ROSMAP, on the other hand,

is a special case in the landscape of AD cohorts. Its participants are

exclusively recruited from religious orders, are considerably older, and

hold a higher proportion of female participants compared to the other

cohorts.13,30

Our proposed method enables a quantitative description of differ-

ences across cohorts and, subsequently, an evaluation of cohort sim-

ilarity based not only on cross-sectional values of covariates but on

their general progression. Consequently, it could help researchers to

better understand and characterize performance measures obtained

during theexternal validationofmachine learningmodels.More specif-

ically, our cohort clustering can be used post hoc to indicate whether

failed validation was likely caused by overfitting or systematic biases

betweendiscovery and validation cohort originating from, for example,

sampling of distinct statistical distributions.

4.4 Limitations

It is unknown howmany of the CU participants per cohort would have

eventually developed cognitive symptoms during their lifetime. While

the models account for this factor using censoring, estimates based on

the CU participants could be biased depending on the size of the par-

ticipant fraction with prodromal AD.

One limitation of MSMs is the assumption that disease progression

depends only on the current state of a participant. While this is a nec-

essary andwidely accepted assumption in the literature,7,21–24 there is

no universal way to prove that it always holds true for all possible state

transitions.

F IGURE 6 Cohort dendrogram resulting from the clustering of
pairwise log-likelihoods. ADNI, Alzheimer’s Disease Neuroimaging
Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship
Study of Ageing; ANMerge, AddNeuroMed; J-ADNI, Japanese
Alzheimer’s Disease Neuroimaging Initiative; NACC, National
Alzheimer’s Coordinating Center; ROSMAP, Religious Orders Study
and RushMemory and Aging Project

In recent years, AD ismore considered a biological entity1 andwhile

we aimed to account for as many clinically relevant covariates as pos-

sible, we were unable to include emerging biomarkers in our MSMs.

Given the limited number of individuals participating in longitudinal

biomarker collection, the inclusion of biomarkers would have led to

underpowered models and reduced the number of cohorts available

for analysis. However, using this limited set of covariates, our model

selection showed that all chosen covariates addedmeaningful informa-

tion to the models and that progression signals could successfully be

learned.

5 CONCLUSION

Applying machine learning and statistical modeling to single data

resources can bias results and might render the generalizability of

the models used infeasible. Ideally, it would be imperative that we

go beyond single data resources and instead investigate and validate

findings across the landscape of AD data we have at our disposal. In

practice, however, external validation of data-driven machine learn-

ing models is often limited by the availability of semantically and sta-

tistically comparable datasets.13 For some investigations only single

cohorts might be suitable. While results originating from such single-

cohort investigations hold value as initial indications, they should be (1)

regarded as cohort-specific findings pending external validation, and

F IGURE 5 Consequences of learned cohort-specific biases onto estimated progression patterns. The same set of participants was considered
under each cohort’s trainedmulti-state models (i.e., variability in estimates stems from themodels, not the data). Deviations between estimates
illustrate the learned biases. Becausemost deviations between depicted distributions were significant, we omit indication of significance for
brevity. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship
Study of Ageing; ANMerge, AddNeuroMed; CU, cognitively unimpaired; J-ADNI, Japanese Alzheimer’s Disease Neuroimaging Initiative; MCI, mild
cognitive impairment; NACC, National Alzheimer’s Coordinating Center; ROSMAP, Religious Orders Study and RushMemory and Aging Project
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(2) meticulously validated internally. Here, resampling techniques and

cross-validation can help to increase the robustness of single cohort

studies.8

Dealing with such heterogeneous data as is encountered in our

field, building a single model that serves all predictive purposes and is

applicable to the general AD population seems inconceivable. Instead,

the more promising alternative to support clinical decision-making

using data-driven approaches for AD and dementia could be to build

subpopulation-specific models that embrace the specifics of their tar-

get group. Here, the stratification of the AD population into specific

progression subtypes could guide which model is applicable to which

patient. Alternatively, artificial intelligence methods from the field of

domain adaptation (e.g., transfer learning) might help to manage the

heterogeneous signals when applyingmodels across cohorts.
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