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OTensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized
by means of the spatial transformations mapping a customized template with the observed images.
Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template
estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to
highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the
registration parameters, such as the parameters defining the deformation and the regularization models. In
this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration
was performed in a subset of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A
wide range of values of the registration parameters that define the transformation smoothness and the
balance between image matching and regularization were explored in the evaluation. The proposed
methodology provided brain atrophy maps with very detailed anatomical resolution and with a high
significance level compared with results recently published on the same data set using a non-linear elastic
registration method.
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Alzheimer's disease (AD) is the most common form of age-related
dementia and one of the most serious health problems in the indus-
trialized world. It manifests with progressive cognitive decline initially
shown as memory loss and then spreads to affect all other cognitive
faculties and the patients' ability to conduct an independent lifestyle.Mild
cognitive impairment (MCI) is a relatively recent concept introduced to
recognize the intermediate cognitive state where patients are neither
cognitively intact nor demented (Petersen et al., 2001; Petersen, 2004;
Winblad et al., 2004). Some MCI patients harbor an alternative
pathological diagnosis such as dementia with Lewy bodies, vascular
dementia, hippocampal sclerosis, frontotemporal dementia and even
some MCI cases can also be attributed to non-degenerative pathology.

In spite of recent advances in understanding the genetics, neuropa-
thology and neuropsychology of AD, we are still lacking sensitive and
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specific biologicalmarkersuseful in thepreclinical stages. AD-associated
brain changes can be clinically evaluated in-vivo with the help of
neuroimaging, using either structural technique such as magnetic
resonance imaging (MRI) and diffusion tensor imaging or functional
approaches such as positron emission tomography (Mosconi, 2005;
Nordberg, 2008), functional MRI (Dickerson and Sperling, 2008),
arterial spin labeling (Du et al., 2006) and spectroscopy (Kantarci
et al., 2002;Modrego et al., 2005). Reliable biomarkers of the underlying
pathology that can also predict disease progression in MCI are needed
and several candidate brain measures have been examined in a wealth
of cross-sectional and longitudinal neuroimaging studies.

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005a,b) is a large multi-site longitudinal structural MRI and
fluorodeoxyglucose positron emission tomography (FDG-PET) study
of 800 adults, ages 55 to 90, including 200 elderly controls, 400
subjects with mild cognitive impairment, and 200 patients with AD.
The ADNIwas launched in 2003 by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public–private partner-
ship. The primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and
early AD. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to
locity field diffeomorphic registration: Application
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develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials. Several brain morphometry
studies on ADNI data have been already published (Fan et al., 2008a;
Hua et al., 2008a,b, 2009; Morra et al., 2008; Leow et al., 2009; Misra
et al., 2009; Qiu et al., 2009; Schuff et al., 2009).

Nowadays several techniques for analysis of brain anatomy are
available. The oldest approach is the region of interest (ROI) technique
which measures the volume of specific brain structures. It relies on
delineation of the regions of interest. Volumetry is a powerful and
intuitive technique that has yielded a wealth of findings, but has some
drawbacks. ROI analysis requires an accurate a priori hypothesis, so
analyses often tend to be limited to one or two structures of interest.
This limitation is important when complex and dynamic atrophy
patterns are sought, which is the case of AD. Hippocampus and
entorhinal cortex are the regions more frequently analyzed in this
pathology (Laakso et al., 1995; Krasuski et al., 1998; Jack et al., 1999;
Du et al., 2001; Pennanen et al., 2004). In addition, when usingmanual
delineation, the ROI method is operator-dependent, susceptible to
bias and time consuming (Barnes et al., 2009).

More specific and subtle shape information of particular regions or
structures, such as the hippocampus, has been analyzed by means of
statistical shape analysis. Different shape features have been used,
such as landmark coordinates (Csernansky et al., 2000, 2004),
thickness or radial atrophy maps (Thompson et al., 2007; Querbes
et al., 2009; Qiu et al., 2009), andmedial representations (Styner et al.,
2003). However, these methods share some limitations with the ROI
analysis because an a priori hypothesis about the target structure is
required together with the task of accurate delineation.

A different paradigm is to perform voxel-wise statistical analysis of
anatomical information for the whole brain volume. One of the
techniques belonging to this paradigm is tensor-based morphometry
(TBM), which identifies regional structural differences in the brain,
across groups or over time, from the gradients of the deformation
fields that align images to a common anatomical template (Frack-
owiak, 2004). The anatomical information is encoded in the spatial
transformation. Therefore, accurate inter-subject non-rigid registra-
tion is an essential tool. Many different registration approaches have
been proposed, all having several tuning parameters, including
parameters defining the deformation model, the regularization
model, the optimization technique and the interpolation approach.
With the new advent of recent and powerful non-rigid registration
algorithms based on the large deformation paradigm (Leow et al.,
2007; Lepore et al., 2008; Brun et al., 2009), TBM is being increasingly
used. Subsequent statistical analysis is performed on the spatial
transformations to highlight statistical differences between groups
(Chiang et al., 2007a,b), or to classify individuals into diagnostic labels
(Fan et al., 2008a,b; Duchesne et al., 2008). One of the simplest and
most common TBM features is the determinant of the Jacobian matrix
which can be interpreted as a local atrophy/expansion factor (Leow
et al., 2006; Lepore et al., 2007; Chiang et al., 2007a; Lee et al., 2007).
More complete descriptors can be also used, such as the complete
Jacobian matrix J, or rotation-invariant features, such as the strain
tensor S =

ffiffiffiffiffiffi
JT J

p
(Lepore et al., 2006, 2008; Ridgway et al., 2008).

One of the main limitations of the TBM is the non-uniform
distribution of the variance of the warpings, which is typically larger
at cortical folds than in subcortical regions. This variance may be due
to anatomical variability and possible misregistration errors. Accord-
ingly, subtle anatomical differences between groups may be unno-
ticed especially in these regions.

Even though many different non-rigid registration methods could be
considered as potentially suitable for TBMstudies, themethods belonging
to the large deformation paradigm have the advantage of offering a large
flexibility required to characterize the anatomical variability in cross-
sectional studies of elderly subjects and dementia patients. Some of these
methods are fluid registration (Christensen et al., 1996; D'Agostino et al.,
2003), the large deformation diffeomorphic metric mapping (LDDMM)
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
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(Csernanskyetal., 2000;Beget al., 2005;Wanget al., 2007), diffeomorphic
demons (Vercauteren et al., 2007) and stationary velocity field (SVF)
diffeomorphic methods (Ashburner, 2007; Hernandez et al., 2007, 2009;
Vercauteren et al., 2008). The warping in all previous methods is a
diffeomorphism, which is an invertible and differentiable mapping
obtained by integrating a smooth velocity vector field.

SVF diffeomorphic registration has been recently proposed as a
simplified version of the LDDMM algorithm, by constraining the para-
meterization to a stationary velocity field. With this simplified charac-
terization, the forward and backward integration of the velocity field are
identified with the group exponential and can be computed using fast
methods (Arsigny et al., 2006; Bossa et al., 2008) with smaller memory
requirements than in the LDDMM method. To our knowledge, two
diffeomorphic registration algorithms with SVF parameterization were
proposed at about the same time (Hernandez et al., 2007; Ashburner,
2007). Both can be fitted in the same variational framework, with some
differences in the optimization technique. At the same time an extension
of the demons registration method to diffeomorphic transformations
was proposed in Vercauteren et al. (2007) where a Lie group optimiza-
tion technique was used. The regularization in Vercauteren et al. (2007,
2009) was externally imposed by means of Gaussian smoothing.

The aim of this paper is twofold. Firstly, to illustrate that SVF
diffeomorphic registration may be a good choice for TBM studies
because it allows large deformations and offers a good accuracy/
complexity trade-off. In particular, the SVF diffeomorphic registration
method is used on the same data set analyzed in a recent TBM study
using non-linear elastic registration (Hua et al., 2008a). Secondly, to
quantify and illustrate the effect of using different values of the
registration parameters in a TBM study. In addition to SVF diffeo-
morphic registration, diffeomorphic demons 2 was also explored.

Materials and methods

Subjects

In this study we selected the same subset of 120 subjects from
ADNI database as in Hua et al. (2008a) in order to make an easier
comparison. To summarize, MRI baseline scans, divided into 3 groups:
40 healthy elderly individuals (denoted as Nor), 40 individuals with
amnestic MCI, and 40 individuals with probable AD. Each group of 40
subjects was well matched in terms of gender and age. Likewise (Hua
et al., 2008a), an independent second group of normal subjects
(denoted as Nor2), age- and gender-matched to the first group of
controls, was selected to test whether analysis techniques correctly
detect no differences when comparing the two independent groups of
normal subjects.

All subjects underwent clinical/cognitive assessment at the time of
scan acquisition. As part of each subject's cognitive evaluation, the
Mini-Mental State Examination (MMSE) was performed to provide a
global measure of mental status based on evaluation of five cognitive
domains. The Clinical Dementia Rating (CDR) was also assessed as a
measure of dementia severity. The elderly normal subjects had MMSE
scores between 28 and 30 (inclusive), a global CDR of 0, and no
symptoms of depression, MCI, or other forms of dementia. The MCI
subjects had MMSE scores in the range of 24 to 28, a global CDR of 0.5,
and mild memory complaints, with memory impairment assessed via
education-adjusted scores on the Wechsler Memory Scale — Logical
Memory II. All AD patients met NINCDS/ADRDA criteria for probable AD
with anMMSE score between 20 and 23. As such, these subjects would
be considered as having mild to moderate, but not severe, AD. Table 1
shows a summary of demographic and clinical data. More details about
criteria for patient selection and exclusion can be found in Hua et al.
(2008a) and in the ADNI protocol (Mueller et al., 2005a,b).
ith stationary velocity field diffeomorphic registration: Application
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Table 1t1:1

Demographic data. The format of the values is average (min–max).
t1:2
t1:3 Group AD MCI Nor

t1:4 Sex Male Female Male Female Male Female

t1:5 N 21 19 21 19 21 19
t1:6 Age 76.4 (56–87) 75.6 (56–87) 76.5 (57–88) 75.2 (55–86) 76.6 (63–85) 75.8 (62–89)
t1:7 MMSE 21.7 (20–23) 22.1(20–23 ) 27.1 (26–28) 27.1 (26–28) 29.2 (28–30) 29.3 (28–30)
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MRI acquisition, image correction and pre-processing

High-resolution structural brain MRI scans were acquired at
multiple ADNI sites with 1.5T MRI scanners using the standard
ADNIMRI protocol. For each subject, two T1-weightedMRI scanswere
collected using a sagittal 3Dmagnetization-prepared rapid acquisition
with gradient echo (MP-RAGE) sequence with voxel size of
0.94×0.94×1.2 mm3. The images were calibrated with phantom-
based geometric corrections to ensure consistency among scans
acquired at different sites. Additional image corrections included
geometric distortion correction, bias field correction and geometrical
scaling. See Hua et al. (2008a) for more details. The pre-processed
images are available to the scientific community and were down-
loaded from the ADNI website.

Brain images were intensity-normalized by means of histogram
matching with a linear mapping that aligned the 95-th percentile of
the intensity histogram to an intensity value of 95. To adjust for global
differences in brain positioning and scale across individuals, all scans
were linearly registered to the stereotaxic space defined by the
International Consortium for Brain Mapping (ICBM-53) (Mazziotta
et al., 2001) with an affine transformation (12 degrees of freedom).
Aligned images were resampled in an isotropic space of 220 voxels
along each axis (x, y, and z) with a final voxel size of 1 mm3.

Stationary velocity field (SVF) diffeomorphic registration

The registration method can be formulated as a variational
problem, where the cost function to be minimized contains an
image matching term E1 between a template image T and a target
image I and a regularization term E2 in order to guarantee the
smoothness of the transformation,

E T ; I;φð Þ = 1
σ2 E1 T φ−1

� �
; I

� �
+ E2 φð Þ; ð1Þ

where the weight σ (regularization parameter) balances the relative
importance between image matching and regularization, and φ is the
template warping parameterized as

φ xð Þ = ϕ1 xð Þ where
dϕt xð Þ
dt

= v ϕt xð Þð Þ
ϕ0 = Id

8<
: ð2Þ

being v a stationary velocity vector field and the group exponential
mapping is defined as exp(tv)≡ϕt. In this workwe selected the Sum of
Squared Differences (SSD) as matching criteria E1 and the regulari-
zation term as E2(v)=∫(Lv)2dx being L a linear invertible differential
operator. The L operator was chosen as in Beg et al. (2005), L= Id−
αΔ, where Δ is the Laplacian operator and the parameter α penalizes
up to second-order derivatives of the velocity field. All in all, the cost
function is given by

E T ; I; vð Þ = 1
σ2 ∫ T exp −vð Þð Þ−Ið Þ2dx + ∫ Id−αΔð Þvð Þ2dx: ð3Þ

The optimization was performed with a non-linear conjugate-
gradient strategy (Nocedal and Wright, 1999; Hager and Zhang,
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
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2006), i.e. the search direction is a linear combination of the negative
gradient direction and the search direction from the previous
iteration. The gradient of Eq. (3) was computed as

∇vE I; t; vð Þ = 2v− 2
σ2 H

−1∫1
0jdetDϕ1−tj T ϕ−tð Þ−I ϕ1−tð Þð Þ∇xT ϕ−tð Þdt

ð4Þ

being H=L†L, L†, the adjoint operator of L and Dϕ the Jacobian matrix.
Note that H is a smoothing kernel with a tuning parameter α. The
amount of spatial correlation increases with larger values of the
smoothing parameter α.

Additional implementation details are the following ones: a multi-
scale pyramidal approach with 4 levels was used for computa-
tional savings and avoiding local minima; the exponential mapping
was implemented as a forward Euler integration with 50 steps
because this standard evolution method offered a good trade-off
between accuracy and computational time (Bossa et al., 2008);
the Laplacian operator was a centered-stencil; the filter H and its
inverse were applied in the Fourier domain inducing periodic boun-
dary conditions.

Unbiased average template

An average template is one of the key components of TBM studies.
It provides a coordinate system where all image samples are
registered. In order to make automatic registration easier and more
robust, the template must represent common intensity and geometric
features from the group of images. A common solution found in the
literature is the estimation of an unbiased average template image by
minimizing the deformations (Joshi et al., 2004; Hua et al., 2008a).
When the registration method is not accurate enough to match
anatomical structures, the unbiased template becomes smooth. This
lack of sharp anatomical details in the template may reduce the
sensitivity of a TBM study to detect subtle brain volume changes
(Studholme et al., 2004).

In this work the unbiased template Twas estimated from images of
the Nor group, likewise in Hua et al. (2008a) because we assume
that the disease process is one of structural removal and the
morphometry analyses would be limited to those structures remain-
ing in the disease group. An initial affine average atlas was estimated
by means of voxel-wise averaging of all intensity- and spatial-
normalized Nor group images. Next, an iterative process was used
to estimate the template, including three stages for each iteration:
non-linear registration of the affine-aligned images Ii

� �40
i = 1 to the

current estimated template; computing the bi-invariant mean
ϕ ̅=exp(v ̅) (Arsigny, 2006) of all warpings ϕi=exp(vi), and finally
image intensities are averaged after subtracting the mean warping
t=1/N∑iI

i(ϕi ◦exp(−v ̅)). Convergence is obtained after a few
(typically less than 5) iterations.

As the particular values of the registration parameters have a
strong impact in the final registration result, we estimated the control
group atlas using a set of values of the parameters {α, σ} defined in
Eq. (3). The average template better representing the anatomical
details of the Nor group was selected for all subsequent analysis using
visual criteria.
ith stationary velocity field diffeomorphic registration: Application
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Brain atrophy statistical maps

To quantify the spatial distribution of brain atrophy3 inMCI and AD
groups compared to the Nor group, the template was non-linearly
registered to all individual brains (N=120). The Jacobian map shows
the spatial distribution of the Jacobian matrix determinant of the
mapping and reflects the local brain volume change relative to the
template. These Jacobian maps share a common anatomical coordi-
nate system. Hypothesis testing was performed at each voxel to assess
mean difference between patient groups. Voxel-wise two sample
Student's t-test with unequal variance on the log of Jacobian
determinants was used. The log transformation helps to make the
distribution of Jacobian determinants closer to a Gaussian distribu-
tion, which is the main assumption for the statistical test. This spatial
distribution is denoted here as brain atrophy statistical map.

Regression maps between brain atrophy and clinical measurements

Any quantitative measure or surrogate marker estimated from
MRI, such as local brain atrophy, has greater value if it can be shown to
correlate with established measures of cognitive or clinical decline, or
with future outcome measures. At each voxel, linear regressions were
assessed between the log Jacobian determinant from all subjects
(N=120) and some clinical variables. The spatial distribution of the
relations between local brain atrophy and clinical variables may
provide valuable information to interpret the clinical effect of brain
atrophy.

Informative regression parameters or features potentially useful
for statistical maps are regression strength, usually quantified by the
correlation coefficient r, regression significance, typically measured as
a p-value, and the regression coefficients. All these measures were
explored by means of statistical maps using parametric techniques.
Voxel-wise regression F-test was used to assess significance of the
linear model.

Student's t-statistic supra-threshold volume (STV) plots

While in probability theory and statistics, the definition of
cumulative distribution function (CDF) involves integration of a
probability density function, in some recent neuroimaging studies
(Leow et al., 2007; Lepore et al., 2008; Hua et al., 2008a) CDF has been
used to quantify the number of voxels from a statistical map that
achieve a significance level p. In these works, CDF plots were used to
compare the statistical power of detecting significant effects using
different experimental conditions or even different methods in TBM
studies.

A small variant is proposed here: instead of p-values, the Student's
t-statistic is used. The first advantage of using t-statistic is that sign
information (either atrophy or expansion) is preserved. The second
one comes from the fact that while p-values can be estimated using
several methods, either parametric or non-parametric, providing
different results, Student's t-statistic is a much simpler measurement.
Therefore, supra-threshold volume (STV) plots illustrate the number
of voxels in a statistical map having a Student's t-statistic larger than a
given t-threshold.

Correction for multiple comparisons

In order to correct formultiple comparisons false positive ratemust
be controlled. There are several false positivemeasures in themultiple
testing problem. The standard measure is the familywise error rate
(FWE) which quantifies the probability of observing at least one false
410

411

412

413

3 As cross-sectional data is used in this work, brain atrophy/expansion refers to the
volume change factor compared to the normal group, and not the usual concept of
volume change along time.
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positive (Hochberg and Tamhane, 1987; Nichols and Hayasaka, 2003).
False discovery rate (FDR), defined as the expected fraction of false
positives under the null hypothesis, was proposed later as a less
conservative measure than FWE (Benjamini and Yosef, 1995). In this
work both FWE- and FDR-based methods were used.

An omnibus test in order to control FDR was used as in previous
neuroimaging studies (Chiang et al., 2007b; Hua et al., 2008a; Lepore
et al., 2008; Leow et al., 2009). The null distribution was built using
random permutations of the diagnostic labels. The number of voxels
with larger significance than a p-threshold was computed in the real
experiment and in the random assignments. The overall p-value for
the significance of the map was obtained as the proportion of events
with larger number of voxels for the randomized maps than for the
original labeling.

A different alternative is to control FWE. Strong control of the FWE
requires that false positives are controlled for each voxel in the
statistical map where the null hypothesis holds, allowing localization
of the particular significant voxels. This localization is essential to
neuroimaging. FWE is usually analyzed bymeans of the distribution of
the maximum statistic (Nichols and Hayasaka, 2003). In this work
random permutations were used to empirically estimate the
distribution of the maximum statistic. The 100(1−p)-th percentile
of this distribution defines a threshold tp for the statistical map that
controls FWE at a level p.

Region of interest statistical analysis

In order to summarize the statistical map information from the
voxel level to the ROI level, a scalar descriptor of the ROI is often
computed. Many authors use the average Jacobian determinant which
is a feature with a very intuitive interpretation: relative volume
change of the ROI. The subsequent statistical analysis can be
performed with univariate hypothesis testing. The results from this
analysis could be directly compared with a rich list of manual
volumetry studies performed on AD/MCI neuroimaging studies
(Apostolova and Thompson, 2008). The main difference between
both approaches is the consideration of either automatic or manual
methods. In this work we used the average Jacobian determinant as
ROI feature and statistical group analysis was performed by means of
Student's t-test.

Several subcortical regions of interest (ROIs) were automatically
delineated at the template: hippocampus, amygdala, caudate nucleus,
thalamus, putamen, pallidum and nucleus accumbens. These subcor-
tical nuclei were automatically segmented using the tool FIRST
(Patenaude, 2007) from FSL package (Smith et al., 2004). Brain
extraction tool, also from FSL package was also used in order to define
a whole brain mask. All segmentations were visually checked. Only
the brain mask was manually edited.

Results

Unbiased template

A wide range of different unbiased templates from the control
group images were obtained using different values of the registration
parameters {α, σ} in Eq. (3) that define the amount of smoothness and
the balance between intensity matching and regularization respec-
tively. Fig. 1 illustrates a sagittal view of the Nor group template
estimated using the following values of the registration parameters
α=[0.5, 1, 2, 5, 10] and σ=[0.2, 0.5, 1, 2, 5].

Large values of the regularization parameter, i.e., σ=5, produce an
important blur in the templates for all values of the smoothing
parameter α. On the other hand, unrealistic structures can be seen in
most of the templates using α≤2 (see corpus callosum–lateral
ventricle boundary). A possible reason can be that small values of
ith stationary velocity field diffeomorphic registration: Application
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Fig. 1. Illustration of sagittal views of the unbiased template of the Nor group with different values of the registration parameters {α, σ}.
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the smoothing parameter α yield many local minima in the energy
function to be minimized by the registration algorithm.

The values of the registration parameters in the interval {α=[5,
10], σ=[1, 2]} provide a good trade-off between regularization and
smoothing. We visually checked that these templates preserve most
of the anatomical details of the normal brain anatomy. For the rest of
the study, the template was chosen as the one obtained with the
values {α=5, σ=1}.

Student's t-statistic STV plots

In order to compute non-rigid registration from the template to all
brain images, the range of values of the registration parameters {α, σ}
were slightly adjusted according to the results shown in Fig. 1. The
value of σ=5 was disregarded because the corresponding template
did not show enough anatomical detail due to poor image matching;
additionally a larger value of the smoothness parameter was
considered. The new set of values of the registration parameters
were α=[0.5, 1, 2, 5, 10, 20] and σ=[0.2, 0.5, 1, 2].

The STV curves of the Student's t-statistic in Fig. 2 illustrate the
sensitivity to detect significant brain volume changes between AD–
Nor and MCI–Nor groups when using different values of the
registration parameters {α, σ}. The STV curves corresponding to the
null distributionwere also computed comparing the two independent
normal groups (Nor–Nor2). As only large values of the t-statistic are of
interest, either positive for atrophy or negative for expansion, the
horizontal axis shows values |t|≥3.

An important asymmetry between atrophy and expansion can be
observed in Fig. 2. For large enough values of the smoothing
parameter α, the number of voxels with significant atrophy is larger
than for expansion with the same significance level.
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
to ADNI, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.02.061
TEMost of the STV curves for AD–Nor group comparison show an
increasing sensitivity to detect brain volume changes when increasing
the value of the smoothing parameter α. The values of the registration
parameters yielding voxelswith larger t-statistic are {α=[5, 10],σ=2}.

For each curve, a random permutation test with 10,000 permuta-
tions was performed to estimate the tp-threshold that controls FWE
with significance level p. The values of tp are illustrated in Fig. 2 for p=
[0.05, 0.01, 0.005]. All STV curves of the AD–Nor group comparison
showed FWE-corrected significant voxels at level p=0.05.

The optimal pattern for a STV curve would be the one that
maximizes the number of voxels with higher significance, i.e. larger
values of |t|. As the regularization is an extra penalty term to ensure
smoothness of the mapping, a reasonable criterion could be to select
the lowest value of α among the values that achieve a similar pattern
of the STV curve. Accordingly, the values of the registration para-
meters {α [5, 10], σ=2} would be a good choice.

Brain atrophy statistical maps

In order to illustrate the effect of using different values of the
registration parameters in the spatial distribution of the brain
atrophy, three sets of values were selected to represent different
conditions: low-level smoothing with small regularization {α=0.5,
σ=0.5}, large smoothing with large regularization {α=20, σ=2}
and a point with intermediate smoothing {α=5, σ=2}. These
working conditions are a representative sample of the different
performance of STV curves illustrated in Fig. 2. Student's t-statistic
maps are shown in Fig. 3.

Assessment of statistical significance corrected for multiple
comparisons is required in order to compare and to give an
interpretation to Student's t-maps. For each value of the registration
ith stationary velocity field diffeomorphic registration: Application
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for multiple comparisons with FWE- and FDR-based methods. Fig. 4
illustrates the corrected p-values for the three set of values of the
registration parameters shown in Fig. 3. As statistical maps are
typically shownwith either t- or uncorrectedp-valuemaps, twopanels
were used to illustrate the dependence of the corrected p-values on
both measures. This information is redundant due to the known
mapping between t-statistic and uncorrected p-values, but it may be
helpful for comparison purposes. Note that while a t-threshold is used
to control FWE, uncorrected p-value thresholds are used to estimate
the overall significance.

Using different values of the registration parameters {α, σ} provide
atrophy maps with different amount of spatial correlation, and
therefore the severity of the correction for multiple comparison will
change. However, the values of the t-threshold tp controlling for
FWE at level p for all values of {α, σ} differ in less than 0.5 units (see
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
to ADNI, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.02.061
Figs. 2 and 4). This difference is difficult to appreciate in the Student's
t-statistic maps in Fig. 3.

Due to the fact that several values of the registration parameters
were explored, an additional correction for multiple comparisons
can be performed. For strong control of FWE, the distribution of the
maximum statistic under the null hypothesis must be estimated.
Accordingly, the maximum is computed not only across the voxels
but also across the whole set of parameters {α, σ}. The mapping
between t-threshold and this corrected p-value which takes into
account the whole set of comparisons is also shown in the left panel of
Fig. 4.

Brain atrophy statistical maps are strongly influenced by the
values of the registration parameters {α, σ} used during the
estimation of the warping between each subject and the template.
In general, larger regions with significant differences between
groups are obtained for larger values of the smoothing parameter α.
ith stationary velocity field diffeomorphic registration: Application
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maps. For example, the statistical maps of the intermediate point
{α=5, σ=2} in Fig. 3 show regions with sharp boundaries in
agreement with anatomical structures affected by dementia, while
the corresponding maps when using {α=20, σ=2} are blurred. See
for example the boundaries of the parahippocampal gyrus in the AD–
Nor comparison. Other structures with significant atrophy, such as the
frontal part of the insula, are better represented when using {α=5,
σ=2} than {α=20, σ=2}. When comparing AD–Nor versus MCI–
Nor patient groups, AD group showed larger areas with stronger
significance affected by brain atrophy.

Fig. 5 shows in more detail the AD–Nor brain atrophy map for the
intermediate point, i.e., the values of the registration parameters are
Spanish{α=5, σ=2}. The following brain structures showed atrophy
with a strong significance: left (see slice 1) and right (slices 3–4)
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
to ADNI, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.02.061
superior temporal sulcus; bilateral posterior part of the cingulate
gyrus (precuneus region) at slices 1–5; bilateral temporo-occipital
sulcus at slices 1–2, with larger significance at the left side; bilateral
hippocampus at slices 2–6, mainly affecting subiculum and CA1
regions; bilateral entorhinal cortex and parahippocampal gyrus at
slices 4–7; bilateral amygdala at slice 7; temporal pole, more
pronounced at right side (slice 9); anterior part of the right insula
at slice 11 and axial slice, with a lower significance at the left insula
(slice 10).

Regression analysis maps

Voxel-wise linear regression analysis was performed with the
following clinical variables: MMSEbaseline, MMSE12month and age. The
interest here is not to discuss deeply the clinical interpretation of the
ith stationary velocity field diffeomorphic registration: Application
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illustrate the performance of the regression maps obtained with SVF
diffeomorphic registration. Fig. 6 shows the spatial distribution of
some regression features, such as the coefficient of determination r2,
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Fig. 5. AD–Nor brain atrophy statistical map with registration parameter values {α=5, σ=2
values denote Student's t-statistic (and significance quantified as − log10 p). Red/blue color

Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
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Oregression significance (uncorrected p-value) and regression coeffi-
cient. These statistical maps were obtained with registration para-
meters {α=5, σ=2}. It can be seen that Jacobian determinants at the
hippocampus and amygdala showed a positive (right panel in Fig. 6)
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}. The white lines in the axial slice specify slice locations of the coronal views. Color-bar
denotes atrophy/expansion respectively.

ith stationary velocity field diffeomorphic registration: Application
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and significant (left panel in Fig. 6) relation withMMSEbaseline, because
smaller values of the Jacobian determinants were related to lower
MMSE scores. Note that the p-value regression map with MMSEbaseline
is similar to the AD–Nor atrophy statistical map in Fig. 3. This result
was expected because the clinical variable MMSEbaseline is closely
related to the diagnostic label that defines patient groups. It can be
noted that the atrophy-age regression maps have a completely
different pattern: the most significant correlation was found in the
lateral ventricles, which was positive, i.e. an increase in age was
linearly related to expansion of the ventricles. In contrast, the regions
showing a stronger linear relation between brain atrophy and
cognitive status, either MMSEbaseline or MMSE12month, were located at
structures known to be affected by dementia, such as hippocampus
and amygdala.

Region of interest analysis

In order to assess statistical differences in the volume of sub-
cortical regions across patient groups, univariate hypothesis testing
was performed on the ROI-average Jacobian determinant of the
mappings. Among the analyzed structures, only amygdalae and
hippocampi presented significant volume differences, both in AD–
Nor and MCI–Nor group comparisons. Fig. 7 shows the values of the
Student's t-statistic for the whole set of values of the registration
parameters {α, σ}. It can be noted that the magnitude of the t-statistic
in the ROI is smaller than the voxel-wise brain statistical maps due to
the spatial averaging performed in the ROI analysis, especially at those
structures with a heterogeneous atrophy. In our case, while the
atrophy distribution at the amygdala was roughly homogeneous, an
important heterogeneity was found in the hippocampus. Again, a
good candidate of the registration parameter values is {α=5, σ=2}
because it yields large differences between patient groups.
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
to ADNI, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.02.061
TEDiscussion

Two main contributions can be highlighted from this study. First,
stationary velocity field (SVF) diffeomorphic registration seems to be
an appropriate method for TBM studies on Alzheimer's disease
patients for the following reasons: it allows large deformations
while preserving smoothness of the mapping, the computational
requirements are not very high (typical computation time between
1 h and 2 h in a 64-bit 2.33 GHz processor for an image volume of
220×220×220) and more importantly because it provides brain
atrophy maps with excellent spatial resolution. The second contribu-
tion is a thorough description of the effects of using different values of
non-rigid registration parameters at several stages of a TBM study:
template estimation, brain atrophy statistical maps and ROI analysis.

Selection of registration parameters

Even though the idea of exploring the values of the registration
parameters is very old and recognized by many authors, the piece of
information presented here is relevant because it provides criteria to
select reasonable values. In this work we only explored two
parameters: the coefficient α that specifies smoothness properties of
the regularizer (in particular it penalizes up to second-order
derivatives of the velocity field), and the relative weight 1/σ2 between
image matching and regularization (see Eq. (3)). We illustrated the
effect of varying these tuning parameters on the two most important
stages of a TBM study: the template estimation and the statistical
analysis of the warpings. In our experiments the parameter selection
was performed in two stages. First, a reasonable template was visually
selected after exploring tuning parameters. Secondly, statistical
analysis for different values of the registration parameters was
performed using a fixed template. We found that the effect of
ith stationary velocity field diffeomorphic registration: Application
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registration parameters in the performance of statistical analysis is
much stronger than in the template estimation. Look for example at
the differences in STV curves for parameter values {α=5, σ=2} and
{α=5, σ=0.5} (Fig. 2) and ROI analysis (Fig. 7) compared to the
small differences between the corresponding templates (Fig. 1).

Interestingly, the parameter values, {α=[5, 10], σ=2}, obtained
roughly the best performance under most criteria: its corresponding
template showed sharp details of the brain anatomy and does not
contain artificial structures (see Fig. 1); the STV curves for these values
of the registrationparameters showed the largestnumberof voxelswith
highestmagnitudeof t-statistic (see Fig. 2) andavery low rateof volume
change detections when comparing the two independent normal
groups (see Fig. 2); the brain atrophy statistical maps when comparing
AD–Nor and MCI–Nor groups with {α=5, σ=2} showed significant
regions with anatomically-defined boundaries and located at structures
known to be affected by dementia (see Figs. 3–5); the ROI analysis,
which can be interpreted as a volumetry analysis where delineation of
the region is automatically performedwith anatlas-based segmentation
approach, showed that the sameset of parameter values is a good choice
for maximizing the statistical significance of volume difference of the
hippocampus and amygdala between patient groups (see Fig. 7).

Regarding the selection of the template, future studies will
consider quantitative measures for performance evaluation. For
example, a common performance measure of the template is the
variance (Allassonniere et al., 2007), i.e. distance between observed
images and the template.

STV curves

Previous studies have used CDF plots of the uncorrected p-value in
linear scale in order to assess statistical power for group analysis in
TBM studies (Chiang et al., 2007a; Leow et al., 2007; Hua et al., 2008a;
Leow et al., 2009). Log-scale representation has been used to focus on
the most significant p-values (Ridgway et al., 2008). Taking into
account that at distribution's tail there is an almost linear relationship
between t-statistic and log(p), the Student's t-statistic STV plot is
roughly equivalent to a CDF plot in log scale, but with the additional
advantage that the atrophy/expansion information is preserved.

In most of the STV curves the sensitivity to detect volume
changes in the AD–Nor group comparison increases with the
Please cite this article as: Bossa, M., et al., Tensor-based morphometry w
to ADNI, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.02.061
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PRsmoothing and regularization parameters, α and σ respectively (see

Fig. 2). However, in the curve with the largest values of regularization
and smoothing parameters there is an important reduction of the
number of voxels with largest t-statistic. This results shows that too
much spatial correlation in the warpings degrades the sensitivity.

Regarding to the sign information in the STV curves, it can
be noted from Fig. 2 that brain atrophy regions are larger and
present higher significance than expansion regions for large enough
values of the smoothing parameter α. This asymmetry is more
pronounced in the AD–Nor group comparison but also visible when
comparing MCI–Nor groups. This result is in agreement with the
fact that the main reported sign of AD observed on MRI images is
brain tissue atrophy of particular structures, starting at the temporal
lobes.

Brain atrophy statistical maps

Comparing to previous whole brain morphometry studies,
including voxel-based morphometry and TBM (Apostolova and
Thompson, 2008, and references therein), the statistical maps
illustrated in this work showed a much higher spatial resolution. In
particular, when comparing AD–Nor groups, the following regions
showed significant atrophy bilaterally: superior temporal sulcus,
posterior part of the cingulate gyrus (precuneus region), temporo-
occipital sulcus, hippocampus mainly affecting subiculum and CA1
regions, entorhinal cortex and parahippocampal gyrus, amygdala, the
temporal pole, and the anterior part of the insula. When comparing
MCI and normal groups, the regions with significant brain atrophy
were smaller than in the AD case, but most of them presented again
sharp anatomical boundaries of structures known to be affected by
the dementia (Braak and Braak, 1995).

In our opinion, a good criterion for selecting the values of the
registration parameters is the anatomical resolution of the brain
atrophymaps.While the anatomical knowledge of pathology-induced
changes in some brain disorders is relatively small, AD pathology is
well-known to affect several specific structures (Braak and Braak,
1995). STV (and CDF) curves are compact descriptions of a brain
atrophymap where the anatomical information is lost. Therefore they
are not suitable for using such a priori information, unless the STV
curve is computed within a pathology-related region.
ith stationary velocity field diffeomorphic registration: Application
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Regression analysis

Regression analysis allowed to find linear relations between brain
atrophy and clinical measurements. For example, brain tissue atrophy
of elderly normal subjects, i.e. due to normal aging, is a global process
affecting many different structures of the brain. In this case the
atrophy is typically manifested as a lateral ventricle expansion
because it is a compensatory effect while the tissue atrophy has a
much disperse spatial distribution. Accordingly, the regions with the
largest significance in the atrophy-age regression map were at the
lateral ventricles. In contrast, AD manifests as brain tissue atrophy at
specific structures in a known time-course, starting at the medial
temporal lobe. Consequently, regression maps with a clinical variable
of cognitive status showed that there was a significant linear relation
between brain atrophy of hippocampus and amygdala with current
cognitive status, i.e., MMSEbaseline and also even with future cognitive
status, MMSE12month. This latter behavior is in agreement with
previous hypothesis considering that brain atrophy could be used as
an early marker of cognitive decline (Davatzikos et al., 2008).

Registration methods for TBM studies

Non-rigid registration is one of the key techniques in a TBM study
and aims at defining anatomical correspondences between different
brains. The strategies used to ensure the smoothness of the mapping
by most of the registration methods belonging to the small
deformation paradigm are based on either a parametric character-
ization of the mapping (Good et al., 2001; Studholme et al., 2004) or
regularization of the displacement field (Thirion, 1998; Modersitzki,
2004; Hua et al., 2008a). In both cases the spatial frequency of the
mapping is smoothed or band-limited, introducing a lower bound of
the spatial resolution in a TBM study. In contrast, the regularization of
the registration methods belonging to the large deformation para-
digm is usually achieved by smoothing the velocity field instead of
using an explicit smoothing of themapping. As a consequence, there is
no explicit bound of the spatial resolution of the mapping apart from
the spatial sampling of the images.

In order to illustrate the effect of the values of the registration
parameters in other registration methods we performed the same
analysis using diffeomorphic demons (Vercauteren et al., 2007, 2009.
We selected this method because it is available online,4 it allows large
deformations while preserving topology, and at the same time it is
based on a quite different strategy for regularization compared to SVF.
Two smoothing kernels need to be defined in diffeomorphic demons:
758

7594 http://www.insight-journal.org/browse/publication/154.
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respectively. The following set of the parameter values was used, s=
[0.5, 1, 2, 4] and g=[0.5, 1, 2, 4, 6, 8], where a wide range of perfor-
mances is observed with an ‘optimal’ STV curve inside the interval.

Fig. 8 illustrates the STV curves corresponding to brain atrophy for
both registration methods, diffeomorphic demons and SVF diffeo-
morphic registration, when comparing AD and Nor groups. It is clearly
shown that the number of voxels and the significance level strongly
depend on the values of the registration parameters for bothmethods.
Likewise in the SVF registration method, extreme values (either too
small or large) of the diffeomorphic demons registration parameters
produced STV curves far from the ‘optimal’ pattern. Even though SVF
diffeomorphic registration obtained a larger sensitivity than diffeo-
morphic demons for detecting statistical differences between Nor and
AD groups, one should be cautious before extrapolating this behavior
to other performance measures and application domains, such as
atlas-based segmentation, and even on a different set of images.

A few examples of the brain atrophy statistical maps obtainedwith
diffeomorphic demons are shown in Fig. 9; they can be directly
compared with the results obtained with SVF diffeomorphic registra-
tion (see Fig. 3). The brain atrophy statistical map with parameter
values {s=2, g=6} lacks anatomical details probably due to a high
level of smoothing. In contrast, the parameter values {s=1, g=2}
yielded a map with higher spatial resolution but with a much lower
significance level (note the different scale of the color map). The
intermediate point {s=2, g=2} shows a compromise between re-
solution and significance.

Recent TBM studies on ADNI data

In two previous cross-sectional TBM studies on ADNI data (Hua
et al., 2008a,b) with population size N=120 and 676 subjects
respectively as well as in a longitudinal study with 100 subjects
(Leow et al., 2009), the brain atrophy statistical maps had a poor
spatial resolution compared with their template. Brain atrophy was
found at regions without anatomically-driven boundaries providing
larger volumes of brain atrophy at white matter tissue than at gray
matter. Moreover, the tissue (gray and white matter) close to CSF
showed Jacobian determinants larger than one. In our opinion this
observed tissue expansion is mainly artificial due to the limited spatial
resolution of the non-rigid registration method as pointed out in Hua
et al. (2008a,b) and Leow et al. (2009). In contrast, in this work SVF
diffeomorphic registration yielded brain atrophy statistical maps with
significant regions in gray matter tissue delimited by sharp anatom-
ical boundaries in the same data set as in Hua et al. (2008a). For
example, entorhinal cortex and parahippocampal gyrus showed a
ith stationary velocity field diffeomorphic registration: Application
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very significant atrophy in Figs. 3–5. These thin cortical regions are
especially relevant because they are affected at the early stages of the
disease (Braak and Braak, 1995).

In this work a small subset of baseline images, N=120, from ADNI
database was used for twomain reasons: to be able to make a fair and
more direct comparison with a recent TBM study based on a non-
linear elastic registration method (Hua et al., 2008a) as well as to
allow a feasible computation time when exploring several values of
the registration parameters. Ongoing work in our group is focused on
a TBM study with the complete data set from ADNI database with
values of registration parameters learnt from this work. We
hypothesize that with a larger data set the brain atrophy maps
obtained with SVF diffeomorphic registration will show an improved
anatomical resolution of the structures affected by atrophy.
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