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Abstract Feature representations extracted from hippocampus in magnetic resonance (MR)
images are widely used in computer-aided Alzheimer’s disease (AD) diagnosis, and thus
accurate segmentation for the hippocampus has been remaining an active research topic.
Previous studies for hippocampus segmentation require either human annotation which is
tedious and error-prone or pre-processing MR images via time-consuming non-linear reg-
istration. Although many automatic segmentation approaches have been proposed, their
performance is often limited by the small size of hippocampus and complex confounding
information around the hippocampus. In particular, human-engineered features extracted
from segmented hippocampus regions (e.g., the volume of the hippocampus) are essen-
tial for brain disease diagnosis, while these features are independent of diagnosis models,
leading to sub-optimal performance. To address these issues, we propose a multi-task deep
learning (MDL) method for joint hippocampus segmentation and clinical score regression
using MR images. The prominent advantages of our MDL method lie on that we don’t
need any time-consuming non-linear registration for pre-processing MR images, and fea-
tures generated by MDL are consistent with subsequent diagnosis models. Specifically, we
first align all MR images onto a standard template, followed by a patch extraction process
to approximately locate hippocampus regions in the template space. Using image patches
as input data, we develop a multi-task convolutional neural network (CNN) for joint hip-
pocampus segmentation and clinical score regression. The proposed CNN network contains
two subnetworks, including 1) a U-Net with a Dice-like loss function for hippocampus
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segmentation, and 2) a convolutional neural network with a mean squared loss function for
clinical regression. Note that these two subnetworks share a part of network parameters, to
exploit the inherent association between these two tasks. We evaluate the proposed method
on 407 subjects with MRI data from baseline Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database. The experimental results suggest that our MDL method achieves
promising results in both tasks of hippocampus segmentation and clinical score regression,
compared with several state-of-the-art methods.

Keywords Hippocampus segmentation · Clinical score regression · Brain disease
diagnosis · Convolutional neural network

1 Introduction

Hippocampus segmentation in magnetic resonance (MR) images has attracted increasing
scientific attention since the morphological analysis of the hippocampus is of vital impor-
tance to monitor and diagnose clinical conditions of the brain [14, 15, 32, 46, 47]. In human
brains, the hippocampus locates in the medial temporal lobe (the site of functional and struc-
tural pathologies in mental illnesses) [37]. It is well recognized that the changes in shape
and size of the hippocampus are closed related to the Alzheimer’s disease (AD) and other
brain diseases [19, 23]. In recent years, various approaches have been proposed for compter-
aided AD diagnosis based on features extracted from the hippocampus [2, 13, 21, 33]. Thus,
accurate segmentation of hippocampus has been remaining an active topic.

The most straightforward way for hippocampus segmentation is the manual annotation
in MRI. However, manual segmentation is highly demanding, since we have to identify
the hippocampus in each slice of MRI, and thus such process is not only tedious but also
error-prone [41, 44]. Many algorithms for hippocampus segmentation have used atlas-based
(e.g., single-atlas or multi-atlas) and deformable models techniques [8]. However, the per-
formance of these methods highly relies on supplementary techniques such as classifiers,
optimizers, and thresholding strategies. Also, multi-atlas based methods are usually time-
consuming, because of non-linear registration from multiple atlases onto a target image [6,
12, 18]. Particularly, because of irregular shape and blurred edges of the hippocampus, atlas-
based methods usually generate sub-optimal segmentation performance. In recent years,
many learning-based methods (e.g., random forest based regression method [10, 41, 43, 45,
48, 49]) have been proposed and shown good results in brain structure segmentation using
MRI data. The primary disadvantage of these methods is that they usually require human-
engineered features for MR images, and such features may be not consistent with specific
learning models, which could degrade the segmentation performance.

On the other hand, since hippocampus has been proven to be closely related to many
kinds of brain diseases (e.g., AD and Parkinson disease), many previous studies have pro-
posed computer-aided disease diagnosis systems based on feature representations extracted
from hippocampus in MRI. There are at least two disadvantages in these methods. First,
diagnosis performance is usually highly dependent on the accurate segmentation for the
hippocampus, while it is very challenging to achieve accurate segmentation results using
current approaches. Second, feature representations extracted from hippocampus regions
are usually prep-defined by human beings, without considering the heterogeneous charac-
teristics between feature and subsequent diagnosis models. In such a case, these methods
usually yield sub-optimal performance in computer-aided brain disease diagnosis.
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To address these issues, we propose a multi-task deep learning (MDL) method for joint
hippocampus segmentation and clinical score regression, without using any time-consuming
non-linear registration for pre-processing MRI and pre-defining features for the hippocam-
pus. The flowchart of our proposed MLD method is illustrated in Fig. 1. The intuitive idea
here is to exploit the underlying association between the task of hippocampus segmenta-
tion and the task of brain disease diagnosis. Specifically, we first linearly align all studied
MR images onto a common template space. To speed up the learning process, in the tem-
plate space, we then extract image patches by approximately define a bounding box for
hippocampus regions. Based on those image patches, we then design a multi-task convo-
lutional neural network to simultaneously perform hippocampus segmentation and clinical
score regression. It is worth noting that our proposed network consists of two subnetworks
designed for two learning tasks, respectively. The first subnetwork follows a U-Net archi-
tecture with a Dice-like loss function, for hippocampus segmentation. The second one is a
conventional CNN architecture with a mean squared loss function for clinical score regres-
sion. These two networks share a part of network parameters, which are used to exploit the
underlying association between two tasks.

The major contributions of this study can be summarized in the following. First, we
propose to jointly perform hippocampus segmentation and clinical score regression via a
multi-task neural network. This network contains two subnetworks, with each one corre-
sponding to a particular task. And these two subnetworks share a part of parameters to
underlying the inherent association of these two tasks. Second, we develop an automatic
hippocampus segmentation methods, without using any manual annotation. In addtion, we
develop an automatic feature extraction method for brain disease diagnosis, without defining
hand-crafted features in hippocampus.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
relevant studies. In Section 3, we describe materials used in this study and introduce the
proposed method. Section 4 presents experimental settings and experimental results. We
finally conclude this paper in Section 6.

2 Related work

2.1 Hippocampus segmentation

Currently, there are various methods developed for the segmentation of hippocampus [15,
38], including 1) manual annotation, 2) atlas-based methods [17, 20, 28], and 3) learning-
based methods [10, 17, 31, 39]. In the first category, one has to identify the hippocampus
in each slice of MRI, and usually take up to 2 hours to finish the annotation task [8].
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Fig. 1 Illustration of the proposed multi-task deep learning (MDL) framework for joint hippocampus seg-
mentation and clinical score regression. There are four main elements in MDL: 1) MR image processing via
linear registration, 2) patch extraction, and 3) multi-task neural network for joint segmentation and regres-
sion. The input data are MR images, while the output contain both segmented hippocampus and Mini-mental
state examination (MMSE) scores for subjects
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Thus, manual segmentation for the hippocampus is a highly repetitive task. Besides, due
to the high intra-annotator and inter-annotator variability, the manual segmentation for the
hippocampus may be inconsistent and inaccurate.

As a traditional automated method, the atlas-based approach for the segmentation of
hippocampus has attracted much attention, which can the subjectivity and increasing seg-
mentation accuracy compared to manual annotation. Atlas-based methods can also be
further divided into two categories, i.e., single-atlas based and multi-atlas based methods.
For instance, Barnew et al. [4] proposed a single-atlas based method, by registering a single
atlas onto a target image. They first performed affine registration to generate an ROI that
corresponds to the hippocampus, and then adopt a different affine registration on the ROIs
defined in the previous stage. Recently, Kwak et al. [24] proposed a graph-cuts algorithm
based single-atlas method, by optimizing the output results of the initial atlas-based registra-
tion. However, the use of single atlas for segmentation can affect the segmentation accuracy,
because of the difference between the atlas and the target image. Then, many multi-atlas
based methods [12, 18, 30] have been proposed, where multiple atlases are selected and reg-
istered on the target image individually. Then, different label fusion methods are employed
to obtain the final segmentation, e.g., majority voting, minimizing an energy function with
intensity and prior terms, and simultaneous truth and performance level estimation (STA-
PLE). For instance, Heckemann et al. [18] select 30 MR images from 30 normal control
subjects as atlases, and assign the class with the greatest occurrence among those 30 atlases
to each voxel in the target image. They achieved results with an accuracy comparable to
manual segmentation results. Although many new label fusion algorithms have been devel-
oped to improve the performance of multi-atlas based methods, it remains an open problem
in determining how to choose those multiple atlases. Liu et al. [30] proposed a clustering
algorithm based method for multi-atlas selection, and reported promising results in brain
disease diagnosis. However, previous multi-atlas based methods are also highly dependent
on the selected segmentation algorithm and the preprocessing steps [7, 11].

In recent years, many learning-based methods have been proposed for the automated
segmentation of the hippocampus, by using advanced machine learning algorithms, such
as hierarchical classification [34], random forest regression [27, 41], and support vector
machine (SVM) based classification [17]. For instance, Pohl et al. [34] proposed a hierar-
chical classification method by first evaluating the probabilities of each voxel in the atlas,
and then aggregated its neighboring voxels to form higher levels that represent larger por-
tions of the segmented structures. In [41], Zhang et al. developed a partially joint random
forest regression model to separately improve the reliability of segmentation, and achieved
promising results. They incorporated the prior knowledge into a conventional random forest
regression model and learned a non-linear mapping between a voxel’s local appearance and
its 3D displacements to landmarks in the target image using Haar-like features to describe
the local appearance of voxels. Hao et al. [17] proposed to a support vector machine to learn
a classifier for each of the target image voxels from its neighboring voxels in the atlases
based on both image intensity and texture features.

However, previous learning based methods require human-engineered feature represen-
tations to describe the local appearance of MR images [26]. In particular, these methods
generally treat the process of feature extraction and regression/classification model learn-
ing as two standalone tasks, without considering the possible heterogeneous characteristics
among features and models. Intuitively, incorporating feature learning and model training
into a unified framework is expected to generate better performance.
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Table 1 Demographic and clinical information of subjects from the baseline ADNI-1 database

Category Age (Years) Edu (Years) M/F MMSE

AD 75.30 ± 7.50 14.72 ± 3.14 94/87 23.30 ± 1.99

pMCI 74.82 ± 6.83 15.67 ± 2.85 101/64 26.58 ± 1.71

sMCI 74.87 ± 7.64 15.55 ± 3.18 151/74 27.28 ± 1.77

NC 75.85 ± 5.03 16.05 ± 2.87 118/108 29.11 ± 1.00

Values are reported as Mean ± Standard Deviation; Edu: Education years; M/F: Male/Female; MMSE:
Mini-mental state examination

2.2 Hippocampus-based brain disease diagnosis

Since the changes in shape and size of the hippocampus are closed related to the Alzheimer’s
disease (AD) and its prodrome (i.e., mild cognitive impairment, MCI) [19], various compter-
aided brain disease diagnosis approaches have been proposed, based on features extracted
from the hippocampus and machine learning techniques. In [13], a classification method
for AD diagnosis was developed based on the distinction of particular atrophic patterns
of the hippocampus and entorhinal cortex. One of the features they used is the volume of
the hippocampus, and quadratic discriminant analysis was performed for AD classifica-
tion. Ahmed et al. [2] proposed to first extract local features from the hippocampus and
posterior cingulate cortex in each slice of MRI, and then quantized those features using
the Bag-of-Visual-Words approach to generate a histogram of quantized features. They
finally adopt principal component analysis (PCA) to perform feature dimension reduc-
tion, followed by an SVM classifier to identify three classes of subjects: normal controls
(NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Moodley et al. [33]
investigated the correlation between AD in its earliest stages and hippocampal volume and
cortical thickness of the precuneus and posterior cingulate gyrus, and demonstrated that 4
Mountains Test (4MT) was useful in the diagnosis of pre-dementia due to AD. In general,
these methods usually require accurate segmentation for the hippocampus, and pre-defined
human-engineered features representations for the hippocampus to facilitate the learning of
classification/regression models [25]. However, those human-engineered features may be
not consistent with the following learning models, leading to poor diagnosis performance.

In this paper, we propose a joint learning framework for hippocampus segmentation and
clinical score regression. In ourmethod,we do not require any non-linear registration process and
any human-engineered features for the hippocampus. Experiments on 797 subjects from the
baseline ADNI database demonstrate the effectiveness of our proposed methods (Table 1).

3 Materials and methods

3.1 Materials

We adopt the public Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) database [22]
in this study. Specifically, the baseline ADNI-1 database contains 797 subjects with 1.5 T
T1-weighted structural MRI data, including 181 AD, 165 progressive MCI (pMCI), 225
stable MCI (sMCI), and 226 normal control (NC) subjects. The definitions for these four
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categories can be found online.1 One types of clinical scores are employed for all studied
subjects in ADNI-1, i.e., Mini–Mental State Examination (MMSE) [16]. The MMSE is
a test for the evaluation of efficiency intellectual disorders and presence of deteriorating
cognitive and is often used as a screening tool in the investigation of patients with dementia
and neuropsychological syndromes of different nature. The total MMSE score is between a
minimum of 0 and a maximum of 30 points. A score equal to or less than 18 is indicative
of a severe impairment of cognitive abilities; a score between 18 and 24 is an indication of
a compromised moderate to mild, a score of 25 is considered borderline, from 26 to 30 is
an index of cognitive normality. It has been widely used for evaluating cognitive levels of
subjects in the diagnosis of AD and MCI.

3.2 Image pre-processing and patch extraction

We pre-process all studied MR images using a standard pipeline. To be specific, we
first perform For all studied MR images, we pre-process them using a standard pipeline.
Specifically, we first anterior commissure (AC)-posterior commissure (PC) correction using
MIPA.2 Then, we resample all images to have the same resolution of 256 × 256 × 256,
followed by intensity inhomogeneity correction via N3 algorithm [36]. Finally, we linearly
align all images onto a template image. Note that, in this study, we do not need any skull
stripping or cerebellum removal process. Also, no nonlinear registration is required in image
pre-processing.

After pre-processing, all MR images are aligned onto a common template space. In this
common space, we then define a bounding cube for the hippocampus and extract an image
patch from this box with the size of 72× 72× 72, with the axises informatin is (x=,y=,z=).
Because of the relatively small size of the hippocampus in the brain, such process helps
us discarding many confounding background information. Otherwise, the number of voxels
in the background (i.e., negative samples) will be much larger than that of voxels in the
hippocampus region (i.e., positive samples), leading to a severe class-imbalance problem.
Giving a new testing MRI, we first pre-process it and align it onto the template space. Given
the 3D axises of the pre-defined bounding cube, we can directly extract and image patch
from this new testing MRI. For image patches extracted from the right hippocampus, we flip
these patches to make them consistent with the direction of those from the left hippocampus.
After segmentation, we then flip them into their own directions.

To generate the ground truth of segmentation, we first performed hippocampus segmen-
tation using a nonlinear registration based method (i.e., Dartel in the SPM tool box [3])
to get the rough segmentations of the hippocampus, based on whole MR images. Then,
three radiologists manually edited the rough segmentations to complete the annotation of
the hippocampus for all studied subjects.

3.3 Multi-task convolutional neural network

We develop a multi-task convolutional neural network for joint learning of hippocampus
segmentation and MMSE score regression. The schematic diagram of the proposed net-
work is illustrated in Fig. 2. As we can see from this figure, the input data of the proposed

1http://adni.loni.usc.edu/data-samples/mri/
2http://mipav.cit.nih.gov/index.php

http://adni.loni.usc.edu/data-samples/mri/
http://mipav.cit.nih.gov/index.php
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Fig. 2 Illustration of the proposed multi-task convolutional neural network for joint hippocampus segmenta-
tion and clinical score regression. The input data of this network are croppedMR image patches (72×72×72).
And the output include both probability maps for segmented hippocampus and MMSE scores, estimated by
a Dice-like loss function and a mean squared error loss function, respectively. Two subnetworks are included
in the proposed neural network, i.e., Subnetwork 1 and Subnetwork 2, desingned for clinical score regression
and hippocampus segmenation, respectively. Also, these two subnetworks share a part of common parameters

network are image patches extracted from MRI, while the output data contain both seg-
mented hippocampus regions and estimated MMSE scores for subjects. Particular, there are
two subnetworks, i.e., Subnetwork 1 and Subnetwork 2, which are developed to perform
clinical score regression and hippocampus segmentation, respectively. Note that these two
subnetworks share a part of parameters (see left part of Fig. 2), which is expected to exploit
the underlying association of those two tasks. In the following, we introduce the proposed
network in detail.

As shown in Fig. 2, the first step of Subnetwork 1 contains two 3 × 3 × 3 convolutional
layers, followed by a rectified linear unit (ReLU) and a 2 × 2 × 2 max pooling operation.
And the stride is 2 for down-sampling in the max pooling operation. The second and third
steps of Subnetwork 1 include three 3×3×3 convolutional layers with ReLU and 2×2×2
max pooling operations. The output of the third step contains 128 kernels, followed by three
fully connected (FC) layers. The numbers of elements in these FC layers are 128, 64, and
32, respectively. Then, we adopt a mean squared error loss function to optimize the network
parameters, and the output is the estimated MMSE score for a particular subject.

Besides, the Subnetwork 2 adopts a U-Net architecture [35] to capture both the global
and the local structural information of input image patches. To be specific, there are a con-
tracting path and an expanding path in FCN1. The contracting path follows the typical
architecture of a CNN, and share the same parameters of the subnetwork 1. Different from
the Subnetwork 1, this subnetwork includes 2 additional convolutions in the fourth step.
Also, each step in the expanding path consists of a 3 × 3 × 3 up-convolution, followed
by a concatenation with the corresponding feature map from the contracting path, and two
3 × 3 × 3 convolutions. Similarly, each convolution is followed by a ReLU function. Due
to the contracting path and the expanding path, Subnetwork 2 can grasp a large image area.
Thus, even using small kernel sizes, it still can keep high localization accuracy [35]. The
output of the last layer in Subnetwork 2 is normalized into [−1; 1]. For the purpose of
segmentation, we use a Dice-like loss function in the Subnetwork 2.

Denote X = {Xn}Nn=1 as the training data in a batch, and Xn represents the n-th subject.
Denote MMSE scores for subjects as Y = {Yn}Nn=1. Given V voxels in Xn, we denote the
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class label of the v-th voxel as Zn,v (n = 1, · · · , N; v = 1, · · · , V ). Specifically, Zn,v = 1
if the v-th voxel locates in the hippocampus, and 0, otherwise. In this study, both class
label and MMSE scores are used in a back-propagation procedure to update the network
weights in the convolutional layers and learn the most relevant features in the FC layers.
The proposed Subnetwork 1 aims to learn a non-linear mapping � : X → Y from the input
space to the class label, with the objective function defined as follows:

L1(W) = 1

N

N∑

n=1

(Yn − f(Xn;W))2

︸ ︷︷ ︸
Mean Squared Loss

, (1)

which is the mean squared loss for regression to evaluate the difference between the esti-
mated MMSE score f(Xn;W) and the true MMSE score Yn. To perform segmentation, we
adopt a Dice-like loss function listed as follows:

L2(W) = 1 − 1

N

N∑

n=1

2
V∑

v=1
Z2

n,v × g(Xn,v;W)2

V∑
v=1

Z2
n,v +

V∑
v=1

g(Xn,v;W)2

︸ ︷︷ ︸
Dice Similarity Coefficient

, (2)

where g(Xn,v;W) is the estimated probability map by using the network coefficients W,
and Zn,v is the ground truth. In (2), the second term is the dice similarity coefficient
(DSC) [50] used to evaluate the overall segmentation performance. That is, we adopt the
Dice-like loss function to evaluate the capabilities of our model in detecting voxels in the
hippocampus and in discarding confounding voxels in the background.

With the proposed neural network, we can not only jointly perform hippocampus
segmentation and clinical score estimation, but also automatically learn local-to-glocal
feature representations from MR images for both tasks. That is, we do not require any
human-engineered features for MRI, and the learned features from data are consistent
with subsequent regression and segmentation models. The optimization of the network
parameters are performed via a stochastic gradient descent (SGD) approach [5] and a back-
propagation algorithm to compute the network gradients. Specifically, we empirically set
the momentum coefficient and learning rate for SGD as 0.9 and 10−2, respectively. Besides,
we implement the network based on the platform of Tensorflow [1] and a computer with a
single GPU (i.e., NVIDIA GTX TITAN 12GB).

4 Experiments

4.1 Methods for comparison

For segmentation results, we compare the proposed MDL method with two conventional
segmentation methods, including 1) random forest (RF) regression based method [41],
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and 2) multi-atlas (MA) based method [44]. For clinical score regression results, we com-
pare our MDL method with a hippocampus volume based method (VBM) [13] using the
volume based method. It is worth noting that our MDL method simultaneous perform
tasks of segmentation and regression, RF and MA can only be used to perform the task
of hippocampus segmentation, and VBM can only be employed to perform the task of
clinical score regression, respectively. These three methods are briefly introduced in the
following.

1) Random forest (RF) based method with local energy pattern (LEP) features [40]. In
this method, we learn a non-linear mapping between a local patch and the label of
the center of this patch via a random forest classification model. For random forest
construction, we adopt 20 trees, and the depth of each tree is empirically set as 25. For
a fair comparison, RF share a same immage patch pool as our proposed MDL method.
That is, image patches extracted (via the method presented in Section 3.2) from MR
image are used as in both RF and MDL. In RF method, we extract the Harr-like features
from each image patch [7], and fed such features into the subsequent segmentation
model via random forest based regression.

2) Mutli-atlas (MA) based method. In the experiments, we use the whole image for image
registration, and we transfer the labeled regions from multi-atlas images to the tar-
get image using the majority voting strategy [28]. The detailed implementation can be
found in [44].

3) Volume based method (VBM) [13]. In VBM method, we use the normalized volume
of the hippocampus as the feature for the linear regression of clinical score. The sup-
port vector regressor (SVM) is used as the regression model, which is implemented in
LibSVM toolbox [9].

4.2 Experimental settings

We conduct two types of tasks, including hippocampus segmentation and clinical score
regression. In the experiments, we adopt a 5 fold cross validation strategy [29, 42] using
the subjects from ADNI-1. Specifically, we first randomly partition the whole dataset into
5 subsets, where each subset has roughly equal number of subjects. Then, we treat each
subset as the testing set, while the remaining 4 subsets are combined to the training set. This
process is repeated until all subsets have been used as the testing set. We finally record the
mean and standard deviation of results in segmentation and regression tasks.

For the segmentation results, we use the criteria of Dice similarity coefficient (DSC),
sensitivity (SEN), and positive predicted value (PPV). Denote true positives (T P ) as pre-
dicted hippocampus voxels inside positive regions in ground-truth, false positives (FP ) as
predicted hippocampus voxels outside positive regions in ground-truth, true negatives (T N )
as predicted background voxels outside positive regions in ground-truth, and false negatives
(FN ) as predicted background voxels inside positive regions in ground-truth. Then, these
three measurements are defined as: DSC= 2T P

2T P+FP+FN
, SEN = T P

T P+FN
, and PPV= T P

T P+FP
.

Note that the final segmentation results are achieved by averaging the results for the left and
the right hippocampus regions. For the task of clinical score regression, we use two eval-
uation criteria, including correlation coefficient (CC) and root mean square error (RMSE)
between the predicted clinical scores and ground-truth clinical scores.
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Table 2 Results of MMSE score regression achieved by 2 different methods

VBM MDL (Ours)

CC 0.361 0.559

RMSE 2.825 2.492

VBM: Volume based measure. CC: Correlation coefficients; RMSE: Root mean squared error

4.3 Results and analysis

4.3.1 Clinical score regression

Table 2 shows the MMSE score regression results achieved by our MDL method and VBM.
From Table 2, we notice that our MDL method significantly improves the regression per-
formance compared with VBM regarding CC and RMSE. There are two conclusions that
can be obtained from the results. First, it demonstrates that clinical scores of subjects are
somewhat correlated to the volume of the hippocampus since both MLD and VBM achieve
reasonable performance in clinical score regression by using the volume of the hippocampus
as feature representation forMRI. Second, besides the volume of hippocampus, shape or tex-
ture information of the hippocampus may also have the association to clinical scores, since
our method (using features extracted from MRI) can achieve better regression performance.

For clarity, we further illustrate the scatter plots of the estimatedMMSE scores versus the
true MMSE scores achieved by MDL and VBM in Fig. 3. As shown Fig. 3, our predictions
are more related to the ground-truth scores, since much higher correlation coefficients (i.e.,
CC) are achieved by MDL.

4.3.2 Hippocampus segmentation

In Table 3 and Fig. 4, we report the segmentation results achieved by our MDL method and
two competing methods (i.e., RF, and MA) regarding DSC, SEN, and PPV, respectively.
Note that the segmentation result of a particular method reported in Table 3 and Fig. 4
is the average of segmentation results for the left and the right hippocampus. From the

(a) (b)

Fig. 3 Scatter plots of the predicted MMSE scores vs. the true MMSE scores achieved by VBM and our
proposed MDL methods. CC: Correlation Coefficient
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Table 3 Results of hippocampus
segmentation achieved by 3
different methods

RF MA MDL (Ours)

DSC 0.851 ± 0.019 0.870 ± 0.011 0.893 ± 0.013

SEN 0.829 ± 0.048 0.884 ± 0.018 0.897 ± 0.035

PPV 0.878 ± 0.037 0.857 ± 0.023 0.890 ± 0.026
RF: Random forest based
regression; MA: Multi-atlas
based method

table, we can observe that MDL achieves the best performance regarding three evaluation
criteria. Specifically, RF achieves relatively lower performance in DSC because of the lower
SEN value, MA obtains more stable results (small standard deviation), and MDL yields
the best DSC (i.e., 0.893) which is much better than the second best DSC (i.e., 0.870)
achieved by MA. Furthermore, our MDL method yields much better PPV value (0.890)
in hippocampus segmentation. This implies that our method can effectively identify hip-
pocampus regions from those confounding background regions, which is particularly useful
in practical applications.

Furthermore, we also illustrate several typical segmentation results qualitatively in Fig. 5.
As shown in the figure, the two competing methods (i.e., RF, and MA) cannot remove some
confounding voxels very well. For instance, some regions can not be well connected in the
segmentation results obtained by these two methods. On the contrary, the segmentation results
achieved by our MDL methods are more smooth and accurate compared with RF and MA.

Also, several more segmentation results of our method are shown in Fig. 6. Figure 6a
shows the original image, and we can notice that the hippocampus regions are difficult to be
distinguished from neighboring tissues. It demonstrates that the accurate segmentation for
the hippocampus is a very challenging task. The probability maps in Fig. 6b indicate that
our method can describe the boundary of hippocampus accurately, and some confounding
areas can be assigned very small probabilities. Therefore, smooth and accurate segmen-
tation results can be achieved by our method. Besides, we also show the 3D rendering
of the segmentation results in Fig. 6c. From Fig. 6c, we can see that the segmented hip-
pocampus generated by our MDL method is smooth, implying that the global segmentation
performance of our method is reasonable.

5 Discussion

In this section, we first investage the influence of the proposed joint learning strategy. We
then study the the influence of our proposed averaging strategy for segmentation results of
the left and the right hippocampus.
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(a) DSC (b) SEN (c) PPV

Fig. 4 Segmentation results for the hippocampus achieved by 3 different methods in terms of three
evaluation criterion
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Original Image RF Ground TruthMA MDL (Ours)

Subject #1

Subject #2

Subject #3

Subject #1 Subject #1 Subject #1 Subject #1

Subject #2

Subject #3

Subject #2

Subject #3

Subject #2

Subject #3

Subject #2

Subject #3

Fig. 5 Illustration of segmentation results for hippocampus achieved by 3 different methods (i.e., RF, MA,
and the proposed MDL method). Each row denotes a particular subject, while the first column and the last
column represent the orignal image and groud truth, respectively

5.1 Comparision with single-task variants

In this group of experiments, we investigate the influence of our proposed joint learning
strategy. Specifically, we compare our proposed MDL method with its two variants that

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5

(b) Probability map for hippocampus achieved by our MDL method

(a) Original images for 5 subjects

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5

(c) 3D rending for segmented hippocampus achieved by our MDL method

Fig. 6 Illustration of probability maps for the hippocampus achieved by our porposed MDL method. Each
column denotes a particular subject
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Table 4 Comparision between our MDL method with its two single-task variants, i.e., MDL-1 and MDL-2

Task Criterion MDL-1 MDL-2 MDL (Ours)

Regression CC 0.524 − 0.559

RMSE 2.511 − 2.492

Segmentation DSC − 0.876 0.893

Note that MDL-1 and MDL-2 can only perform clinical score regression and hippocampus segmentation,
respectively, while MDL jointly perform those two tasks

only perform sing-task, including 1) MDL-1 that can conduct clinical score regression,
and 2) MDL-2 that can only perform hippocampus segmentation. That is, MDL-1 uses the
same Subnetwork 1 as our proposed network (see Fig. 2), while MDL-2 simply perform
hippocampus segmentation using the Subnetwork 2. We report the experimental results
achieved by three different methods (i.e., MDL-1, MDL-2, and MDL) in Table 4 and Fig. 7.

From Table 4 and Fig. 7, we can make the following observations. First, in both tasks
of regression and segmentation, the proposed joint learning model MDL is consistently
superior to single-task models (i.e., MDL-1, and MDL-2). For instance, in the regression
task for MMSE scores, the CC value obtained by MDL (0.559) is much higher than that
obtained byMDL-1 (0.524). In the segmentation task, MDL achieves a DSC values of 0.893
which is better than that of MDL-2 (0.876). Second, from Fig. 7, we can observe that in
clinical score regression task, MDL usually achieves higher CC value compared with its
single-task variant (i.e., MDL-1).

5.2 Results using Single-side Hippocampus

In the above-mentioned experiments, for the hippocampus segmentation task, we report
the results averaging the results for the left and the right hippocampus regions. Now we
investigate the segmentation results for the left and the right hippocampus individually.
Table 5 shows the results of methods using the left hippocampus (denoted as MDLl) and the

(a) (b)

Fig. 7 Scatter plots of the estimated MMSE scores vs. the real MMSE scores achieved by the proposed
MDL method and its single-task variant MDL-1. Note that in MDL-1, we only adopt the Subnetwork-1 in
Fig. 2 to perform clinical score regression. CC: Correlation Coefficient
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Table 5 Evaluation using only
the left and the right hippocampi
separately

Task Criterion MDLl MDLr MDL (Ours)

Regression CC 0.543 0.536 0.559

RMSE 2.520 2.505 2.492

Segmentation DSC 0.898 0.887 0.893

right hippocampus (denoted as MDLr ) separately. As shown in Table 5, the use of single-
side hippocampus achieves comparable segmentation results and slightly lower performance
in MMSE score regression, compared with our MDL method using the average segmenta-
tion results of the left and the right hippocampus. The results suggest that our methods using
two-side hippocampus can achieve stable and accurate prediction.

6 Conclusions

In this paper, we proposed a multi-task deep learning (MDL) framework for joint hippocam-
pus segmentation and clinical score regression based on convolutional neural networks. The
prominent advantages of our MDL method lie on that we don’t need any time-consuming
non-linear registration for pre-processing MR images, and features generated by MDL are
consistent with subsequent learning models. The experimental results suggested that the
proposed joint learning strategy can boost the performances of hippocampus segmentation
and MMSE score regression. In the current work, we only use the MMSE score in the clin-
ical score regression experiments. As a future work, we plan to incorporate more clinical
scores into the proposed framework, to further improve the performance of our method.

Acknowledgments This study was supported by National Natural Science Foundation of China (Nos.
61703301, 61573023) one more support grant and University Science and Technology Project of Shandong
Province (No. J17KA086).

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et
al (2016) Tensorflow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX
symposium on operating systems design and implementation

2. Ahmed OB, Mizotin M, Benois-Pineau J, Allard M, Catheline G, Amar CB, Initiative ADN et al (2015)
Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on
hippocampus and posterior cingulate cortex. Comput Med Imaging Graph 44:13–25

3. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113
4. Barnes J, Boyes R, Lewis E, Schott J, Frost C, Scahill R, Fox N (2007) Automatic calculation of hip-

pocampal atrophy rates using a hippocampal template and the boundary shift integral. Neurobiol Aging
28(11):1657–1663

5. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
6. Cao X, Gao Y, Yang J, Wu G, Shen D (2016) Learning-based multimodal image registration for prostate

cancer radiation therapy. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, pp 1–9

7. Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D (2017) Dual-core steered non-rigid registration for multi-
modal images via bi-directional image synthesis. Medical Image Analysis

8. Carmichael OT, Aizenstein HA, Davis SW, Becker JT, Thompson PM, Meltzer CC, Liu Y (2005) Atlas-
based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. NeuroImage
27(4):979–990

9. Chang CC, Lin CJ (2011) Libsvm: A library for support vector machines. ACMTrans Intell Syst Technol
2(3):27



Multimed Tools Appl

10. Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, Rei L, Squarcia S, Rodriguez G,
Bellotti R et al (2011) Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s
disease. NeuroImage 58(2):469–480

11. Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC (2006) Impact of acquisition protocols
and processing streams on tissue segmentation of T1 weighted MR images. NeuroImage 29(1):185–202
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