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ABSTRACT The hippocampus plays an important role in the memory and cognition abilities of humans.
Precise three-dimensional (3D) segmentation of the hippocampus frommagnetic resonance imaging scans is
of great importance in the diagnosis of neurological diseases. Conventional automatic segmentation methods
poorly achieve satisfactory performance because of the irregular shape and small volume of the hippocampus.
We propose a novel two-stage segmentation method, which includes a localization stage and a segmentation
stage, to handle the task of the 3D segmentation of the hippocampus. In the localization stage, a novel
strategy for localizing multi-size candidate regions was developed to improve the sample balance for the
3D segmentation task. In the segmentation stage, a method which fuses the multi-size candidate regions
was proposed to improve the accuracy in predicting the hippocampal boundary, after which we aggregated
the segmentation results from three orthogonal views to further improve the performance. Quantitative
evaluation was performed on the Alzheimer’s Disease Neuroimaging Initiative dataset. The experimental
results achieved Dice similarity coefficients of 92.48 ± 0.61% and 92.90 ± 0.51% for the left and right
hippocampus, respectively, outperforming state-of-the-art studies in hippocampus segmentation tasks.

INDEX TERMS Hippocampus segmentation, hippocampus localization, fully convolutional network,
two-stage segmentation.

I. INTRODUCTION
The hippocampus, located between the thalamus and medial
temporal lobes, has an important influence on the memory
and cognition abilities of human. Many studies report that
patients with Alzheimer’s disease [1], schizophrenia [2], or
major depression [3] develop symptoms of changes in the
morphology of the hippocampus. Morphological analysis of
the hippocampus, which relies on the precise segmentation
of the hippocampus in magnetic resonance imaging (MRI)
scans, facilitates the diagnosis of related neurological dis-
eases noninvasively [4]. Manual segmentation is generally
regarded as the gold standard for morphological analysis and
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evaluation [5], but its clinical application is limited by the
high requirements for professionals [6]. Automatic segmen-
tation shall bring substantial gains to this field and is thereby
highly necessary.

The hippocampus occupies a small volume on the MRI
scans. The performance of segmentation methods based on
fully convolutional networks (FCNs) [7] may be compro-
mised by the imbalance between the organ voxels and the
background voxels. Some two-stage methods address this
problem by locating the candidate regions in the first stage
and then performing segmentation within these candidate
regions in the second stage. In the candidate regions, the num-
ber of positive and negative voxel samples are relatively bal-
anced, which helps improve the segmentation performance.
Existing two-stage methods [8]–[10] simply use fixed-size
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FIGURE 1. Schematic diagram of organ morphological differences in
different slices. (a) An intermediate slice with a large hippocampus
region. (b) A near-end slice with a small hippocampus region. The red
region is the left hippocampus and the green region is the right
hippocampus. In large candidate regions (blue box), sample imbalance
problems are better resolved for large hippocampus regions than for
small hippocampus regions. The opposite holds in small candidate
regions (yellow box).

candidate regions. However, as the morphology of the hip-
pocampus varies along consecutive slices, it is difficult to
keep the positive and negative samples balanced in each
slice using a fixed-size candidate region strategy. As shown
in Fig. 1, a small candidate region does not include sufficient
global features of large objects but is good at representing
features of small objects. In contrast, a large candidate region
contains more global features of an object that matches its
region size but weakly represents the local features of smaller
objects.

To overcome this challenge, we propose a novel two-
stage hippocampus segmentation framework. This frame-
work combines the essences of multi-view FCNs and
localization-based coarse segmentation. The localization
stage aims to reduce non-hippocampus areas and generate
candidate regions covering the hippocampus. The segmenta-
tion stage aims to produce a segmentation with high precision
within the candidate regions.

To keep positive and negative voxel samples balanced in a
majority of the consecutive slices and obtain features match-
ing the morphology of the hippocampus, our framework
generates multiple candidate regions of different sizes for
every hippocampus slice. Multi-size candidate regions pro-
vide a variety of conditions for sample balance. Larger can-
didate regions are beneficial for segmenting larger hippocam-
pus areas, while smaller candidate regions are beneficial
for segmenting smaller hippocampus areas. Segmentation of
larger areas requires more features surrounding the organ as
classification evidence, while fewer are employed for seg-
mentation of smaller areas in order to reduce the risk of
misjudgment. We perform segmentation operations within
multi-size candidate regions and fuse the results to make
full use of their complementary advantages. Specifically,
we determine the approximate centroid of hippocampus
regions in every MRI slice in the localization stage by coarse
segmentation.With the centroid as the center, bounding boxes
of multiple sizes covering the hippocampus are determined.
Next, the candidate regions defined by the bounding boxes

are fed into the pretrained FCNs. Then, the corresponding
segmentation outputs are fused to achieve greater segmen-
tation precision. This process behaves like an ensemble of
multiple deep classifiers, where each deep classifier in the
ensemble makes predictions under different surroundings,
and their fusion enhances segmentation performance. The
above operations are performed on axial view, coronal view
and sagittal view one by one. Finally, the outputs from these
orthogonal views are fused oncemore to enhance the segmen-
tation performance further by majority voting (MV).

The rest of this paper is organized as follows. An overview
of the related work is described in II. RELATED WORKS.
We describe the technical motivation and details of the
proposed approach in III. METHOD. Analysis of the
experimental results is provided in IV. EXPERIMENT &
RESULTS. Finally, extended discussions and conclusions
are given in V. DISCUSSION and VI. CONCLUSIONS,
respectively.

II. RELATED WORKS
The long-established hippocampus segmentationmethods are
usually based on three types of techniques: (1) conventional
image processing; (2) atlas registration; and (3) machine
learning. For a more detailed discussion of the related works,
readers can refer to comprehensive reviews of hippocampus
segmentation [11], [12].

Methods based on conventional image processing usually
require the user to participate in the initialization of the
segmentation process. For example, thresholding [13] and
region growing [14] methods require manual seed selec-
tion. Deformable model techniques [15], [16] require contour
placement by the user. However, these methods are limited in
terms of practical application on account of the high depen-
dence on human-computer interaction, which are subjective
and nonreproducible.

The representative atlas registration method is the multi-
atlas segmentation (MAS) approach [17]–[19]. The perfor-
mance of theMAS relies on both registration accuracy and the
label fusion (LF) strategy. Consequently, in addition to opti-
mizing the registration, many researchers focus on exploring
more effective LF strategies. Recently, the patch-based LF
strategy [20] has received much attention, and numerous
improvement methods, e.g., the nonlinear [21], set partition
strategy [22] and template local ranking strategy [23], have
arisen. However, the performance of the MAS is sensitive to
the atlas selection [24], [25], which reduces its applicability
in practical applications.

Methods based on machine learning usually combine
some local features (e.g., image intensities, gradients [26],
and Gaussian features [27]) and use a classifier (e.g.,
k-nearest neighbor [27], random forest [28], Bayesian clas-
sifier [29], and support vector machine (SVM) [26]) to seg-
ment the hippocampus. Combined with MAS, some machine
learning technologies, e.g., SVM [30] and dictionary learn-
ing [31], [32], have been used to determine the optimal
weights of the LF or compile patches for more efficient
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similarity matching. Some object-oriented segmentation
methods have hierarchical characteristics. First, object
description is realized based on local features, and then object
segmentation is realized by constructing inter-object rela-
tions. In the field of brain segmentation, the relationships
among brain tissues can be constructed by Bayesian law [33]
or tree-like structures [34]. Thesemethods often use a number
of handcrafted features as the evidence of classification or
for weight calculation. However, these handcrafted features
may not reflect the general morphology of the hippocampus.
In addition, their performance is largely dependent on heuris-
tic tuning parameters and empirical pretreatment techniques,
thus limiting their generality.

The emerging convolutional neural network (CNN), one
of a number of deep learning techniques, has contributed
to the sphere of medical image processing greatly in recent
years [35]–[37]. It benefits from the fact that the end-to-
end learning of salient feature representations maybe more
effective than that of handcrafted features with heuristic
tuning parameters [38]. FCN [7] (i.e., a CNN in which all
layers are convolution layers), in which both learning and
inference are performed whole-image-at-a-time, has played
an increasingly important role in the field of semantic seg-
mentation. FCN and its variants, including U-Net [39],
DeepLab [40], etc., have demonstrated promising perfor-
mances in many semantic segmentation tasks [41], [42].
However, limited by their architectures (i.e., they can only
be applied to 2D image segmentation), these networks are
unable to make full use of the 3D context, hampering their
direct application in hippocampus segmentation to some
extent.

Several recent studies have used FCNs directly with 3D
convolution kernels to segment the prostate [43], liver [44],
lung tumors [45], and brain [46]. Three-dimensional FCN
has attracted much attention in organ segmentation on MRI
because it can take full advantage of the 3D context. However,
compared with 2D FCNs, 3D FCNs require a large number of
parameters and an enormous computational cost. In addition,
its training phase also boasts a high requirement for train-
ing data. Multi-view FCNs, which combine decisions from
multiple 2D views (i.e., axial view, coronal view, and sagittal
view), are effective alternatives for making full use of the
3D context. In the processing of tissues with complex mor-
phologies, e.g., pulmonary nodule detection [47], [48], knee
cartilage segmentation [49], and pancreas segmentation [8],
2D CNN models may be more generalizable than their 3D
counterparts.

Hippocampus segmentation methods based on multi-view
FCN has been unfolding [50], [51] recently. To counteract the
inherent voxel imbalance, some approaches [50], [51] focus
on segmentation in a smaller hand-selected space to further
improve precision, yet their practical application may be
limited by human-computer interaction. Two-stage methods
provide various ways to automate the hand-selected operation
and generate candidate regions in the localization stage. In a
pancreas segmentation task, localization was implemented

through coarse segmentation based on the super-pixel tech-
nique [9] or an FCN [8], [10].

III. METHOD
A. OVERVIEW OF THE FRAMEWORK
The proposed framework includes two stages: localization
and segmentation. The outline of the proposed framework is
shown in Fig. 2. The localization stage consists of two steps:
(1) slice of interest (SOI) fetch; and (2) candidate region
generation. Slices containing the hippocampus are defined as
SOIs. In the first step, a Bi-LeNet model is applied to fetch t
SOIs from hippocampus MRI scans in one view. Based on
the t SOIs, k groups of candidate regions are then gener-
ated in the second step. Every group consists of t candidate
regions of a specific size. The groups of candidate regions
are denoted as {{x1, x2, · · · , xt }1, · · · , {x1, x2, · · · , xt }k}v,
where v ∈ {A,C, S}, A represents an axial view, C
represents a coronal view and S represents a sagittal
view. The localization operation is performed in the three
views.

The segmentation stage consists of two steps: (1) planar
fusion; and (2)multi-view decision. In the planar fusion stage,
we use modified U-Nets (hereafter referred to as U-Net)
to take k groups of candidate regions as input to produce
probability maps {{h1, h2, · · · , ht }1, · · · , {h1, h2, · · · , ht }k}v

with k groups. Then, the k groups of probability maps are
fused to produce a segmentation mask sequence Y v =
{y1, y2, · · · , yt }v per view. The above operations are carried
out in the axial view, coronal view and sagittal view. All
the slices are processed one by one in their original order,
and three 2D mask sequences are generated for the different
views. In the second step, we aggregate themask sequences of
the three views to make the final decision for 3D hippocam-
pus segmentation ϒ .

In the localization stage, three Bi-LeNets and three U-Nets
are employed, while 3k U-Nets are used in the segmentation
stage. All the nets are trained individually.

Details regarding Bi-LeNet are described in Sec.B1. And
the architecture of the U-Nets is described in detail in Sec.B2.

B. NETWORKS
1) BI-LENET
The proposed Bi-LeNet was modified from LeNet-5 [52],
which was designed for handwritten digit recognition. The
Bi-LeNet model contains two convolution-pooling layers,
as shown in Fig. 3. The first convolution layer has 6 chan-
nels with a 5 × 5 kernel. The second convolution layer has
16 channels with a 5 × 5 kernel. The activation functions
are both rectified linear units (ReLU). In addition, the two
max-pooling layers are 2 × 2 windows. There are two fully
connection layers, one with 120 and the other with 84 neu-
rons. The final output layer implements the softmax activa-
tion function and 2 output channels. In the training phase
of Bi-LeNet, binary cross entropy is employed as the loss
function.
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FIGURE 2. Overview of the proposed framework. In the SOI Fetch step, MRI slices containing the hippocampal region are determined using Bi-LeNets.
Multiple groups of candidate regions of the SOIs are determined during the Candidate Region Generation step with U-Nets. The superscripts next to the
networks mark the corresponding orthogonal plane. In the Planar Fusion step, segmentation and fusion on multiple groups of candidate regions are
performed using their respective U-Nets (indicated by the subscript). All the above steps are repeated in axial, coronal and sagittal views. Finally,
the output segmentation results from the three views are aggregated to generate a final 3D segmentation in the Multi-view Decision step.

2) MODIFIED U-NET
The modified U-Net is based on the classical encoder and
decoder architecture of U-Net [39], as shown in Fig. 4. The
encoder, following the typical architecture of a convolutional
network, encodes the image features. The convolution layer
has a 3× 3 kernel and a stride of 1. Down-sampling, realized
by a max-pooling layer with a 2 × 2 window and no stride,
reduces the resolution of the feature map and enlarges the
receptive field of the network.

To keep the dimensions of the input and output of
the U-Net consistent, all feature maps are processed by
zero-padding. To perform internal covariate shift alleviation,
training acceleration and overfitting lessening, batch normal-
ization (BN) is included into both the encoder and decoder.
BN occurs between the convolution layer and activation layer,
i.e., ReLU, to accelerate the network training.

A skip architecture, which concatenates the feature maps
from different depths in the encoder with the correspond-
ing reconstructed resolutions from the decoder, is included
as part of the decoder to achieve feature fusion. Gen-
erally, the features extracted by the convolution kernels
at different depths of the encoder network have distinct
characteristics. The low-depth convolution kernel extracts
low-level features with high-resolution but low semantic
information, while the high-depth convolution kernel extracts
high-level features with low-resolution and high semantic
information. Combining the features from different depths
helps to refine the prediction [39]. In addition, all net-
work parameters are initialized according to the rectifier
method [53].

As a frequently used evaluation metric in medical image
segmentation, theDice similarity coefficient (DSC) [54]mea-
sures the overlap between the predicted segmentation and the
ground truth:

DSC(AP,AG) =
2× |AP ∩ AG|
|AP| + |AG|

× 100% (1)

where AP is the predicted segmentation mask, and AG is the
ground truth.

The Dice loss, used as the loss function in our U-Net
training, is defined as follows,

C = 1−

2×
n∑
i=1

pigi

n∑
i=1

pi+
n∑
i=1

gi

(2)

where pi, gi ∈ {0, 1} and pi is value of pixel i in the predicted
segmentation mask P, while gi is the true value of pixel i in
the ground truth mask G.

The gradient of the Dice loss can be computed as:

∂C
∂pj
= −2×

gj(
n∑
i=1

pi +
n∑
i=1

gi)−
n∑
i=1

pigi

(
n∑
i=1

pi +
n∑
i=1

gi)2
(3)

For network training, stochastic gradient descent (SGD)
is applied, and the learning rate is initialized to 0.1 and
decreases as the training proceeds. Spatial dropout is applied
in training phase to avoid overfitting.
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FIGURE 3. Schematic diagram of the architecture and parameters of the proposed Bi-LeNet. It mainly consists of two convolutional layers, two
max-pooling layers, two fully connection layers and one output layer. Bi-LeNet takes an MRI slice and predicts whether it contains a hippocampus region
(01 or 10).

FIGURE 4. Architecture diagram of the proposed U-Net. (a) The arrows represent involved operations: convolution, max-pooling, transpose convolution
and concatenation. (b) The vertical bars represent input or output data, and the numbers above the bars denote the channel dimensions.

C. LOCALIZATION
1) SOI FETCH
According to the statistics of the dataset we used, the left and
right parts of hippocampus occupy 0.0169% ± 0.0037 and
0.0163% ± 0.0035 of the whole MRI volume, respectively.
Due to the wide gap in the number of foreground and back-
ground voxels, it is almost impossible to train an FCN for
segmentation. In the meantime, we notice that the hippocam-
pus is not present in every slice of the MRI scan. Therefore,
we first fetch the SOIs that contain the hippocampus by

Bi-LeNet classification. Every slice is fed to the Bi-LeNet to
determine whether it is an SOI. The non-SOIs are excluded
from further analysis.

2) CANDIDATE REGION GENERATION
The SOIs fetched by Bi-LeNet are fed into the U-Nets to
produce probability maps. Using 0.5 as the threshold, we
binarize the probability maps to obtain segmentation masks
and then determined the centroids of the masks. The segmen-
tation is coarse because the U-Net is trained on SOIs with
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FIGURE 5. Pipeline of candidate region generation. The hippocampus and bounding boxes are outlined in red. (a) The
selected SOI. (b) The probability map output by U-Net. (c) The centroid and two bounding boxes calculated based on
the mask. (d) The centroid and two bounding boxes superimposed on the SOI. The increases of the borders are
indicated with green arrows. (e) and (f) are candidate M- and S-regions, respectively, cropped from the SOI according
to the two bounding boxes.

imbalanced data. With the centroid as the center, multiple
bounding boxes of different sizes are established for each
SOI, which are then used to generate candidate regions of dif-
ferent sizes for each SOI. To find the position of the centroid
of the mask, the low-order geometric momentsm00,m01,m10
must be calculated. For anM × N grayscale image I (i, j), its
pq order geometric moment can be calculated as follows:

mpq =
M∑
i=1

N∑
j=1

ipjqI (i, j) (4)

The centroid is positioned at:

(x, y) = (
m10

m00
,
m01

m00
) (5)

Taking this centroid (x, y) as the center, we can generate
multiple candidate regions of multiple sizes. In this work,
we generated two candidate regions for each SOI, one small
sized and the other medium sized. Physically, the sizes of
the hippocampal regions on all MRI scans lie within a fixed
range. The upper limit of the statistical range is used as
the size of the small-size bounding box, which covers the
hippocampal regions across all the scans and contains as little
background as possible. Based on the small-sized bounding
boxes, SOIs are cropped to generate small-size candidate
regions (S-regions). Then, bounding boxes twice the size
of the S-region is used to generate medium-sized candidate
regions (M-regions). Finally, the whole SOIs are defined
as L-regions. Fig. 5 shows the process of candidate region
generation.

D. SEGMENTATION
1) PLANAR FUSION
In this phase, we perform segmentation oncemore and named
it fine segmentation to distinguish it from the coarse segmen-
tation performed in the candidate region generation phase.
The fine segmentation delineates the hippocampus morphol-
ogy better than the coarse segmentation. The performance

improvement of U-Net depends on the improved sample
balance of candidate regions compared to the original SOIs.

U-Net models {HM ,HS}v assume the role of fine seg-
mentation operation, which takes the candidate regions
{{x1, x2, · · · , xt }M , {x1, x2, · · · , xt }S}v as input and generates
the probability maps {{h1, h2, · · · , ht }M , {h1, h2, · · · , ht }S}v

of different sizes, where v ∈ {A,C, S} indicate axial, coronal
and sagittal directions, and the subscriptsM and S indicate the
M-region and S-region, respectively. Planar fusion refers to
the fusion of the prediction results given by the fine segmen-
tation performed on the S-regions andM-regions. It is infeasi-
ble to fuse the {{h1, h2, · · · , ht }M }v and {{h1, h2, · · · , ht }S}v

directly because of the size difference of the probabilitymaps.
The probability maps of the M-regions {{h1, h2, · · · , ht }M }v

are cropped to the same size as that of the S-regions so that
the two probability maps can be summed to generate the final
segmentation mask sequence Y v = {y1, y2, · · · , yt }v, where
the decision threshold is equal to 0.5, and yi ∈ {0, 1}.

2) MULTI-VIEW DECISION
The three segmentation mask sequences

{
Y A,YC ,Y S

}
obtained in the axial, coronal and sagittal views are finally
aggregated to generate an overall hippocampus segmentation
ϒ by MV. We assume that p represents a voxel in the 3D
MRI image space. pa, pc and ps are the projections of p in
the axial view space Y A, the coronal view space YC and the
sagittal view space Y S , respectively. Let m(pa), m(pc) and
m(ps) denote the corresponding values of pa, pc and ps in
spaces Y A, YC and Y S , where m(pa) ∈ {0, 1}, m(pc) ∈ {0, 1}
and m(ps) ∈ {0, 1}. Therefore, for a voxel p in ϒ space, its
value is determined by

m(p) =

{
1, m(pa)+ m(pc)+ m(ps) ≥ 2
0, otherwise

(6)

The MV contributes to the cancellation of the random
errors and enhancement of the prediction. Aggregation
of complementary information from distinct views usually
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FIGURE 6. The morphology of the hippocampus in different views. The
red region is the left hippocampus and the green region is the right
hippocampus. (a) The hippocampus in an axial view, (b) coronal view and
(c) sagittal view.

leads to more precise segmentation of the organ boundary.
Fig. 6 shows the morphology of the hippocampus in the brain
in different views.

IV. EXPERIMENT & RESULTS
A. DATA
The dataset used was obtained from the publicly avail-
able Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu). The ADNI was launched
in 2003 as a public–private partnership, aiming to test whether
serial MRI, positron emission tomography, other biologi-
cal markers, clinical and neuropsychological assessment can
be combined to evaluate the progression of mild cognitive
impairment and early Alzheimer’s disease.

The dataset consists of T1-weighted MRI scans of
74 patients with segmentation labels. The size of each scan
is 192 × 192 × 160. Each MRI scan was first centrally
cropped into a sub-volume of 160 × 144 × 128 to remove
the black margins, which do not include any useful informa-
tion. Because the original images were processed by affine
transformation, the brain was located in the center of theMRI
stack.We longitudinally split every 3DMRI scan into left and
right parts. Each part contained a hippocampus. The sizes of
the left and right parts were 160 × 144 × 64. For each part,
the size of sagittal slices was 160×144, the size of axial slices
was 144 × 64 and the size of coronal slices was 160 × 64.
In addition, the axial slices and coronal slices of the right
part were flipped horizontally to ensure that the appearance
of the left and right halves of the brain was consistent in the
training and testing phases. In addition, all the images were
preprocessed through normalization and mean value removal
before being used.

The training dataset of Bi-LeNet was generated based on
the manual segmentation labels. An MRI slice was consid-
ered an SOI if its corresponding label mask indicated the
presence of hippocampus blobs. According to the statistical
results of the whole dataset, the hippocampus-containing
slices accounted for 10.6% (± 2.4%) of the whole slice
sequence in the axial view, 17.5% (± 1.5%) in the coronal
view, and 10.1% (± 1.1%) in the sagittal view.

We evaluated the performance of the proposed method
with 10-fold cross-validation throughout the experiment, i.e.,
66 MRI scans were used as training sets and 8 scans as test
sets. No validation set was used.

FIGURE 7. Mean values and standard deviations of Category Recall and
Voxel Recall.

In the following descriptions, L and R are used to denote
left and right. In addition, A, S and C stand for axial view,
coronal view and sagittal view, respectively. Two-letter com-
binations are used to indicate the performance of the method
in each step. For example, LA stands for the performance of
the method in segmenting the left hippocampus in axial view.

B. EVALUATION OF LOCALIZATION
1) EVALUATION OF SOI FETCH
Wemeasured the performance of Bi-LeNet with two metrics,
i.e., category recall and voxel recall. Category recall refers
to the quantity ratio of the predicted positive samples to the
total positive samples. Voxel recall, on the other hand, refers
to the volume ratio of the hippocampus area in the predicted
positive samples to that in the ground truth samples. Fully
trained Bi-LeNets show high performance on both category
recall and voxel recall, as illustrated in Fig. 7.

In the experiments, it can be observed that Bi-LeNet had
almost the same performance on the left and right hip-
pocampi. The lowest category recalls are 96.64±0.51% on
LS and 96.75±0.79% on RS, whereas the voxel recalls
on sagittal view were greatest, 99.09±0.45% on LS and
99.06±0.99% on RS. Fetching SOIs with Bi-LeNet recalls,
on average, more than 98.82% of the target organ volume on
all three views. It shows ideal stability; even the worst metric
reaches 98.56%±1.16 on voxel recall. A volume loss of less
than 2% has little effect on subsequent procedures.

2) EVALUATION OF CANDIDATE REGION GENERATION
We used the DSC and Euclidean distance to measure the
performances of coarse segmentation and centroid localiza-
tion in this step. DSC was defined in (1), and the Euclidean
distance (Ed) is defined as:

Ed = 2
√
(xG − xP)2 + (yG − yP)2 (7)

where (xP, yP) are the coordinates of the centroid predicted
in coarse segmentation, and (xG, yG) are the coordinates of
the ground truth centroid.

Table 1 demonstrates the mean value µ and the standard
deviation σ of the DSC of coarse segmentation and the
corresponding Ed between the predicted centroid and the
ground truth centroid. Basically, DSC and Ed are negatively
correlated, i.e., the higher the DSC, the lower the Ed is, and
the more precise the localization is. In the experiment, it can
be seen that the predicted centroid is close to the ground
truth centroid on all views. The localization bounding box
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FIGURE 8. Examples of centroid localization. Prediction results are marked in bluish green, and the ground truth is
marked in red. It can be seen that the higher the DSC score, the better that the predicted centroid and the bounding box
coincide with the ground truth.

TABLE 1. Coarse segmentation and centroid localization results.

covers the whole hippocampus region. The hippocampus is
located roughly in the center of the box, which is beneficial
for maintaining the integrity of the surrounding features of the
target. Some example localization results are shown in Fig. 8.

C. EVALUATION OF SEGMENTATION
1) EVALUATION OF FINE SEGMENTATION
We applied three evaluationmetrics, i.e., the DSC, the Jaccard
similarity coefficient (JSC) [55] and the Hausdorff distance
[56], to measure the performance of the fine segmentation.
The DSC reflects the overall overlap between the predic-
tion and ground truth in 3D space. The JSC focuses on

describing the overlap in 2D cases. Finally, the Hausdorff
distance describes the morphological similarity of 2D seg-
mentations by measuring the closeness between the predicted
segmentation and the ground truth, with smaller results indi-
cating better segmentations. Among them, the DSC is the
most important metric and is defined in (1). The JSC is
defined as:

JSC(AP,AG) =
|AP ∩ AG|
|AP ∪ AG|

× 100% (8)

The Hausdorff distance is defined as:

dH (AP,AG)

=max{supp∈AP infg∈AG d(p, g),supg∈AG infp∈AP d(p, g)} (9)

where sup represents the supremum, inf represents the infi-
mum, and AP and AG represents the segmentation prediction
and ground truth, respectively.

Our experimental results are described in the form of
boxplots, as shown in Fig. 9. L stands for the L-regions,
M stands for the M-regions and S stands for the S-regions.
F(X,Y) represents the planar fusion of candidate regions X
and Y. From the comparisons among L, M and S, it can be
seen that fine segmentation completely outperforms coarse
segmentation because of the reduction in the search space and
the increase in the ratio of positive samples. Almost all the
indicators of S are better than those of M. This means that
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FIGURE 9. Boxplots of the DSCs, JSCs and Hausdorff distances of multi-size left and right hippocampus in three views. In each box,
the central mark is the median and the edges of the box denote the 25th and 75th percentiles. Whiskers extend from each end of the box
to adjacent values in the dataset and the extreme values within 1 interquartile range from the ends of the box. Outliers are data with
values beyond the ends of the whiskers and are represented with stars.

TABLE 2. Comparison between coarse segmentation and fine
segmentation (DSC).

S-regions demonstrate better sample balance compared to
M-regions and L-regions. Comparisons of the DSCs and
JSCs in all views show that segmentation performance in the
coronal view is usually better than that in other two views,
which may be due to the distinct morphological features of
hippocampus in the different views.

In terms of the mean values of the DSC and JSC, F(M,S)
exhibits enhanced performance on all three views. In addi-
tion, F(L,M,S) performs worse than F(M,S) in terms of the
DSC and JSC because of the poor segmentation performance
in the L-regions. In terms of the Hausdorff distance, F(L,M,S)
scores similarly to F(M,S), and on axial view F(L,M,S) scores
slightly higher.

Table 2 shows the results of coarse segmentation (direct
segmentation) of SOIs and fine segmentation using different

candidate regions. It shows that fine segmentation outper-
forms direct segmentation in all the views.

2) ANALYSIS OF PLANAR FUSION
We analyzed the segmentation performance in hippocampi
with different morphological appearances. The difference is
mainly reflected in the area occupied by the hippocampus
voxels. Candidate regions were sorted in decreasing order
based on their hippocampus areas. The top 5% and bottom
5% candidate regions were labeled T-5% and B-5%, respec-
tively. The receiver operating characteristic (ROC) curves and
areas under the curve (AUCs) were applied to measure the
segmentation performance for different appearances of the
hippocampus and the effect of planar fusion and are shown
in Fig. 10.

Conventional two-stage methods use fixed-size candi-
date regions, whose performance is equivalent to that using
S-regions or M-regions shown in Fig. 10. In axial view and
coronal view, when segmenting T-5% regions, the effect
of using M-regions is better than that using S-regions,
which indicates that the size of the candidate region
needs to be larger when segmenting an image where the
hippocampus occupies a larger area in order to extract
more global features. For B-5% regions, the fact that
using S-regions is substantially better than using M-regions
means that smaller candidate regions are beneficial for
segmenting smaller targets due to the higher propor-
tion of positive samples. In the sagittal view, M-regions
have no obvious advantage for T-5% regions, while using
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FIGURE 10. Receiver operating characteristic (ROC) curves of the segmentation in different morphologies of the hippocampus and the
effects of planar fusion.

FIGURE 11. (a) The enhancement effect of F(M, S) with S-regions. (b) The enhancement effect of F(M,S) with M-regions. In the 3rd and 5th
columns, false positive samples of the segmentation are marked in green, while false negative samples are marked in red. DSC scores
corresponding to the S-regions, M-regions, and F(M,S) are given in order under each set of images.

S-regions results in better performance for the B-5% regions.
All these findings indicate the necessity of planar fusion.
Planar fusion reduces both false positive and false negative
predictions, as Fig. 11 shows. The AUC based on F(M,S) is
larger than that based on both M-regions and S-regions.

3) EVALUATION OF MULTI-VIEW DECISION
After performing planar fusion, enhanced segmentation
masks are produced in the three. Next, in the multi-view
decision step, the masks from the three views are combined
to generate the final segmentation result. The results of the
multi-view decision step are summarized in Table 3. Some
surface rendering examples are shown in Fig. 12.

We compared our experimental results with those of related
works on the same dataset. Notably, the subsets of the dataset
used by different studies are not exactly the same. Therefore,
to ensure a fair comparison, the amount of data we employed
was the median of the amounts of data used in the compared
studies. Table 4 shows that our method achieved the best
overall segmentation performance.

V. DISCUSSION
In this paper, compared with that of previous approaches, the
proposed method achieved better performance on the ADNI
dataset. We attribute these improvements to the fetching of
SOIs and the segmentation fusion on multi-size candidate
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FIGURE 12. Surface rendering results of some samples of the ground truth and those of the corresponding prediction segmentation.
Red: manual hippocampus segmentation. Green: prediction segmentation of the left hippocampus (top view). Yellow: prediction
segmentation of the right hippocampus (top view).

TABLE 3. Multi-view decision results.

regions. For the SOI fetch step in the localization stage, our
main concern is to select candidate slices for segmentation
to reduce the negative effects caused by excessive back-
ground voxels. In some patch-based methods, including F-
DDLS [32], Progressive SPBL [31], manifold learning MAS
[57], etc., searching for similar patches in a complete MRI
patch space is a cumbersome and unstable task. Due to the
large search space and difficulty in matching similar patches,
these patch-based methods have lower performance com-
pared to our method. We believe that the idea of SOI fetch
can also be applied to improve patch-based methods.

Removing redundant information is an effective strategy to
reduce the difficulty of similarity matching. Although more
advanced classification networks [58], [59] can be applied to
fetch SOI, in our proposal, the simple LeNet-based network
performs sufficiently well, with a volume loss of less than 2%.
The small voxel volume loss is caused by SOIs containing the
end regions of the hippocampus. These end regions usually
consist of only a few voxels, making it difficult to capture tar-
get features even through more sophisticated networks. The
proposed method inherits and extends the localization stage
of conventional two-stage segmentation methods, which is
lacking in some current deep learning-based hippocampus
segmentation methods [50], [51]. The lack of a localization
stage limits the application of these methods in practical
situations. In addition, with regard to the U-Net, we attempted
to train a single U-Net model that used the same weights in all
three views. However, convergence was difficult. We suggest

TABLE 4. Comparison between our method and those of other related
works (DSC).

that this was likely due to the highly heterogeneous features
of the hippocampus in the three orthogonal views.

Planar fusion on candidate regions of multiple sizes can
more accurately segment tissues of different sizes on differ-
ent slices. Fig. 10 shows that the AUC of F(M,S) is better
than that of the M- and S-regions, which means that the
planar fusion segmentation on multi-size candidate regions
has higher accuracy than the segmentation on fixed-size
candidate regions. We hypothesize that it is difficult to use
fixed-size candidate regions to represent organs with complex
morphologies. Specifically, both large and small candidate
regions have their own advantages and disadvantages. For
example, the AUC of T-5% on M-regions is larger than that
on S-regions, while the opposite is true for B-5%. This is
exactly what the conventional two-stage approaches ignore.
The segmentation performance based on either M-regions or
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S-regions is roughly similar to that of the conventional two-
stage approaches. M-regions usually contain more global fea-
tures, which is advantageous for segmenting larger regions of
the hippocampus but disadvantageous for segmenting smaller
regions due to sample imbalance. Conversely, few negative
samples in the S-region, thus resulting in a small impact of
the negative samples, will help in the segmentation of smaller
regions of the hippocampus. Smaller regions provide more
local features, which is not conducive to the accurate segmen-
tation of large regions. The fusion segmentation predictions
from two candidate regions of different sizes can further
improve the segmentation accuracy, enabling our method
to perform better than deep learning segmentation methods
using fixed-size regions [50], [51]. In addition, it is worth
mentioning that, as summarized in Table 4, all deep learn-
ing methods outperform the manual feature-based method
[26], which proves the effectiveness of automatic features
extraction.

Fig. 11 highlights the importance of our multi-size fusion
strategy to reduce the errors of segmentation. Fusion is very
effective in reducing false positives and false negatives and
helps to more accurately describe the hippocampal boundary.
For segmenting larger hippocampal regions using S-regions
(Fig. 11 (a)), voxels in the contour region are easily mis-
judged. However, fusion with M-region segmentation can
greatly reduce the number of misclassified samples. The
high-confidence predictions obtained from using M-regions
in the segmentation of a large area can compensate for some
‘‘wobbly’’ judgments (false positive and false negative sam-
ples with prediction probabilities close to the threshold value)
of predictions that use S-regions alone. Using the M-regions
to segment small-area targets is usually ineffective, and often
it is not even possible to segment such targets. For example,
the second line of Fig. 11(b) shows that the DSC of the
M-regions is 0.00; therefore, the contribution of F(M,S)
comes only from the segmentation using the S-regions.

Fusion of additional candidate regions is a promising way
to further improve the prediction performance. In our work,
the use of candidate regions of two sizes (S-regions and
M-regions) results in an obvious performance improvement
over the use of a single candidate region (Fig. 9). However,
the size selection is critical. If more candidate regions of
other sizes are to be used, determining the appropriate sizes
is a problem that requires specific research for extracting
more complementary features from such additional candidate
region.

Themulti-view decisionmechanism guarantees the refined
segmentation of tissues with complex morphology. In partic-
ular, this step helps to correctly classify voxels at the edges
of organs. From Fig. 6, we can see that the hippocampus is
an organ with a complex appearance that differs in the three
views. Some edges of the organ are blurry in one view but
clear in another. A multi-view observation provides obvious
global information on the overall structure to improve the
segmentation. Our approach achieved a higher DSC score
than STEPS [23], which may be because the latter uses only

information from a cross-sectional view or a longitudinal
view, not information from a multi-view decision.

Themulti-view decision used in our methodmay be further
optimized. As shown in Fig. 9, the segmentation performance
differs substantially among the three views, so view selec-
tion may be a factor that needs to be considered to ensure
ideal segmentation results. The boxplots in Fig. 9 show that
the DSC score obtained from the coronal view is always
higher than those obtained from the other views, suggesting
that the use of weighted MV may be more helpful than the
unweighted MV used in the proposed method.

VI. CONCLUSION
The main contribution of this paper is the proposal of a
novel two-stage hippocampus segmentationmethod using the
fusion of information frommulti-size candidate regions. This
method contains a hippocampus localization stage and a seg-
mentation stage that fuses multi-size information and makes
a multi-view decision. Segmentation fusion based on multi-
size candidate regions results in an effective representation
of the complex morphological features of the hippocampus.
The method achieves high precision segmentation of the
hippocampus that is superior to that of recently reported
algorithms run on the ADNI dataset. The proposed method is
expected to automatically segment and measure the volume
of the hippocampus in clinical settings to help doctors diag-
nose diseases such as Alzheimer’s disease, schizophrenia and
major depression. In addition, this method can be extended to
segmentation tasks of other small organs such as the pancreas,
gallbladder, and so on.
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