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Thickness measurements of the cerebral cortex can aid diagnosis and provide valuable information about the
temporal evolution of diseases such as Alzheimer's, Huntington's, and schizophrenia. Methods that measure
the thickness of the cerebral cortex from in-vivo magnetic resonance (MR) images rely on an accurate
segmentation of the MR data. However, segmenting the cortex in a robust and accurate way still poses a
challenge due to the presence of noise, intensity non-uniformity, partial volume effects, the limited resolution
of MRI and the highly convoluted shape of the cortical folds. Beginning with a well-established probabilistic
segmentation model with anatomical tissue priors, we propose three post-processing refinements: a novel
modification of the prior information to reduce segmentation bias; introduction of explicit partial volume
classes; and a locally varying MRF-based model for enhancement of sulci and gyri. Experiments performed on
a new digital phantom, on BrainWeb data and on data from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) show statistically significant improvements in Dice scores and PV estimation (pb10−3) and also
increased thickness estimation accuracy when compared to three well established techniques.
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Introduction

The thickness of the cortex has been found to have an important
correlation to various diseases such as Alzheimer's (Lerch et al., 2005;
Du et al., 2007; Lehmann et al., in press), Huntington's (Rosas et al.,
2008), schizophrenia (Nesvåg et al., 2008), and also to normal ageing
(Shefer, 1973; Salat et al., 2004; Thambisetty et al., 2010). Automatic
extraction ofmeasurements from the cortex, such as thickness, has the
potential to provide a biomarker for diagnosis and disease progression
(Desikan et al., 2009). However, algorithms for the reliable extraction
of the cortical layer are still in need of improvement. From a technical
point of view, this problem is intrinsically complex due to the
convoluted shape of the cortex and the fact that its normal thickness
(2.5±1.5 mm, (von Economo, 1929) is close to the typically acquired
MRI voxel dimensions (≈1 mm isotropic). This task is further
hampered by the presence of noise, partial volume (PV) effects and
intensity non-uniformity (INU) across the image.
Segmentation of the brain into its different tissue types has been
proposed using methods based on morphological operations (Mangin
et al., 1995), edge detection (Tang et al., 2000), fuzzy c-means (Pham,
2002; Wang and Fei, 2009) and probabilistic models. Probabilistic
mixture models fitted with the expectation maximisation (EM)
algorithm form the basis of several image segmentation methods
(Wells et al., 1996; Van Leemput et al., 1999b; Zhang et al., 2001;
Ashburner and Friston, 2005). These EM-based image segmentation
algorithms were shown to be among the most accurate and robust
(Klauschen et al., 2009). Wells et al. (1996) segments the brain into
three main tissue types (white matter, grey matter and cerebrospinal
fluid), modelling each class as normal distribution after log transfor-
mation to make the bias field additive, and assumes a Gaussian
distributed bias field model to correct for intensity non-uniformity.
Van Leemput et al. (1999b) added a spatial consistency model based
on a Markov Random Field (MRF), explicit modelling of the INU with
polynomial basis functions, and some prior information about the
brain anatomy to initialise and locally constrain the segmentation.
Ashburner and Friston (2005) combined image registration with
tissue classification, and bias field correction in an elegant unified
framework. Despite these advances, the problems of intensity non-
uniformity (INU), partial volume effect (PV), noise, image artefacts,
limited resolution and the great degree of natural variability, mean
that the local intensity difference is not enough to provide an accurate
segmentation of fine structures. These problems can lead to an
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incorrect delineation of problematic areas like PV-corrupted grey
matter folds, resulting in incorrect segmentations. The use of prior
knowledge may also cause problems in areas that have a high degree
of natural variability, as the prior information is representative of a
sample of a normal population and might not describe a particular
subject. The use of probabilistic priors becomes more problematic
when an atlas derived from a normal population is used to segment
patients with different anatomical or pathological characteristics.

The methods described above are global brain segmentation
methods, and are not specifically designed for the cortical layer. In
this paper we are interested specifically in cortical segmentation as an
input to a voxel-based cortical thickness algorithm. Cortical thickness
estimation methods can be broadly categorised into two types:
surface-based (Fischl and Dale, 2000; Kim et al., 2005) and voxel-
based methods (Jones et al., 2000; Hutton et al., 2008; Lohmann et al.,
2003; Acosta et al., 2009). Surface-based approaches fit a triangulated
mesh to the internal and external surface of the cerebral cortex. These
surface-based methods work in the continuous domain and can
achieve sub-voxel accuracy and robustness to image noise due to
mesh smoothness constraints. However, these methods are compu-
tationally very demanding (normally above 10 h), and often require
laboriousmanual interaction at several stages. Surface-basedmethods
can also produce biased results due to the implicit surface model and
topology constraints (MacDonald et al., 2000; Srivastava et al., 2003;
Kim et al., 2005; Thompson et al., 2005; Scott et al., 2009).

In contrast, voxel-based techniques that work directly in the 3D
voxel grid are much more computationally efficient but are more
prone to noise, PV and INU effects and topological errors. To locally
improve the detection of PV corrupted sulci, Han et al. (2004) and
Acosta et al. (2008) used the information derived from a distance
based cost function as a post processing step to try to solve this
problem. Hutton et al. (2008) used a layering method based on
mathematical morphology to detect deep sulci. However, these
approaches are post processing steps; they do not take the new
information into account to improve the segmentation. They are also
only concerned with improvements in the delineation of deep sulci
though the same problems can occur in thinned gyri due to white-
matter tissue loss, PV effects and structural readjustments.

In this paper we improve a probabilistic segmentation framework
with three novel modifications in order to reduce the influence of the
priors in an anatomically coherent way and improve the PV
estimation and the delineation of deep sulci and gyri (Fig. 1). Both
the solution of the EM algorithm and the information derived from a
geodesic distance function are used to locally modify the priors and
the weighting of theMRF, enabling the detection of small variations in
intensity while maintaining robustness to noise. An MRF energy
matrix derived from the anatomical properties of the brain is used to
add topological and shape knowledge to the MRF. Although full
topological correctness is not ensured, the proposed MRF energy
matrix improves the topological characteristics of the segmentation
and reduces the PV layer thickness, making it more in line with the
theoretical anatomical limit. The implicit modelling of PV and the
reduction of the PV layer thickness obviates the need for an empirical
Fig. 1. Segmentation of a BrainWeb T1-weighted dataset with 3% noise and 20% INU: left) B
improvements; right) proposed method.
threshold to distinguish between pure andmixed voxels and eases the
problem of achieving subvoxel accuracy when calculating the cortical
thickness.

Method

Intensity model and MRF regularisation

Starting from the image model developed by Van Leemput et al.
(1999b), let i∈ {1,2,⋯,n} index the n voxels of an image domain. For
coregistered multimodal datasets, intensities form feature vectors
yi∈Rm; for simplicity, we assume unimodal data with m=1. Let zi
denote the tissue type to which voxel i belongs. For K tissue types,
zi=ek for some k, 1≤k≤K where ek is a unit vector with the kth
component equal to one and all the other components equal to zero.

As in Van Leemput et al. (1999a)we represent an INU bias field as a
linear combination∑ j=1

J cjϕj of J smoothly varying basis functions ϕj

(x), where x denotes the spatial position and C={c1,c2,…,cj} denote
the bias field parameters. For mathematical convenience and similarly
to Garza-Jinich et al. (1999), Wells et al. (1996), Van Leemput et al.
(1999b) and Zhang et al. (2001), we assume that the intensity of the
voxels that belong to class k are normally distributed after log
transformation with mean μk and standard deviation σk grouped in
θk={μk,σk}. Let Φy={θ1,θ2,…,θK,C} represent the overall model
parameters. This log transformation of the data makes the multipli-
cative bias field additive, ameliorating problems with numerical
stability and enabling the existence of a linear least square solution for
the coefficient optimisation (Van Leemput et al., 1999b).

Defining Φy as the model parameters, the overall probability
density for yi is

f yi jΦy

� �
= ∑

k
f yi jzi = ek;Φy

� �
f zi = ekð Þ ð1Þ

with

f yi jzi = ek;Φy

� �
= Gσk

yi−μk−∑
j
cjϕj xið Þ

 !
ð2Þ

where Gσk
() denotes a zero-mean normal distribution with standard

deviation σk. Eq. (1) can be seen as a mixture of normal distributions.
Thus, by assuming statistical independence between voxels, the

overall probability density for the full image can be given by

f y jΦy

� �
= ∏

i
f yi jΦy

� �
ð3Þ

The Maximum Likelihood (ML) parameters for Φy can be found by
maximisation of f(y|Φy), giving the following update equations for the
model parameters:

μ m+1ð Þ
k =

∑n
i = 1 p

m+1ð Þ
ik yi−∑J

j = 1 c
mð Þ
j ϕj xið Þ

� �
∑n

i = 1 p
m+1ð Þ
ik

ð4Þ
rainWeb ground truth segmentation; centre) MAP with MRF but without the proposed
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σ m+1ð Þ
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m+1ð Þ
ik yi−μ m + 1ð Þ

k −∑J
j=1 c

mð Þ
j ϕj xið Þ

� �2
∑n

i = 1 p
m+1ð Þ
ik
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where

p m+1ð Þ
ik =

f yi jzi = ek;Φ
mð Þ
y

� �
f zi = ekð Þ

∑K
j = 1 f yi jzi = ej;Φ

mð Þ
y

� �
f zi = ej
� � ð6Þ

is a weight at the index i and class k and m denotes the iteration
number. The estimation of cj(m+1) is provided by Van Leemput et al.
(1999b).

Anatomical priors that incorporate probabilistic information
derived from a digital brain atlas are added to the model in order to
condition the posterior probabilities and indirectly condition the
model parameters. These atlases are brought into correspondence
using an affine registration (Ourselin et al., 2000) followed by a free-
form non-rigid registration algorithm (Modat et al., 2010)2 and are
introduced as a weight πik, integrated in Eq. (1) by making f(zi=ek)=
πik. Eqs. (4)–(6) remain valid and the initial values for pik0 , μk0 and σk

0

are given by their equations with cj=0 and f(yi|zi=ek,Φy)=1.
We assume skull stripped images and initially model the problem

with K=6 classes, each one with a corresponding digital atlas prior
probability for white matter (WM), cortical grey matter (cGM), deep
grey matter (dGM), external cerebrospinal fluid (eCSF), internal
cerebrospinal fluid (iCSF) and dura (DU) respectively at every voxel
position. These priors are derived from the ICBM Tissue Probabilistic
Atlas3 and are created by merging several priors from several areas
together. The images were skull stripped using a semi-automated
method (Freeborough et al., 1997) and dilated then filled to include
the ventricles and sulci.

The cortical and deep GM are modelled as separate classes to
enable thickness calculation over the cortical structures and to enable
the segmentation of a broader range of pulse sequences (e.g. new
quantitative MR sequences that look at iron concentration — R2 and
R2* maps (Gelman et al., 1999)), that have differing intensities for
dGM and cGM. The distinction between deep and cortical GM and
internal and external CSF also enables different topological and
connectivity properties to be assigned to each class. For example the
iCSF, i.e. the CSF within the ventricles, can be next to WM or dGM
voxels while the eCSF can only be next to cGM voxels. Finally, the dura
class is used to compensate for problematic skull stripping situations.

Unfortunately, the intensity model alone only works in relatively
ideal conditions because it classifies the voxels of the image based
solely on intensity and on the assumption that neighbouring voxels
are independent. This makes the segmentation very prone to noise
and image artefacts. Therefore, the model has to be mademore robust
to noise by augmenting the spatial tissue priors with additional prior
knowledge about topology and spatial smoothness. This can be
achieved by the using an MRFwhich assumes that the probability that
voxel i belongs to tissue k depends on its first-order 3D neighboursN i.
Using the mean field approximation as described in Zhang (1992) and
Van Leemput et al. (1999b), Eq. (6) becomes

p m+1ð Þ
ik =

f yi jzi = ek;Φ
m+1ð Þ
y

� �
f zi = ek jp mð Þ

N i
Φ mð Þ

z

� �
∑K

j = 1 f yi jzi = ek;Φ
m+1ð Þ
y

� �
f zi = ek jp mð Þ

N i
Φ mð Þ

z

� � ð7Þ
2 http://sourceforge.net/projects/niftyreg/.
3 Available from http://www.loni.ucla.edu/ICBM/ICBM_Probabilistic.htm.
with,

f zi = ek jp mð Þ
N i

Φ mð Þ
z

� �
=

πike
−βiUMRF ek jp mð Þ

N i
;Φ mð Þ

z

� �

∑K
j = 1πije

−βiUMRF ej jp mð Þ
N i

;Φ mð Þ
z
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where UMRF zi jpN i
;Φz

� �
is an energy function dependent on the

parameters Φz and, at this stage βi=1∀ i. Due to the possibility of
anisotropic voxel size and slice spacing, the interaction between
neighbours in each direction should be different. To take this property
into account, a connection strength factor s is introduced as

s = sx; sy; sz
n o

= 1
dx
; 1
dy
; 1
dz

n o
, where d is the real-world distance

between the centre of neighbouring voxels in each direction. This
approach leads to higher weights in the MRF when voxels are closer
together. Under this framework,

UMRF ek jpN i
;Φz

� �
= ∑

K

j=1
Gkj ∑

l∈N x
i

sxplj + ∑
l∈N y

i

sypl j + ∑
l∈N z

i

szpl j

 !
ð9Þ

where Φz={G, s}, with G as a K x K matrix with element Gkj

containing the transition energy between tissue k and j, and with
the MRF neighbourhood system defined as N i = N x

i ;N y
i ;N x

i

� �
=

in; is
� �

; ie; iw
� �

; i t ; ib
n on o

.
Although G can be estimated and updated using a mean field

theory based approximation, these estimates are only representative
of the global image statistics and not of the known brain anatomy.
Furthermore, the presence of noise can hamper the correct estimation
of the MRF energy matrix. Instead of estimating and updating G at
each iteration, we assume constant values based on anatomical
proprieties of the brain. The MRF class connectivity network is
represented in Fig. 2.The classes connected with arrows are
considered neighbouring classes, and the ones that are not connected
are considered distant classes. Even though this connectivity matrix is
representative of most anatomical neighbouring features, in areas like
the ventricle edges, a layer of GM will be assigned to the glial tissue
and the PV corrupted voxels in the interface between WM and CSF.
This will also happen in areas like the pons. These small anatomical
incoherences are related to the constant MRF energy matrix G. A
spatially varying MRF energy matrix could be used to spatially change
the neighbouring rules, however, this would greatly increase the
computational complexity. One should also bear in mind that the
neighbouring rules are not a hard constraint. Matrix G is defined as:

Gkj =
0 if class k is the same as j
α if class k is neighbouring j
γ if class k is distant from j

8<
: ð10Þ

with

0 ≤ α ≤ γ ð11Þ

where γ is a penalty factor for anatomically distant classes (e.g. eCSF
and WM) and α is a penalty factor for anatomically neighbouring
classes (e.g. eCSF and cGM). Under these assumptions, a bigger γ leads
to a lower probability that two voxels with anatomically distant labels
would be together and a bigger αwould increase the sharpness of the
transitions between neighbouring tissues, leading to more homoge-
neous but less detailed segmentations. The values for α and γ used in
this paper are 0.5 and 3 respectively.

Segmentation refinement

The model described above is only based on global parameters.
However, in some situations, due to lack of image contrast, intensity
non-uniformity, partial volume effect and noise, these global

http://sourceforge.net/projects/niftyreg/
http://www.loni.ucla.edu/ICBM/ICBM_Probabilistic.htm
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parameters are not enough to provide an accurate and topologically
aware segmentation of fine structures. Three refinement levels were
added to compensate for three main problems. First, a method was
created to iteratively relax the constraints embedded within the prior
information, compensating for problems in areas with high degree of
natural anatomical or pathological variability. Second, an explicit
modelling of PV was added and the MRF energy matrix was altered in
order to incorporate the new classes. This refinement step obviates
the need for an artificial threshold to separate pure and mixed voxels
and allows different MRF behaviour between pure and PV corrupted
areas. Finally, in order to add topological information to the
segmentation and to increase the detail of the segmentation, a
method to enhance the delineation of PV-corrupted grey matter folds
is performed in an iterative manner until convergence. The algor-
ithm's flowchart is shown in Fig. 3.

First level: prior probability relaxation
The EM algorithm is known to converge to a local maximum. In an

ML approach, the prior probability drives the EM algorithm to a
sensible solution, making it more robust to noise and INU. However, in
areas with high anatomical variability, prior driven ML approaches
can lead to an erroneous solution because the prior probability for the
expected class might be too close to 0 to allow the EM to converge to
the desired solution. It can also bias the segmentation towards the
template, possibly overshadowing some anatomical differences. We
propose a method where the prior probabilities are changed
iteratively at each convergence of the EM algorithm, in an anatom-
ically coherent way. As our model parameters become closer to the
true solution, we are able to locally relax our prior probability without
robustness to noise, INU and PV. This is analogous to coarse-to-fine
refinement of regularisation in image registration, for example the
gradual reduction of prior influence over the outer iterations in
DARTEL (Ashburner and Friston, 2009).

After the EM algorithm converges, the model parameters Φy are
closer to the true solution. However, due to the a priori spatial
constraints, the segmentation of patients with different anatomical
Fig. 2. MRF class connectivity network.
and structural characteristics might not converge to the correct
solution. In order to relax these constraints and make the segmen-
tation less dependant on these priors, one possible solution might be
to smooth the priors and consequently smooth these constraints.
However, because these relaxed priors would then be similar to
uninformative priors, the problem would become similar to a
Maximum Likelihood formulation, resulting in erroneous segmenta-
tions in patients with white matter hypo and hyper-intensities.
Instead, similarly to Seghier et al. (2008), patient specific priors are
generated using an ad hoc transformation over the posteriors. These
updated atlases cannot be considered as priors in a strict mathemat-
ical sense as they are derived from the data, however they behave as
such in this segmentation framework. The patient specific relaxed
anatomical atlases are generated as a combination of the current
estimates of the posteriors smoothed over anatomically neighbouring
classes as described by

πik =
pik + ∑K

j = 1Hkjτikpij

∑K
l = 1 pil + ∑K

j = 1Hljτikpij
� � ð12Þ

with

Hkj =
0 if class k is the same as j
Rf if class k is next to j
0 if class k is distant from j

8<
: ð13Þ

and

τik =
1

1 + E pik0:5

� � and 0 ≤ Rf ≤ 1: ð14Þ

Here, τik is inversely proportional to E pikð Þ, defined as the Euclidean
distance from point i to the closest hard classified voxel where
pikN0.5. Thus τik will be equal to 1 where pikN0.5 and will have a
decreasing value as the distance to the hard classified set increases.
The parameter Rf controls the amount of prior probability sharing and
H is a matrix containing the same anatomical neighbouring rules as
the MRF.

Second level: explicit PV modelling
In PV segmentation, it is common to assume that if two tissues mix

in a voxel, all mixing proportions are equally likely. The PV probability
can be seen as a number of mixed Gaussians in between the two pure
classes, corresponding to all the possible tissue proportions within a
voxel (Van Leemput et al., 2003). Ruan et al. (2000) showed that, for
brain imaging and for the signal-to-noise ratio and contrast-to-noise
ratio levels of the current MRI systems, the density of all these PV
Gaussian classes can be approximated by a single Gaussian with a
small risk (αb1 for D'Agostino–Pearson normality test). Under this
assumption, we use the values of pik, μk, σk to initialise an 8 class
model, that considers the existence of the 6 original classes (now
considered “pure”) and 2 mixed classes {WM, cGM, dGM, eCSF,
iCSF, DU, WM/GM, GM/CSF}. Even though every neighbouring class
should have a mixed class in between, for the sake of computational
complexity we limited the PV estimation to the cortical layer. Using
the same framework, the 8 classes are modelled as Gaussian mixtures
on the log transformed data. The prior probability, average and
variance for the 8 classes model are denoted as πik, μk and σk, where
the superscript * is used to indicate that they belong to the 8 class
model. While the 6 pure classes maintain their previous parameters,
the initial mean, standard deviation and priors for the 2 mixed classes
have to be estimated from the data. Under the assumption of Gaussian
distributed classes on log-transformed data, the initial mixed class
Gaussian parameters can be approximated by a mixel distribution
(Kitamoto and Takagi, 1999), with mean equal to the arithmetic

image of Fig.�2


Fig. 3. Algorithm flowchart.
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weighted average of its composing class parameters weighted by each
class's average fractional content. Thus,

μ j = k = Γ
j = k
μ j + 1−Γ

j = k

� �
μk ð15Þ

where Γj/k is the average of the fractional content (FC) between classes j
and k for all voxels with FC∈[0,1]. FC is defined as FC=(μj−yi)/(μj−μk)
and yi = yi−∑j cjϕj xið Þ is the image intensity corrected for INU. This is
equivalent to calculating the average mixing vector t=[α,1−α] in the
model proposed by Van Leemput et al. (2003) for all the PV containing
voxels and using that as aweighting factor. The initial value of themixed
class variance is estimated using the same mixel model. Assuming that
themixel variance is only dependent on his composing classes, the initial
estimate of the mixed class variance can then be estimated by

σ 2
j=k

� ��
= Γ2

j = k
σ 2
j + 1−Γ

j = k

� �2
σ 2
k ð16Þ

Van Leemput et al. (2003) observed that the extra parameters or
extra Gaussians that have to be introduced into the PV model hamper
the segmentation robustness because no prior is available for the PV
location. Our approach obviates this problem using information from
the 6 class model to generate a patient specific spatial atlas, used as an
ad hoc prior for the mixed classes. Due to the multiplicative nature of
the probabilities, the mixed class prior is generated from the
normalised geometric mean of its composing tissue distributions pij
and pij, normalised over all classes.

π�
i j = kð Þ =

ffiffiffiffiffiffiffiffiffiffiffi
pijpik

p
0:5

1
Πi

ð17Þ

withΠi as a normalisation constant over all classes (see Fig. 4). For the
non-mixed classes πik=pik/Πi. The normalised geometric mean
reflects how close pik and pij are from the situation where both
composing tissues have equal proportions, having the value of 1
where pik=pij=0.5 and 0 where either pik or pij are 0. One should
bear in mind though, that πi(j/k) is not an estimation of the amount of
partial volume, but just a geometrical transformation necessary to
create priors for themixed class. This new stage of the EM algorithm is
initialised with pik=πik.

Third level: MRF weighting for deep sulci and gyri delineation
As presented in Morris et al. (1996) and then discussed in Van

Leemput et al. (2003) the MRF minimises the boundary length
between tissues, discouraging classifications from accurately follow-
ing the highly convoluted shape of the human cortex, resulting in
incorrectly segmented structures such as deep sulci and gyri. Van
Leemput et al. (2003) suggested that a nonstationary MRF model,
with different parameters for uniform and convoluted regions, might
be an interesting solution to the MRF problem. This is exactly the
problem that we were trying to solve with the deep sulci and gyri
delineation. Fischl et al. (2002) used a spatially varying MRF prior in
order to increase the local label neighbourhood adaptiveness and
robustness. Even with non empirical estimation of warp regularisa-
tion parameters (Yeo et al., 2008), the creation of sharp priors for this
purpose is difficult due to the highly variable sulcal and gyral location.
Thus, this method still does not optimally address the MRF bias-
variance tradeoff. Instead, we propose to use a modified version of the
current posterior estimates in order to generate a patient specific sulci
and gyri atlas and use this information as an MRF strength weighting.
Even though it is an ad hoc modification, it enables a robust and sharp
localisation of these structures, improving the delineation of the
cortical folds. In a similar way to Acosta et al. (2008) and Han et al.
(2004), we use the information derived from a distance transform to
estimate the location of deep sulci and gyri and change the priors and
the strength of the MRF only in those locations. Cost functions based
on the norm of the gradient of the Euclidean distance transform, like
the one used in Acosta et al. (2008), have several drawbacks: Using a
Euclidean based distance implicitly assumes that both banks of the
sulci or gyri have the same thickness which is frequently not true; the
metric is non informative with regards to the current PV estimates; it
overlooks the fact that the norm of the gradient can be zero in both
local maxima or minima, whereas the areas of interest should always
be in local maxima. The cost function proposed by Han et al. (2004)
uses the estimated segmentation to add information about the sulci
position, however it still suffers from the same mathematical
drawbacks as it is also only based on the gradient of the distance. In
order to improve on these limitations, a previously published method
(Cardoso et al., 2010) was used to detect the sulci and gyri location.

The assumption that both banks of the sulci and gyri have the same
thickness can be removed by using the segmentation probabilities as a
speed function for an evolving level set. Fig. 5(a) shows the current
hard classification of GM, WM and CSF. In (b), the green area is the
initial estimate of the level set, initialised from the current hard WM
segmentation. This green surface evolves with a speed inversely
proportional to the WM probability. Fig. 5(c) shows the resulting
geodesic distance (time of arrival) for the evolving front. Both sides of
the evolving front will stop as theymeet, thereby defining the position
of the sulci. These locations are then fed-back into the segmentation
framework by locally weighting the MRF and changing the priors
(Cardoso et al., 2010). The same process evolving from the eCSF
towards the WM will detect the WM stalks.

The functions ωi
gyri, ωi

sulci, used to weight the MRF, are defined as
follows:

ωgyri
i = H −∇:∇Gi hWM;

ξ
ξ + pCSFð Þ

� �� �
H 1− j j∇Gi hWM ;

ξ
ξ + pCSFð Þ

� �
j j

� �� �
ð18Þ

ωsulci
i = H −∇:∇Gi hCSF ;

ξ
ξ + pWMð Þ

� �� �
H 1− j j∇Gi hCSF ;

ξ
ξ + pWMð Þ

� �
j j

� �� �
ð19Þ

where ∇.∇ is the Laplacian operator, Gi hk; sj
� �

is the geodesic
distance from point i to the closest member of the hard segmentation
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set hk=pikN0.5 given a speed function sj=ξ/(ξ+pj) and H is a
limiting function defined as,

H xð Þ =
1 x ≥ 1
x 1 N x N 0
0 x ≤ 0

8<
: ð20Þ

The limiting function is necessary due to the behaviour of the first and
second derivatives Gi in areas where the speed function is close to
zero. It also clips the negative component of ∇:∇G, removing the
influence of the local minima in the overall cost function. Further-
more, the clipping effect leads to an ω function that is sharp (close to
one voxel thick) enforcing a minimum opening. This was done by
design since one would expect a sulci or gyri with more than two
voxels thick to be already correctly classified. The constant ξ is set to
10−6. An example of G andω is shown in Fig. 6. Themain advantage of
a divergence based metric is the ability to distinguish between local
maxima and minima, improving the robustness of the sulci and gyri
detection. In order to introduce local adaptivity of the MRF, a local
weighting function is incorporated in Eq. (8) by making βi a spatially
varying value

βi = 1−ωsulci
i

� �
1−ωgyri

i

� �
ð21Þ

Normally βi corresponds to the overall MRF strength, however, in this
case, the overall MRF strength is directly introduced into the α and γ
penalty factors and βi only acts as a local weighting. The values of
ωsulci and ωgyri vary between [0,1] and have a value of 1 near the
centre of the sulci and the centre of the gyri respectively. In a similar
way, the value of βi lies between [0,1] and has a value of 0 near the
centre of the sulci and gyri.

The functions ωi
sulci and ωi

gyri are also used to iteratively change πik
to give more prior probability to the respective classes in areas where
deep sulci and gyri should exist.

For classes WM/GM, GM and GM/CSF, πik is updated as

π�
i WM = GMð Þ = pi WM=GMð Þ + ωgyri

i piGM
� �

ð22Þ

π�
i GMð Þ = piGMβi ð23Þ

π�
i GM = CSFð Þ = pi GM=CSFð Þ + ωsulci

i piGM
� �

ð24Þ

The values of πik are then normalized in order to sum to one. Both
the MRF's βi and the priors πi are updated every time the EM
converges, and a new EM starts. The algorithm finishes when the ratio
of likelihood change is less than a predefined ε, here set to 10−3.

Experiments and results

In this section, the proposed cortical segmentation algorithm was
evaluated in terms of its independent parts and its overall perfor-
mance. The first two experiments are intended to show the
contribution of each component to segmentation performance. The
proposed method was then evaluated globally against synthetic and
clinical data in order to access the accuracy of the PV estimation,
segmentation overlap and group separation and additionally, the
method was compared to three state of the art methods: FANTASM
[Pham (2002)], SPM8 [Ashburner and Friston (2005)] and FAST
[Zhang et al. (2001)]. The first method is a fuzzy c-means based
segmentation with bias field optimisation and noise tolerance. The
second method is an EM based iterative segmentation/registration
algorithm with bias correction and the last method is an EM based
segmentation, specifically chosen because it uses an MRF to add
spatial consistency. In all statistical tests the significance level was set
to pb10−3. Unless mentioned otherwise, the relaxation fraction
Rf=1.

Atlas dependency study

A segmentation algorithm that is fully independent from the
chosen atlas is expected to produce the same result when segmenting
a dataset with two different atlases. However, the use of different
atlases changes the prior probability and thus the final segmentation
results. In order to evaluate the segmentation dependency on the
atlases and the effect of the prior relaxation, a subset of 40 subjects, 20
patients diagnosedwith AD and 20 age- and gender-matched controls
were selected from the ADNI database. These datasets were
segmented using two different anatomical atlases and 4 different
relaxation factors Rf between 0 and 1, leading to 320 different
segmentations. The two different atlases were the ICBM452 and the
MNI305 Evans et al. (1993). The ICBM452 was created by non-rigidly
registering and averaging 452 normal MRI scans while the MNI305
was created by affinely registering 305 normal MRI scans. Both atlases
are representative of a normal population, with the main difference
being the registration method used to create them (see Fig. 7).

For each dataset and relaxation factor, a fuzzy Dice score (Crum et
al., 2006) was calculated between the cortical GM segmentations
obtained using the two atlases. The fuzzy Dice score assesses the
overlap and the PV differences between the segmentations without
the need for a threshold value. The results are shown in Fig. 8. When
the prior relaxation is applied to the control population there is almost
zero difference in the Dice score average and just a small decrease in
the standard deviation. However, when the prior relaxation is applied
to an AD population, there is an upward trend in the median Dice
score and a reduction in the interquartile difference when the
relaxation factor is increased, with the median Dice score going
from 0.906 to 0.924.

Thickness measurement evaluation

Voxel-based cortical thickness measurements are critically depen-
dent on the quality of the segmentation and its topology. As there is
no ground truth, a digital phantom was used in order to assess the
accuracy and precision of thickness measurements.

A very high resolution digital phantom containing finger and sheet
like collapsed sulci and gyri was created, simulating the complex and
convoluted structure of the cortex. The phantom's white matter is
homeotopic to a ball and the cortical layer has a Euclidean thickness of
8 mm between the inner and outer surface. The phantomwas created
on a 0.25 mm isotropic image resulting in 600×600×1000 voxels.
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Fig. 5. Sulci localisation using the proposed metric. (a) Current binary segmentation, (b) hard segmented set in green with the respective speed function sj in grey levels, (c) geodesic
distance (time of arrival), (d) the phantom in red overlaid with the detected sulci location in white.

1392 M.J. Cardoso et al. / NeuroImage 56 (2011) 1386–1397
The thickness of the high resolution phantom was calculated using a
Laplace equation based method (Acosta et al., 2009). Due to the
curved nature of the Laplace equation's streamline, the resulting
ground truth mean (standard deviation) thickness was 8.13 (0.15)
mm. The phantom was then Fourier-resampled to reduce the
resolution by a factor of 5 in each dimension. Two levels of complex
Gaussian noise were also added in the Fourier domain, resulting in
two low resolution Rician noise corrupted phantoms. To obtain
artificial anatomical priors for the segmentation step, the ground truth
segmented images were Gaussian filtered (σ=4mm) to simulate the
anatomical variability. The thickness was then measured on the
segmented low resolution phantoms using a Laplace equation based
method with a Eulerian–Lagrangian approach as described in Acosta
et al. (2009).

The results are shown in Fig. 9 and Table 1. When compared to the
ground truth, the proposed method yields a difference in the average
thickness of 0.14 mm and 0.48 mm for the low and high noise
phantoms respectively. The standard ML approach with the MRF but
without the proposed improvements yields a difference in average
thickness of 4.74 mm and 4.36 mm for the low and high noise
phantoms respectively. Finally, the standard ML approach without
either the MRF or the proposed improvements yields a difference in
average thickness of 3.98 mm and 1.22 mm for the low and high noise
phantoms respectively.
Segmentation evaluation

20 datasets were downloaded from the BrainWeb (http://www.
bic.mni.mcgill.ca/brainweb) MR image simulator. Each dataset
contained a simulated T1-weighted image and a corresponding
ground truth grey matter probabilistic atlas. The simulated data was
generated using a spoiled FLASH sequence with TR=22ms,
TE=9.2ms, α=30∘ and 1-mm isotropic voxel size with simulated
3% noise and 20% INU (Aubert-Broche et al., 2006). The 20 simulated
images were segmented using the proposed method, SPM8, FAST and
FANTASM, each one resulting in either a PV segmentation or its fuzzy
c-means equivalent. We focused our analysis on the GM class as most
of the differences between the methods will be in the cortical area.

For each segmentation, a normalised cumulative histogram of the
absolute difference between the segmentation and the ground truth
Fig. 6. Sulci and gyri enhancement: (left) expected segmentation; (centre) G hCSF; sWMð Þ
and G hWM; sCSFð Þ on the top and bottom respectively; (right)ωi

sulci and ai
gyri in green and

red respectively.
was calculated. Fig. 10(a) shows the mean and standard deviation as
error bars for the 20 datasets. The proposed method results in 94% of
voxels having an absolute difference of less than 0.1 compared to 87%
for FAST, 84% for SPM8 and 80% for FANTASM.

Fig. 10 also shows p-values calculated using a two-tailed unequal-
variance two-group t-tests between the normalised absolute differ-
ence histogram values of our method and each of the other two
methods. The proposed method achieves significantly better PV
estimation than FAST, SPM8 and FANTASM for all threshold values.

To evaluate the quality of the binarised and PV segmentations, the
binary and fuzzy Dice scores (Zijdenbos et al., 1994; Crum et al., 2006)
were calculated between the segmentations and the ground truth. The
binary Dice score was calculated in order to understand the behaviour
of the overlap metric with regards to the threshold level. Here, the
binary Dice score was estimated at several PV thresholds and two-
tailed unequal-variance two-group t-tests were calculated between
the proposed method, FAST, SPM and FANTASM. Fig. 10(b) shows the
average Dice score and standard deviation as error bars for the 20
datasets and the results of the statistical test. For all threshold values,
the proposed method achieved significantly higher average Dice
scores than FAST, SPM and FANTASM. The fuzzy Dice score was
calculated in order to give an overall measure of unthresholded
segmentation alignment. Here, the average fuzzy Dice score for the 20
datasets was 0.959, 0.941, 0.929 and 0.927 for the proposed method,
FAST, SPM and FANTASM respectively.

ADNI data study

To further investigate if the proposed refinements are useful when
extracting measurements from the segmentation, cortical thickness
was calculated on ADNI data in order to evaluate group separation
between controls and Alzheimer's Disease (AD) diagnosed patients.
This metric was chosen because it is dependent on both the accuracy
and the topology of the segmentation. A subset of the ADNI database
was used in this study. From the full database, 88 AD diagnosed
patients and 82 age- and gender-matched controls were selected,
with T1-weighted volumetric images acquired on 1.5 T units using 3D
MPRAGE or equivalent protocols with varying resolutions (typically
1.25×1.25×1.2 mm).

All 170 datasets were segmented using the proposed method and
the two best methods with regards to the fuzzy Dice score from the
previous section — SPM8's standard unified segmentation and FAST.
Cortical thickness was then calculated using a Laplace equation based
algorithm (Acosta et al., 2009). This method requires the user to select
a threshold to classify a voxel as pure (normally 0.95) in order to solve
the Laplace equation. This threshold in normally set high and not at
the optimum Dice score in order increase the level of detail in the
obscured sulci and gyri area, resulting in less biased thickness
measurements. As both FAST and the proposed method use an MRF
to add spatial consistency, a voxel was considered pure when pGM=1.
However, for SPM8, a voxel was considered pure for pGMN0.95 to
compensate for the lack of MRF. The same transformation used tomap
the priors to the individual subjects was used to propagate the AAL
template (Tzourio-Mazoyer et al., 2002), and the average thickness at

http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
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Fig. 8. (Top) The fuzzy Dice scores between the cortical GM segmentations using different
atlas and relaxation factors. Segmentation example with RelaxationFactor = 0 (bottom
left) and RelaxationFactor = 1 (bottom right). Notice the improved segmentation results
in the ventricle area.
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the central Laplacial isoline was calculated for 52 AAL cortical regions.
Two-tailed unequal-variance two-group t-tests between patients and
controls over each AAL region were calculated. In order to visualise
the results (Fig. 11), log transformed p-values were propagated back
to the corresponding areas on a normal population smoothed 3D
model with positive and negative values associated with thinning and
thickening respectively. The p-values were thresholded at p=10−3.
The expected areas affected in AD patients are the middle and inferior
temporal, superior and inferior parietal and middle frontal gyrus
bilaterally. Using the proposed method as segmentation, all of these
areas show statistically significant differences in thickness with
pb10−5 in the middle temporal and parietal regions and pb10−3 in
the middle frontal gyrus region. Although most of the same expected
areas are statistically significant when using FAST's segmentation, the
middle frontal gyrus area does not show statistically significant
differences. Also, only the left middle and inferior temporal regions
and right parietal region show statistically significant differences in
thickness with pb10−5 leading to a noticeable lack of symmetry
between hemispheres. Using SPM, there is an overall decrease of
statistical significance throughout the brain, with only the middle and
inferior temporal areas above the pb10−3 threshold.

Computation time

The total computation time is in line with current state of the art
segmentation methods. The segmentation step takes on average less
than 2 min, with an overhead of less than 3 min for the registration of
the priors since the registration is fairly broad, resulting in an average
total time below 6 min per dataset.

Discussion

In this work we have developed a segmentationmethod specifically
designed for the cerebral cortex. We evaluated the robustness and
accuracy of the segmentation and PV estimation and the ability to
directly use the segmentation for cortical thickness estimation on
synthetic and real data.

In Atlas dependency study section, a study testing for atlas
independence was performed on real data from the ADNI database
in order to evaluate the efficacy of the prior relaxation. When
segmenting the datasets using two normal population atlases, an
algorithm that is less dependent on the prior probability would
produce two closely matching segmentations. As expected, the results
show that when priors derived from a control population are applied
to a control group, there is no change in the average dice score, since
the atlas is representative of that specific population. However, when
a control population atlas is applied to an AD population, an increase
of the relaxation factor has a positive effect on the segmentation
overlap. Although the difference is not significant, there is an upward
trend on the average and a decrease on the standard deviation of the
Dice score distributions. This shows that after prior relaxation, the
Fig. 7. (Left) The MNI305 atlas and (right) the ICBM452.

Fig. 9. Phantom segmentation and thickness results: a) 3D model of the phantom,
b) high noise phantom, c) true labels and GM prior used, d) ML without MRF, e) ML
with MRF, f) proposed method. The red arrows point to the presence of noise and
lack of detail causing wrong thickness measurements. The green arrows point to
the detected deep gyri.
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segmentations become more similar, and thus, less dependent on the
priors. Visual assessment shows a noticeably better segmentation in
the ventricle area of the AD patients, mainly when the ventricles are
expanded (see Fig. 8). This is caused by the spatial ambiguity when
the ventricle edge is close to the cortical GM. A higher relaxation
factor also produces a visually better temporal lobe segmentation
when these are highly atrophied. Overall, the extra knowledge
introduced in the prior relaxation step by the neighbouring tissue
structure leads to reduced bias, resulting in less ambiguity regarding
miss-segmented areas due to different anatomy.

A second experiment showed that the proposed improvements
can help to accurately extract meaningful thickness measurements
from the segmentation. Using a digital phantom created specifically
for this purpose, the average thickness was measured with the
proposedmethod, without the refinement steps (MAPwithMRF), and
just using the intensity component of the model (MAP without MRF).
The results are displayed in Table 1. Consistent results were found for
both low and high noise cases. An unweighted MRF causes an
overestimation of the thickness and standard deviation due to the lack
of detail in highly convolute and PV corrupted areas.Without any type
of MRF, the thickness measurements are much more prone to noise,
leading to a number of short paths to mis-segmented voxels and
consequently an artificial increase of the standard deviation of the
measurement. Oddly, when the noise level is high, the presence of
short paths combined with the lack of detail leads to a more accurate
estimate of the average thickness. However, because the standard
deviation is much higher than expected, this measurement lacks
precision.

In Segmentation evaluation section, the Dice score and PV
estimation accuracy were evaluated using BrainWeb data. The
proposed method and FAST both showed higher PV estimation
accuracy than SPM8 and FANTASM. This is most probably due to the
MRF smoothing properties that make the PV estimation more robust.
Also, the MRF will ensure a more robust assignment of voxels
surrounded by only one tissue class, thus making the posterior
probabilities more closely resemble partial volume fractions. The
small Dice score improvement of the proposed method can be
explained by the adaptive nature of the MRF in areas close to sulci and
gyri, increasing the level of detail whilst maintaining robustness to
noise. On the other hand, due to the lack of adaptivity in FAST's MRF,
some of the details are lost, leading to worse PV estimation when
compared to the proposed method. SPM8 underperforms both FAST
and the proposedmethod with regards to PV estimation accuracy. We
speculate that for cortical segmentation specifically, the advantages of
having an iterative segmentation/registration procedure may not
compensate for the lack of MRF. Finally, even though FANTASM is
tolerant to noise, it does notmodel noise implicitly. Thismight explain
the small underperformance with regards to Dice score of FANTASM
over the other methods for low PV differences. The difference
between FANTASM and the proposed method becomes smaller for
difference values above 0.3.

The proposed method achieved significantly higher Dice scores
when compared to FAST, SPM and FANTASM.We hypothesise that the
improved overlap between structures is probably due to the enhanced
delineation of the sulci and gyri and implicit PV modelling. Also
Table 1
Table contains the thickness average and standard deviation for the three methods and
two levels of noise.

Low noise High noise

Mean (std) mm Mean (std) mm

ML without MRF 12.11(2.55) 9.35(3.10)
ML with MRF 12.87(2.98) 12.48(2.82)
Proposed method 8.27(0.32) 8.61(0.91)
because these improvements are iteratively fed back into the
segmentation, there is a gradual reduction of the PV related parameter
bias. One might also conclude that SPM outperforms FAST in terms of
Dice score due to the iterative segmentation/registration procedure,
improving the overlap of the segmented structures. Another expla-
nation might be the lack of spatial adaptiveness in FAST's MRF, as the
MRF tends to minimize the boundary length between tissues which
discourages classifications from accurately following the highly
convoluted shape of the human cortex. For the proposed method,
this problem is reduced as the MRF is spatially adaptive.

In the fourth experiment, using ADNI data, we compared three
segmentation methods in terms of group separation between control
subjects and Alzheimer's Disease (AD) diagnosed patients. Using the
proposed segmentation we see a statistically significant, clinically-
expected pattern of difference in cortical thickness between AD
patients and controls. Although most of the same expected areas are
also statistically significant when using FAST's segmentation, there is a
less symmetric pattern of atrophy and some of the expected areas (i.e.
right and left middle frontal gyrus) do not achieve statistical
significance. This is probably caused by the lack of detail due to the
use of a stationary MRF. When using SPM, there is a noticeable overall
decrease of statistical significance throughout the brain, with only the
middle and inferior temporal areas achieving statistical significance.
This is again caused by the lack of detail, mostly due to the need for an
artificial threshold to separate pure from non-pure voxels. This shows
how important the presence of an MRF is when segmenting the
cortex. Throughout the literature, the vast majority of clinical studies
have been carried out using surface-based cortical thickness techni-
ques (Lerch et al., 2005; Du et al., 2007; Lehmann et al., in press; Rosas
et al., 2008; Nesvåg et al., 2008; Salat et al., 2004) with a few using
voxel-based techniques (Querbes et al., 2009). Both methods depend
on the segmentation step; however, for surface-based techniques, the
segmentation is only used as an initialisation for a surface mesh. The
mesh is typically deformed to fit the cortical GM/WM boundary and
expanded outwards to the GM/CSF boundary. This gives surface-based
methods sub-voxel accuracy and robustness to noise. However, due to
smoothness and topology constraints, it is difficult to correctly fit the
surface to very complex shapes thus requiring laborious manual
corrections. Additionally, the implicit surface modelling can lead to
bias in the thickness measurements (MacDonald et al., 2000; Kim
et al., 2005). Conversely, voxel-based techniques can potentially cope
with any topology or shape because they work on the 3D voxel grid.
However, these techniques were never specifically tailored for the
highly convoluted shape of the cortex. The proposed segmentation
method improves the quality and topology of the cortical segmenta-
tion and enhances the detection of PV corrupted sulci and gyri,
enabling the direct use of the segmentation for cortical thickness as
opposed to requiring post-processing techniques (Hutton et al., 2008;
Lohmann et al., 2003; Acosta et al., 2009).

In this paper, the focus has been on accurate segmentation
specifically for the cortex and how can that directly influence the
thickness measurements. We have not compared cortical thickness
results with other cortical thickness algorithms. We consider that the
comparison with other cortical thickness estimation methods is
necessary in order to validate the segmentation method for cortical
thickness estimation. However, such a comparison requires voxel-
based and surface-based measurements to be brought together in a
common space, which is difficult to achieve without bias towards
either approach. For this reason, we believe that comparison to
surface-based methods is out of the scope of the paper. Future work
will compare voxel-, registration- and surface-based cortical thickness
estimation techniques.

On a methodological side, future work will investigate the use of
Variational Bayes inference and hyperparameter optimisation in a
similar way to (Woolrich and Behrens, 2006), enabling an unification
of the segmentation framework. Furthermore, we would also like to
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Fig. 10. (a) Normalised cumulative histogram of the absolute difference between the segmentation and the ground truth; (b) Dice score between the segmentation and the ground
truth at several threshold values.
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explore the use of topological constrains on the space of solutions in
order to obtain a topologically correct segmentation of each structure.

Conclusions

We have presented a segmentation algorithm tailored for
applications such as cortical thickness estimation. The main contribu-
tions of this work lie in three refinement steps. First we developed a
method that iteratively relaxes and modifies the prior information in
an anatomically coherent way to reduce the bias towards the priors.
We then modelled the PV effect explicitly and adapted anMRF energy
to reflect the inclusion of these new classes. Finally, we introduced a
new distance based cost function to add information about the
location of PV corrupted grey matter folds and integrated that
information into the segmentation framework.

The method achieves more accurate and precise delineation of
collapsed grey matter folds without losing robustness to noise and
intensity inhomogeneity. Even though some of these refinement steps
can be considered as ad-hoc, they are integrated within a single
framework. Quantitative analysis on 20 BrainWeb datasets showed
statistically significant improvements in the accuracy of the PV
estimation and in the Dice score when compared to three state of the
art techniques. Cortical thickness measurements on a new digital
phantom demonstrated improvements in the accuracy and robust-
ness of the thickness calculation using the proposed method, when
compared to other methods. Results on ADNI data showed clinically-
expected patterns of cortical thinning between AD patients and
controls using the proposed method, with highly significant group
differences in several expected regions.
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Fig. 11. Statistical significance of cortical thickness between AD patients and controls: colour coded p-values are represented in logarithmic scale with positive and negative values
associated with thinning and thickening respectively.
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Appendix A. Clinical data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database.4 The
ADNI was launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharma-
ceutical companies and non-profit organisations, as a $60 million, 5-
year public–private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and the
progression of mild cognitive impairment (MCI) and early Alzhei-
mer's disease (AD). Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials. The Principal Investigator of
this initiative is Michael W. Weiner, MD, VA Medical Center and
University of California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions
4 http://www.loni.ucla.edu/ADNI.
and private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55 to 90, to participate in the research —

approximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed for 3 years
and 200 people with early AD to be followed for 2 years. For up-to-
date information see http://www.adni-info.org.
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