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Abstract
NeAT is a modular, flexible and user-friendly neuroimaging analysis toolbox for modeling linear and nonlinear effects over-
coming the limitations of the standard neuroimaging methods which are solely based on linear models. NeAT provides a wide
range of statistical and machine learning non-linear methods for model estimation, several metrics based on curve fitting and
complexity for model inference and a graphical user interface (GUI) for visualization of results.We illustrate its usefulness on two
study cases where non-linear effects have been previously established. Firstly, we study the nonlinear effects of Alzheimer’s
disease on brain morphology (volume and cortical thickness). Secondly, we analyze the effect of the apolipoprotein APOE-ε4
genotype on brain aging and its interaction with age. NeAT is fully documented and publicly distributed at https://imatge-upc.
github.io/neat-tool/.
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Introduction

The increase of computational power and advances in neuro-
imaging acquisition that enable faster scans and provide mul-
tiple image contrasts and modalities has motivated the

development of complex modeling techniques for imaging
data. An armoury of neuroimaging analysis tools is available
to the neuroscientific community, whose ultimate goal is to
conduct statistical tests to identify significant effects in the
images without any a priori hypothesis on the location or

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a Group/
Institutional Author.
Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI contrib-
uted to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: http://adni.loni.ucla.edu/
wpcontent/uploads/how_to_apply/ADN I_Acknowledgement_List.pdf

* Verónica Vilaplana
veronica.vilaplana@upc.edu

* Juan Domingo Gispert
jdgispert@barcelonabeta.org

1 Department of Signal Theory and Communications, Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain

2 QMENTA, Barcelona, Spain
3 Vilynx, Barcelona, Spain
4 BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall

Foundation, Barcelona, Spain

5 Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital
Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer
(IDIBAPS), Barcelona, Spain

6 CIBER Fragilidad y Envejecimiento Saludable (CIBERFES),
Madrid, Spain

7 Universitat Pompeu Fabra, Barcelona, Spain

8 IMIM (Hospital del Mar Medical Research Institute),
Barcelona, Spain

9 Centro de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain

https://doi.org/10.1007/s12021-020-09456-w

Published online: 24 March 2020

Neuroinformatics (2020) 18:517–530

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-020-09456-w&domain=pdf
https://imatge-upc.github.io/neat-tool/
https://imatge-upc.github.io/neat-tool/
http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADN
http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADN
mailto:veronica.vilaplana@upc.edu
mailto:jdgispert@barcelonabeta.org


extent of these effects. In the literature, analysis at different
levels of brain morphometry are found, involving voxel-based
(Penny et al. 2011), surface-based (Fischl 2012) or boundary-
based analysis (Freeborough and Fox 1997).

Irrespective of their particular characteristics, the vast ma-
jority of them perform statistical inference upon different
implementations of the General Linear Model (GLM). GLM
has been shown to be flexible enough for conducting most of
the typical statistical analysis (Friston et al. 1994). However, it
has a rather limited capability to model nonlinear effects. In
this regard, it is worth noting that linear models have been
reported not to be sufficient to fully describe cerebral structur-
al variation with cognitive decline (Samtani et al. 2012;
Mendiondo et al. 2000) or associated to pathological progres-
sion in neurodegenerative disease (Villemagne et al. 2013;
Insel et al. 2017; Insel et al. 2015; Sabuncu et al. 2011;
Schuff et al. 2012; Bateman et al. 2012; Gispert et al. 2015).
Moreover, many relevant confounders in neuroimaging are
shown to be better described by nonlinear processes, such as
the impact of aging on cognitive decline (Kornak et al. 2018)
or gray-matter volume (Fjell et al. 2013). Under the GLM, the
modeling of non-linear effects is limited to using polynomial
expansion or transforming the variables of interest to linearize
their effects. However, such approximations are suboptimal
(Fjell et al. 2010; Vinke et al. 2018; Ziegler et al. 2012). On
the other hand, a wide range of non-linear modeling methods
have been developed but specific implementations that enable
the unbiased analysis of neuroimaging data are lacking
(Breeze et al. 2012).

In this work, we describe a new analytic toolbox which is
able to model nonlinear effects on brain scansat the voxel-
wise level as well as for surface data. We pool together several
nonlinear parametric models, provide different model compar-
ison strategies and implement a graphical user interface (GUI)
for visualization purposes. In the following sections we briefly
describe the main functionalities of the toolbox and illustrate
its features with two studies: (i) nonlinear atrophy patterns
across the Alzheimer’s disease continuum defined as a func-
tion of cerebrospinal fluid (CSF) biomarkers (Gispert et al.
2015) and (ii) the effects of apolipoprotein E4 genotype on
brain aging, a risk factor to develop sporadic Alzheimer’s
disease (AD) (Cacciaglia et al. 2018).

Material and Methods

A general overview of the tool operatibility and its options and
functionalities are introduced in this section. A detailed math-
ematical description of the curve fitting methods and statistical
inference metrics is provided, even though the reader is en-
couraged to read the original sources for a more deep under-
standing of such methods. More instructions on how to

download and use the tool can be found in https://imatge-
upc.github.io/neat-tool/.

NeAT Overview

The NeAT toolbox is a modular and easy-to-use toolbox for
the analysis of non-linear effects on medical brain images.
Several curve fitting methods are used to model the relation-
ship between certain factors (e.g: age, disease phenotype, ge-
notype) and pre-processed scans. Any imagemodality that has
been spatially normalized and is ready for voxelwise analysis
can be submitted to NeAT (e.g: Normalized VBM modulated
images (Ashburner and Friston 2000) or FDG PET scans
(Frackowiak et al. 1980)), as well as cortical thickness data
resulting from Freesurfer processing (Fischl 2012). Those
methods may include multiple covariates (factors) that can
be split into confounder factors and variables of interest by
using contrasts. A simple preprocessing step allows to orthog-
onalize, orthonormalize or simply normalize all covariates. A
wide range of metrics can be used to assess the goodness of fit
of each model. Statistical inference also allows the use of
contrasts on modeling factors. The embedded 3D visualiza-
tion GUI provides a unified and interactive environment to
visualize both 3D statistical inference maps and the estimated
curve at each voxel.

A high-level overview of the toolbox pipeline is provided
in Fig. 1. It consists of several interdependent modules con-
nected through a Processing library that performs serialization
between functionalities. Each other module (Curve Fitting, Fit
Evaluation and Visualization) is designed separately using
abstract classes that facilitate both continuous adaptation and
possible extensions of the toolbox. A description of each
module/ functionality is detailed in the following sections.

Model Estimation

The model estimation step (Curve Fitting module) is in charge
of finding a parametric function of several explanatory vari-
ables that best fits the observations in terms of maximizing a
quality metric or minimizing a loss function. Different speci-
fication of the latter two give rise to different models or fitters.
To analyze the basics of each fitter, we consider the regression
model

Y ¼ f Xð Þ þ E

where Y ¼ y1; y2;…; yN½ �∈RLxN are the N dependent observa-

tions (e.g. number of voxels), X ¼ x1; x2;…; xM½ �∈RLxM are

the M independent factors constant for all observations, f Xð Þ
∈RLxN is the fitted curve and E ¼ e1; e2;…; eN½ �∈RLxN is the
estimation noise. Each input variable (yi, x1,…, xM) is an L-
dimensional vector corresponding to different measures (e.g.
different subjects) of the same magnitude. Each covariate can
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be independently entered and the overall estimated model is
found by adding up the contribution of each one:

by ¼ ∑M
m¼1 f m xmð Þ

being fm(xm) the associated curve fitting method for each co-
variate. The available methods.

are detailed below. All observations are processed in
chunks and fitted independently.

(yi = fi(X) + ei, where i represents each observation). Data
processing (normalization and orthogonalization) techniques
are optionally prepended to the overall analysis.

In this toolbox we consider the general framework that
splits explanatory variables into.

variables of interest (predictor variables) and confounder
factors (corrector variables) as explained in Henson and Penny
(2003). The goal of this scheme is to deduct confounder ef-
fects on the dependent variables to isolate the main effects of
the variables of interest we want to analyze. This paradigm is
widely used in neuroimaging: for example, using age
(corrector).

as confounder variable when analyzing the effect of
Alzheimer’s disease (predictor).

on hippocampus volume (observation or dependent vari-
able). Concretely, we split the initial space S, defined by all
explanatory variables X, into two subspaces: predictor (SP)
and corrector (SC) subspaces of dimensionsMC andMP, respec-
tively (M =MC +MP). The predictor subspace is defined using
a contrast matrix C, described by XP =X ·C, and its model is

defined as bYP ¼ f P X Pð Þ. On the other hand, the corrector

subspace is built using a null-contrast matrix (orthogonal to
the contrast matrix), C0 = I − C · C#, where C# is the
pseudoinverse of C. Hence, the corrector subspace is described

by XC =XC0, and its model is defined as bYC ¼ f C X Cð Þ. Even
though C and C0 are orthogonal, both subspaces are orthogonal
only if the columns of X are orthogonal.

We model the contribution of each subspace on the overall

effect using an additive model Y ¼ bYP þ bYC þ E , fitting first
the corrector model (Y = fC(XC) +EC ) on the observations and
then the predictor model (EC = fP(XP) + E) on the residuals.
Since the fitting is done separately, both corrector and predictor
functions, fC and fP can be any nonlinear model implemented in
the toolbox. Note that each corrector and predictor variables can
be modeled using different curve fitting methods:

bY ¼ bYC þ bYP ¼ f C X Cð Þ þ f P X Pð Þ
¼ ∑MC

c¼1 f c xcð Þ þ ∑MP
p¼1 f p xp

� �

Baseline curve fitting methods implemented in the toolbox
are: (i) GLM, (ii) GAM and (iii) SVR. Each subspace (predictor
and corrector) can be modeled by any of these techniques.While
the first two methods model each dimension independently, the
third allows for interactions between different dimensions.

General Linear Model: GLM

The General LinearModel (Christensen 2011) is the extension
of multiple regression models to the case of multiple

Fig. 1 Toolbox pipeline. The
Processing module govern the
interaction between all other
libraries that will be explained
through the manuscript
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observations. The effect of each factor is independently ana-
lyzed without accounting for interactions between them. The
model reads as follows:

y ¼ f Xð Þ þ e ¼ Xβ þ e;

where β are the model parameters and e is the error of the
model. GLM optimization involves minimizing the mean

squared error ek k22 between data points and the fitted curve.
Nonlinear relationships can be modeled in the GLM frame-
work by using a polynomial basis expansion of each regressor.
The total number of degrees of freedom is the number of
covariates in the analysis (df =M), including each basis ex-
pansion if used.

Generalized Additive Model: GAM

A Generalized Additive Model (Hastie 2017) is an extension
of additive models (AM) to the case of multiple observations.
In GAM, each observation depends on unknown smooth
functions of each covariate:

y ¼ f Xð Þ þ e ¼ f 1 x1ð Þ þ f 2 x2ð Þ þ…þ f M xMð Þ þ e:

In the context of this toolbox, fi refer to parametric smooth
functions, called smoothers, that are iteratively estimated
using the backfitting algorithm (Breiman and Friedman

1985) to minimize the mean squared error ek k22. If linear or
polynomial smoothers are used, GAM is equivalent to GLM.
Other smoothers available are B-splines or natural splines,
implemented using the Patsy library (https://patsy.
readthedocs.io/en/latest/). The total number of degrees of
freedom is the sum of degrees of freedom of each smoother
df = df1 + df2 +… + dfM. For a linear smoother, the number of
degrees of freedom is one (dfi = 1), for polynomial smoother,
the number of degrees of freedom is the polynomial
order (dfi = d) and for splines-based smoothers, the number
of degrees of freedom is an input parameter set by the user.

Support Vector Regression: SVR

Support Vector Regression (Drucker et al. 1997) is a multivar-
iate method that inherently accounts for interactions between
covariates unlike GLM or GAM, that only account for the
additive effect between covariates. In SVR the goal is to find
a function f(X) that has at most ε-deviation from the observa-
tions and is as smooth as possible. However, since the ε-de-
viation constraint might not be feasible, a hyperparameter C
controls the balance between smoothness and errors greater
than ε. SVR is a linear method in the parameters with a closed
form solution. To introduce nonlinearities, SVR uses the ker-
nel trick which implicitly transforms the inputs to a higher
dimensional feature space by only specifying their inner prod-
uct, i.e. the kernel function k(xi, xj) = <φ(xi), φ(xj)>, where xi

and xj are two feature vectors from different observations.
Once estimated, the overall model is parameterized using pa-
rameters β as follows

y ¼ f Xð Þ þ e ¼ ∑L−1
l¼0k xl; x

� �
βl þ e;

where xl are all data points used to fit the model and x is any
feature vector. Two kernel functions are implemented in this
toolbox using the scikit-learn library (Pedregosa, 2011): poly-
nomial and the radial basis function (RBF) defined as k(xl,
x) = exp ( − γ‖ xl − x‖2, where γ is a hyperparameter defining
the width of the kernel. The total number of degrees of free-
dom depends on the kernel used and it is based on the solution
proposed in Dinuzzo et al. (2007).

Hyperparameter Search SVR relies on the election of several
hyperparameters: εand C for the general solution and kernel
related hyperparameters, such as γin RBF kernels. The
hyperparameter values can be automatically determined by a
grid search on the hyperparameter space (Hsu et al. 2003).
This method consists of several steps: (i) sample H different
value combinations from the hyperparameter space using one
of the sampling strategies provided in this toolbox: random or
deterministic sampling with linear or logarithmic scale, (ii) fit
a subset Gof the observations on all H hyperparameter com-
binations and (iii) select the hyperparameter combination that
minimizes the metric of interest, ti, on the subset G (T =∑i ∈

Gti). The available metrics are: (i) minimum squared error, (ii)
F-test goodness of fit and (iii) Mallows’s Cp statistic (James
et al. 2013). To avoid selection bias, this procedure is iterated
varying the selected subset G of observations. Larger subset
sizes provide better hyperparameter estimations but increasing
time and memory requirements, due to the intensive search
performed. However, we allow parallelization of the second
step and further iterations of the algorithm. To account for the
great between subject variability of medical images the
voxelwise metric values are weighted by the inverse of the
variance (1/σi) of each observation

bti ¼ ti=σi; bT ¼ ∑i∈Gbti
� �

. Moreover, due to the vast amount

of background voxels, only those with minimum variance
(σmin) can be included in the subset of observations.

Statistical Inference

Statistical maps evaluating the goodness of fit and penalizing
by the complexity of the model can be computed for each of
the fitting methods presented in section 2.2. To this purpose,
several metrics are available in the tool:

& Minimum squared error (MSE) and Coefficient of de-
termination (R2): these two metrics evaluate the predic-
tive power of the model without penalizing for its
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complexity.

MSE ¼ y− f Xð Þk k22 ð1Þ

R2 ¼ 1−
SSres
SSy

; SSres ¼ y− f Xð Þk k22; SSy

¼ y−yk k22 ð2Þ

where y ¼ 1
N ∑

N−1
i¼0 y

i is the mean of the observations.

& Akaike Information Criterion (AIC): the AIC criteria
(Sakamoto et al. 1986) is founded on information theory.
It is useful for model comparison as it provides a trade-off
between the quality or goodness of fit and the complexity
of the model, which is proportional to the number of pa-
rameters.

AIC ¼ 2k−2LLR; LLR

¼ −
N
2

log 2π �MSEð Þ þ 1ð Þ ð3Þ

where k is the total number of parameters and LLR is the log
likelihood ratio.

& F-test: the F-test is a statistical test following an F-
distribution under its null-hypothesis. In the context of this
toolbox, it evaluates whether the variance of the full model
(correctors and predictors) is significantly lower than the
variance of the restricted model (only correctors). Under
the null-hypothesis, the full-model does not provide any
significantly better fit than the restricted model, resulting
an F-statistic with (dffull, dfrestricted) degrees of freedom
and the corresponding p value. Rejection of the null hy-
pothesis is based upon the p value.

f score ¼
SSres−SSfull

SSfull

N−df full
df full−df restricted

pvalue ¼ 1−F f score; df res; df full
� �

where SSres ¼ y− f c X cð Þk k22,
SSfull ¼ y− f C X Cð Þ− f P X Pð Þk k22, and F(x, d1, d2)is the F-
distribution.

& Penalized Residual Sum of Squares (PRSS), Variance-
Normalized PRSS (VNPRSS): PRSS is introduced in this
toolbox as another evaluation metric that accounts for the

goodness of fit and penalizes the model complexity.
However, differently from other metrics, complexity is not
computed with the degrees of freedom but using the curve
shape itself. Hence, a complex model such as SVR with
Gaussian kernel that provides a linear curve will penalize as
much as the GLM. VNPRSS is an adaptation of PRSS for
data with high-variability, like medical images, and penalizes
each error term by the inverse of the observations variance.

PRSS ¼ MSE þ γ � cabruptness; cabruptness

¼ ∫ f 00 Xð Þ dx ð4Þ

VNPRSS ¼ PRSS
cvariance

; cvariance ¼ f Xð Þ−yk k22 ð5Þ

Post-hoc Analysis

The NeAT toolbox provides several functionalities for post-
hoc analysis of the generated curves and statistical maps.
Different model comparison strategies and a curve clustering
algorithm are presented in what follows.

Model Comparison

In order to compare L statistical maps generated using differ-
ent fitting models we combine them into a single statistical
map providing different information:

& Diff-map (L = 2): it provides the difference between
maps, being useful for quantitative detection of differ-
ences between L = 2 fitting models.

& ABSdiff-map (L = 2): it provides the absolute difference
between maps, being useful for quantitative detection of
differences between L = 2 fitting models.

& SE-map (L = 2): it provides the squared difference be-
tween maps, being useful for quantitative detection of dif-
ferences between L = 2 fitting models.

& RGB-map (L = 3): it places each map in a different color
channel. It might be useful to compare the intersection of
several fitting models showing agreement and disagree-
ment among them.

& Best-map (L > 1): it computes the best fitting model at each
voxel. It might be useful for model localization in the brain.

Clustering

We incorporate a curve clustering functionality (Jacques and
Preda 2014) for extracting distinct pattens of brain data
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variation with respect covariates of interest. In that sense, we
provide a scalable and non-parametric algorithm that is able to
explore similarities and dissimilarities of the fitted curves
across the brain and group them in a total of NC clusters.

We adopted the hierarchical clustering framework
(Murtagh and Legendre 2014) implemented in scikit-learn
(Pedregosa et al. 2011). It is a bottom-up approach where
initially each curve defines its own cluster. Next, pairs of clus-
ters are successively merged according to a certain similarity
metric and a linkage criterion. As a similarity metric, we use a
weighted sum of distances:

SD x; yð Þ ¼ ∑ND−1
i¼0 wndn x; yð Þ ð6Þ

where (x, y)are two different curves, dn is the Euclidean dis-
tance between the nth discrete derivative of each curve, wn is
the weight of each derivative to the total similarity metric and
ND is the total number of derivatives used. In our implemen-
tation, we fix ND = 3 and wT = [0.2, 0.8, 0.2]. As a linkage
criterion, we use the average distance between all possible
pairs of elements of both clusters

L A;Bð Þ ¼ 1

jAj � jBj ∑a∈A∑b∈BSD a; bð Þ ð7Þ

where (A, B) are two different clusters, (| A| , | B| ) are the car-
dinalities of the clusters and (a, b) represent a curve from each
cluster. Hence, at each step of the hierarchy, the two clusters
that minimize the linkage criterion are combined. The algo-
rithm stops when it reaches NCclusters (a parameter
predefined by the user).

Please note that there is not a single optimal value for the
number of clusters (Nc). Hence, we include a functionality to
plot the variance between and within clusters as well as the
silhouette coefficient (SC) metric (Rousseeuw 1987) that can
be used to assess the optimal number of clusters for the anal-
ysis as a trade-off between within and between cluster
distance.

Visualization

This toolbox provides show-curves and show-data-
distribution functionalities and a graphical user interface
(GUI) for visualization purposes. The show-curves is a com-
mand line functionality that reads either the voxel coordinates
in mm (x,y,z) for voxel-based morphometry (VBM) analysis,
or the vertex number (x) for surface-based morphometry
(SBM) analysis, both referenced to the template specified in
the configuration file. The show-data-distribution functional-
ity allows the user to visualize the input data distribution (ob-
servations, residuals, covariates) using different types of plots:
univariate and bivariate densities, boxplots and a categorical
boxplots.

Graphical User Interface (GUI)

An interactive visualization GUI for 3D volumes (VBM) is
provided for further analysis of the results. It allows to load 3D
overlays over a template and visualize the generated curves
for one or several fitting models of interest. Overlays must
have the same extension as specified in the configuration file
and can be either generated by the tool (e.g: statistical maps,
model comparison maps or clustering maps) or external (e.g:
brain structure atlases). Simultaneously, it shows the three
orthogonal planes (axial, coronal and sagittal) and the curve
of the corresponding voxel. Inspection of the overall brain and
associated curves can be done online using the cursor in an
interactive way.

Due to long rendering times, for visualization of 2D sur-
faces (2D) we recommend using other visualization software
(e.g: FreeSurfer) in parallel with the show-curves
functionality.

NeAT Specifications

NeAT toolbox uses a configuration file to specify experi-
ment related options such as input/output files or experi-
ment parameters. The overall analysis pipeline (model es-
timation, statistical inference, visualization) is split into
smaller steps using different scripts. A command line in-
terface (CLI) is used for communication between the tool-
box and the user, allowing to run the scripts and set spe-
cific parameters for the analysis (e.g. which fitting module
to use as model estimator).

The toolbox input files consist of covariates and images.
Input covariates need to be stored in a spreadsheet either .csv
or .xls extension. Input images can be either preprocessed
using voxel-based morphometry (VBM) or surface-based
morphometry (SBM): nifti formats (.nii/.nii.gz), the
Massachusetts General Hospital formats (.mgh/.mgz) and
measurements of cortical thickness (.thickness) and surface
area (.area) can be used in the tool.

Each analysis step of the global pipeline generates dif-
ferent output files saved under the directory specified in
the configuration file. Statistical maps are saved using the
same extension as input files allowing compatibility with
other neuroimaging packages (e.g: visualization soft-
ware). As a programming language, Python (version
3.6) is used due to its object-oriented programming par-
adigm that provides flexibility in toolboxes with increas-
ing size and complexity. Moreover, Python is becoming
progressively popular in the neuroimaging field with
growing scientific libraries (e.g: scipy (Jones et al.
2014)), neuroimaging (e.g: nibabel (Brett et al. 2016))
or machine learning toolkits (e.g: scikit-learn (Pedregosa
et al. 2011)).
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Fig. 3 Curve clustering algorithm
run on relevant atrophy patterns
along the AD-CSF index using
GAM fitting. The number of
clusters is set to NC = 6. On the
left, we show the relevant voxels
color-coded to describe the
association of each voxel with
each cluster. On the right, we
show all curves associated to each
cluster (red) and their respective
centroid (black)

Fig. 2 Comparison between different curve fitting models: third order
polynomial expansion of GLM (blue), B-splines GAM (green), SVR
with polynomial kernel (yellow) and SVR with Gaussian kernel (red).
The best-map is used for statistical comparison, showing the best (in
terms of F-test) model among all four models with statistical
significance using uncorrected p < 0.001 separately for each model.

Estimated curves show the variation of gray matter volume (y-axis) and
AD-CSF index (x-axis). Based on CSF amyloid-beta and tau levels, the
AD-CSF index measures biomarker progression using a single index
normalized between 0 (no altered biomarkers) and 2 (full AD-like
alteration) (Molinuevo, 2013). The figure on (A) corresponds to the left
hippocampus and the figure on (B) corresponds to the right precuneus>
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Validation Results and Discussion

To exemplify NeAT’s main functionality, it has been applied
to three case studies where non-linear behaviour of neuroim-
aging data has been described previously.

Case Study 1: Atrophy Patterns across the Alzheimer’s
Disease Continuum

Voxelwise Volumetric Analysis

Nonlinear volumetric changes in gray matter across the
Alzheimer’s disease (AD) continuum have been described
(Gispert et al. 2015). In this report, nonlinearity is modeled
using GLM with a 3rd-order polynomial basis expansion, and
the relevance of linear against higher-order predictors was
compared. Here, we use NeAT to fit several nonlinear models
to the same dataset in order to statistically compare them.

In brief, study participants were enrolled in a single-cohort
study from the Alzheimer’s Disease and Other Cognitive
Disorders Unit in Hospital Clinic of Barcelona (HCB). The
cohort comprises 129 subjects (62 controls, 18 preclinical AD,
28 mild cognitive impairment (MCI) due to AD and 21 diag-
nosed AD) that underwent an MRI scan, registered to a com-
mon space, and a CSF lumbar puncture. The AD continuum is
defined biologically by the AD-CSF index (Molinuevo et al.
2013) which combines CSF biomarkers into a single indicator
that determines the position of each subject along the AD
continuum. For further details on both MRI processing and
CSF acquisition, refer to Gispert et al. (2015).

Following the standard procedure of splitting covariates into
confounding factors and predictors, we fit a corrector GLM
model using sex and a second order polynomial expansion of
age. We use AD-CSF index as the predictor variable fitting
several models to the GMv corrected observations: (i) GLM
with third order polynomial expansion, (ii) GAM using b-
splines as smoothing function (iii) SVR using third order

Fig. 4 Subject distribution (left) and age distribution (right) along the AD-CSF index of the subset of ADNI used in the analysis. For the subject
distribution we compute the histogram while for the age distribution we show a boxplot splitting the AD-CSF index into deciles

Fig. 5 Statistical comparison maps between three different curve fitting
methods (GLM, GAM and SVR with polynomial kernel). We use an
RGB map (A) to show regions relevant for each method with the
following legend: yellow (only GAM) green (only SVR), light blue

(GAM and SVR) and dark blue (GLM, GAM, SVR). We use the best
map (B) to show the method with best statistical inference metrics with
the following legend: red (GLM), green (GAM), blue (SVR)
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polynomial kernel and (iv) SVR using Gaussian kernel. We use
an F-test to statistically compare all predictor models. Statistical
significance was set to p < 0.001 uncorrected for multiple com-
parisons with a cluster-extent threshold of 100 voxels.

Figure 2 shows a few examples of the visualization GUI
using the best-map option to compare the aforementioned
fitting methods. Results using GLM with polynomial basis
expansion are coherent with the ones found in Gispert et al.
(2015). However, better goodness-of-fit can be achieved using
nonlinear models in NeAT and, in particular, GAM seems to
better fit extreme values. There is a high overlap between
second order polynomial expansion of GLM, GAM with b-
splines and SVR with polynomial and Gaussian kernels. Due
to the low numbers of degrees of freedom used, GLM and
GAM appear to be the most relevant models across the brain.
On the other hand, using a Gaussian kernel on SVR employ

higher number of degrees of freedom and its relevance is
restricted at the center of typical AD subcortical regions (e.g:
hippocampus and amygdala).

Further analysis of the results can be done using the
clustering functionality of the tool. Using the GAM mod-
el, we look for regions with similar atrophy patterns
along the AD continuum. We compute the silhouette
for a large number of clusters and end up with an opti-
mal number of NC = 2 clusters, with a silhouette average
value of S = 0.32. In fig. 3 we show the results with the
curves for each cluster and their associated brain regions.
We can clearly distinguish two different patterns: a linear
pattern involving region such as the precuneus or the
cingulate cortex while another non-linear pattern group
other regions such as the middle temporal or
hippocampus.

Fig. 7 Statistical inference using
volumetric data and different
curve fitting modules: using GLM
(A), using GAM (B) and using
SVR with a polynomial kernel
(C). For visualization purposes,
statistical significance threshold is
set to p < 0.05 uncorrected

Fig. 6 Generated curves for the evolution of cortical thickness of the left
entorhinal (left) and the right parahippocampal (right) regions. For each
ROI we use a linear (GLM) and two nonlinear (GAM and SVR with

polynomial kernel) models. All three are statistically relevant for the left
entorhinal while only the two nonlinear models appear to be relevant for
the right hippocampal
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ROI Cortical Thickness Analysis

To further validate the toolbox we perform a cortical thickness
analysis along the Alzheimer’s continuum. Global cortical
thinning is known for Alzheimer’s disease patients even
though the evolution may vary temporally along the continu-
um and spatially across the brain. Hence, nonlinear models are
flexible to model such variability.

In this analysis we use publicly available data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://
adni.loni.usc.edu/). We use baseline average cortical thickness
for each of the KROI = 68 ROIs using the Desikan-Killiany
atlas (Desikan et al. 2006) and CSF biomarkers measurements
from a total of 610 subjects. We use a sex and a second order
polynomial expansion of age as correctors. From CSF bio-
markers we use Aβ and tau values to construct the AD-CSF
index (Molinuevo et al. 2013) as the predictor. In fig. 4 we
show the distribution of subjects and its related age along the
AD-CSF index. Following ADNI guidelines, 191 subjects
labeled as cognitively unimpaired, 284 subjects were labeled
as having mild cognitive impairment and 135 subjects were
diagnosed with dementia.

We compare linear and non-linear models, being the latter
more statistically significant across the brain (figs. 5, 6). In
fig. 5 we show statistical inference maps comparing three
different fitting methods: (a) GLM, (b) GAM and (c) SVR
with polynomial kernel. For each method we compute and
F-test with statistical significance p < 0.001 uncorrected.
Using a best map we see that GAM method has generally
better inference metrics while using the RGB map we see that
the linear method missed many regions outside the temporal
lobe. Finally, Fig. 6 shows the fitted curves for the left ento-
rhinal and the right hippocampus. Similar effects on the ex-
treme values as the ones described in the previous dataset can
be observed in Fig. 6 with parametric fitting, which are much
alleviated with other non-linear fitting methods.

Case Study 2: Effects of APOE-ε4 in Brain Aging

The ε4 allele of the apolipoprotein E (APOE) gene is the
strongest genetic risk factor for AD. APOE is polymorphic
and contains three different alleles referred as APOE-ε2, −ε3
and -ε4 coding three different isoforms and six different ge-
notypes. Here, we apply NeAT to analyze the interaction be-
tween APOE-ε4 allele load and age on the brain morphology
of middle-aged cognitively unimpaired individuals, thus
expanding previously published results in Cacciaglia et al.
(2018). The ALFA (ALzheimer’s and FAmilies) cohort pre-
sented in Molinuevo et al. (2016) was used for this purpose,
involving 533 subjects that underwent APOE genotyping and
an MRI scan. For statistical analysis, participants were pooled
according to the APOE-ε4 allele load: 65 homozygotes (HO)
that have APOE-genotype with 2 copies of the APOE-ε4 al-
lele, 207 heterozygotes (HE) with a single copy of the
APOE-ε4 allele and 261 non-carriers (NC).

APOE Genotype Effects on Brain Morphology in Normal
Aging

In this case study, we replicate the results of Cacciaglia et al.
(2018) with respect to the APOE genotype effects on brain
morphology with NeAT and use it to expand previously de-
scribed non-linear effects. The baseline model consists of
three dummy variables characterizing each genotype (NC,
HE, HO) defining the number of ε4 alleles. Sex, years of
education, total intracranial volume and linear and quadratic
expansions of age were included as covariates. Due to the
reported interactions (ten Kate et al. 2016) of APOE status
and age, we fit the model with the interaction terms APOEx
age and APOEx age2. We apply the contrast [−1,0,1] on dum-
my variables indicating APOE-ε4 allele load, defining an ad-
ditive model that predicts incremental/decremental effects of
APOE-ε4 homozygotes. Results using the linear model are

Fig. 8 Statistical inference using
cortical thickness data and GLM.
For visualization purposes,
statistical significance threshold is
set to p < 0.05 uncorrected
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Fig. 9 Interaction between age and the APOE-ε4 genotype using second
order polynomial expansion of GLM (left) and B-splines GAM (right).
Three different regions are shown at each row: (A) right hippocampus,
(B) right caudate and (C) right cerebellar crus. Statistical analysis using F-
test and uncorrected p < 0.001 threshold with cluster size of 100 voxels.

Statistical comparison using the RGB map, where R corresponds to 0
copies of the allele, G to 1 copy and B to 2 copies. Other colors are any
possible combination of them, meaning that are relevant for more than
one APOE genotype
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shown in fig. 7(A), replicating the findings in Cacciaglia et al.
(2018). The use of the tool allowed us to study non-linear
effects of the genotype. Concretely, in fig. 7b and c we show
results using GAM and SVR with polynomial kernel models,
respectively. Smaller effects are observed and only relevant
effects are found in regions such as bilateral thalamus, right
hippocampus, right superior frontal and small cluster around
the right caudate and the left middle occipital. Nonlinear
modeling fail behind linear modeling of APOE-ε4 count,
probably because it is a categorical (C = 3) predictor. Hence,
due to higher degrees of freedom used in GAM and SVR, only
larger significant values survive the used threshold.

Using the tool, we could also study the APOE genotype
effects in cortical thickness data. In fig. 8, we show the results
on different surface views using the GLMmodel. In this case,
even smaller effects are found being statistically relevant
(p < 0.05) in small clusters across the brain, specially in re-
gions such as the insular cortex and fusiform.

Interaction between APOE Genotype and Age in Normal
Aging Population

In this second part, we investigate the interaction between
APOE genotype and age on brain morphology. For this pur-
pose, we model each APOE genotype separately to find their
associated curves and generate a goodness-of-fit metric using
the F-test. Statistical inference threshold is set to p < 0.001.
We perform post-hoc analysis combining statistical maps into
an RGB-map that sums up the results of all three APOE-ge-
notype models: we place eachmodel (NC, HE, HO) in each R,
G, B channel, respectively. Volumetric and cortical thickness
analyses were performed but no significant results were found
with the later.

In fig. 9, we show the RGB-map and the associated curves
of regions corresponding to significant effect of age on brain
morphology of homozygotes APOE-e4 carriers (see section
3.2.1): right hippocampus, right caudate and right cerebellar
crus. We present two different curve fitting models: using
polynomial expansion of second order of the GLM on the left
and B-splines GAM on the right.

Clearly, relevant regions for the HO group show nonlinear
relationship between age and voxel intensities. Statistical and
RGB-maps present analogous results on polynomial expan-
sion of GLM and GAM analysis. The right hippocampus

and the right cerebellar crus follow a quadratic curve with
age similar to GLM fitting. HO subjects show an earlier de-
creasing of GMv in both regions compared to NC and HE
around their fifties with an initial volumetric increase in
middle-aged individuals, more pronounced in the cerebellum,
again replicating the results in Cacciaglia et al. (2018). On the
other hand, GMv volume on the right caudate appears to de-
crease at the sixth decade for all APOE genotypes but
decaying faster for HO subjects. Due to the non-quadratic
behaviour of the right caudate, it appears to be better modeled
with GAM, as shown in fig. 10.

Conclusions

In this paper, we present NeAT; a tool for non-linear analysis
of neuroimaging data at the voxel or surface levels and illus-
trate its functionality in three case studies where a nonlinear
behavior of brain morphology was previously described.
NeAT is a modular, flexible and user-friendly toolbox that
provides advanced curve fitting methods for voxelwise and
surface-based modeling and different metrics for statistical
inference of the results. Visualization features are available,
such as an interactive GUI that shows statistical maps together
with the resulting fitted curves. Finally, post-hoc analysis
functionalities such as model comparison (e.g: linear vs.
non-linear) or a curve clustering algorithm that show similar
fittings across the brain are available. Altogether, NeAT con-
stitutes a complementary tool for the standard processing of
non-linear associations between neuroimaging data and a set
of factors (e.g: age, environmental factors, disease, genetics or
demographics) at the voxel and surface levels.

Future Work the potential of NeAT is expected to expand as it
will grow. At the short term, the expansion of the tool to ROI-
based analysis is granted. Moreover, a longitudinal analysis
module might be interesting due to the increasing number of
cohorts with longitudinal follow-up visits. Seemingly, the in-
tegration of fMRI modality should be considered in future
revisions of the toolbox. Other statistical methods, such as
Partial Least Squares (PLS) or Canonical Correlation
Analysis (CCA) can be incorporated for multivariate effects
modeling. Finally, other curve fitting models (e.g: based on
neural networks) can be designed and implemented.

Fig. 10 Differences between statistical maps of the HE model using GLM and GAM at different brain ROIs: right hippocampus (A), right caudate (B)
and right cerebellar crus (C). A positive (negative) value indicates that GAM (GLM) is statistically better using the f-test metric
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