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Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using
standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown
to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and spe-
cific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning
approach to amyloid status classification, which is independent of tracer and does not require a specific set of re-
gions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of
oriented three-dimensional gradients. We optimised our method on 133 18F-florbetapir brain volumes, and ap-
plied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to
209 11C-PiB images and 128 18F-florbetaben images. We compared our method to classification results achieved
using two othermethods: standardised uptake value ratios and amachine learningmethod based on voxel inten-
sities. Our method resulted in the largest mean distances between the subjects and the classification boundary,
suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained
the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Positron emission tomography (PET) is increasingly used to assess
the burden of fibrillar β-amyloid in patients with suspected Alzheimer's
disease (AD). Elevated levels of β-amyloid, in the form of plaques, are a
pathological biomarker of the disease. The first tracer to specifically
image these plaques in neuronal tissue was 11C-Pittsburgh Com-
pound-B (11C-PiB) (Klunk et al., 2004). Due to the short half-life of car-
bon-11 (20 min), the compound needs to be prepared on-site and used
immediately. This requires a cyclotron in the hospital, which is uncom-
mon, and hencemakes 11C-PiB impractical for routine clinical use. More
recently, several other amyloid tracers have been developed using the
fluorine-18 isotope, which has a longer half-life of 110 min and allows
d from the Alzheimer's Disease
du). As such, the investigators
tation of ADNI and/or provided
is report. A complete listing of
du/wp-content/uploads/how_
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regional distribution. Three of these have recently been approved by
theUS Food andDrug Administration (FDA) for use in clinical diagnosis:
18F-florbetapir, 18F-flutemetamol, and 18F-florbetaben (FDA, 2012,
2013; Piramal, 2014).

Prior to regulatory approval, the FDA and EuropeanMedicines Asso-
ciation (EMA) gave much attention to consistency of F-18 amyloid
image interpretation between readers (EMA Committee for Medicinal
Products for Human Use, 2013; FDA Peripheral and Central Nervous
System Drugs Advisory Committee, 2010). Consequently, thorough
reader training programmes have been developed for visual interpreta-
tion. However, as reported by Frey (2015), a lack of concordance be-
tween independent readers suggests the need for additional analytical
approaches to clinical reading and reporting.

Brain amyloid burden can be evaluated quantitatively by calculating
the ratio of tracer uptake in a set of target brain regions to non-specific
tracer uptake in a reference region (Barthel et al., 2011; Fleisher et al.,
2011; Jack et al., 2008; Jagust et al., 2009; Joshi et al., 2012;
Villemagne et al., 2011). This ratio is known as the standardised uptake
value ratio (SUVR). Typically, the individual SUVRs for each target re-
gion are averaged to form the mean, or composite, SUVR (Rowe et al.,
2008). It has been shown that incorporating this ratio as an adjunct to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Examples of the different regions used to calculate composite SUVRs for 11C-PiB, 18F-florbetapir, and 18F-florbetaben. The regions and amyloid positive/negative threshold are specific to
each study.

Tracer Study Target regions Reference region Threshold

11C-PiB Jagust et al. (2009) Anterior cingulate, posterior cingulate/precuneus,
prefrontal, lateral temporal, parietal cortex

Cerebellar grey matter 1.465

Jack et al. (2008) Anterior cingulate, prefrontal, orbitofrontal, parietal,
posterior cingulate/precuneus, temporal

Cerebellar grey matter 1.5

18F-florbetapir Fleisher et al. (2011) Medial orbital frontal, temporal, anterior cingulate,
posterior cingulate, parietal lobe, precuneus

Cerebellum 1.17

Joshi et al. (2012) Frontal, temporal, parietal, anterior cingulate,
posterior cingulate, precuneus

Whole cerebellum 1.10

18F-florbetaben Villemagne et al. (2011) Dorsolateral prefrontal, ventrolateral prefrontal, orbitofrontal, superior
parietal, lateral temporal, lateral occipital, anterior cingulate, posterior cingulate

Cerebellar cortex 1.4

Barthel et al. (2011) Frontal, parietal, lateral temporal, anterior cingulate, posterior cingulate, occipital Cerebellar cortex 1.39

2 http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf.
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
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the visual assessment of 18F-florbetapir scans can decrease inter-reader
variability (Nayate et al., 2015; Pontecorvo et al., 2014).

The composite SUVR is usually used in a discrete fashion,where sub-
jects above a particular threshold are designated as amyloid positive,
and subjects below a certain threshold are designated as amyloid nega-
tive (Landau et al., 2013). The thresholds are dependent on the type of
tracer, the brain regions used to calculate the composite SUVR, and
the delineation of those regions. Examples of amyloid positivity thresh-
olds and SUVR target and reference regions are shown in Table 1. Al-
though there is a consensus in the literature about which general
brain areas are to be used in the composite SUVR, there are differences
in the details (Jack et al., 2008; Jagust et al., 2009). In practice, it means
that for a specific tracer, the correct set of regions and thresholds must
be known and applied. For example, since amyloid deposition does
not typically occur in the cerebellum, the reference regions presented
in Table 1 are all cerebellum-based. Nevertheless, Jack et al. (2008)
use the cerebellar grey matter, whereas Joshi et al. (2012) use the
whole cerebellum. Moreover, the frontal lobe is a universal target re-
gion, but the delineation of the region varies with the study; Barthel et
al. (2011) use the frontal lobe, whereas Villemagne et al. (2011) use
specific areas within the frontal lobe.

A method for amyloid status classification, independent of SUVR,
was proposed by Vandenberghe et al. (2013). The authors classified
18F-flutemetamol scans as amyloid positive or amyloid negative using
a machine learning method known as a support vector machine
(SVM) (Cortes and Vapnik, 1995). The SVM was trained using the
voxel intensities, and the leave-one-out testing method achieved 100%
agreement with the visual image assessments.

In this work, we propose an alternative machine learning method,
which could serve as an adjunct to visual image interpretation, like
composite SUVR, but without the need for defining tracer-specific re-
gions of interest and selecting positivity thresholds. Our method trains
an SVM using features based on histograms of oriented 3D gradients
(3D HOG) rather than using image intensity directly. The aim of this
work is therefore to compare the accuracy of amyloid status classifica-
tion obtained using our new method (3D HOG+ SVM) with the inten-
sity-based SVM, and with the standard approach based on SUVR. We
show that our method can be used across a range of amyloid tracers,
without the need to define different brain regions or positivity thresh-
olds; we trained our method using 133 18F-florbetapir images and ap-
plied it directly to 209 11C-PiB images and 128 18F-florbetaben images
with favourable results.

The rest of this paper is structured as follows: in Section 2 we
present an overview of the data and the preprocessing steps.
Section 2 also introduces our proposed method of combining 3D
HOG with an SVM, and reviews both the intensity-based SVM and
SUVR methods. In Section 3, we present the results for the three
classification methods, as well as detailing the results of the 3D
HOG optimisation process. Finally, in Section 4, we discuss the ad-
vantages of our proposed method over the other two classification
methods, and conclude this work.
2. Materials and methods

2.1. Alzheimer's Disease Neuroimaging Initiative (ADNI) data

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), the US (FDA), private pharma-
ceutical companies and non-profit organisations, as a $60 million, 5-
year public–private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), PET, other bio-
logical markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment
(MCI) and early AD. Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the USA and Canada.
The initial goal of ADNI was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. To date these three protocols have
recruited over 1500 adults, aged 55–90, to participate in the research,
consisting of cognitively normal older individuals, people with early or
late MCI and people with early AD. The follow-up duration of each
group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO had the option
to be followed in ADNI-2. For up-to-date information, see www.adni-
info.org.

2.2. Data acquisition and pre-processing

18F-florbetapir PET and T1-weighted MR volumes from 294 subjects
were gathered from the ADNI database. The two volumes for each sub-
ject selected for this study were acquired no more than 12 months
apart. Although the scans were acquired at multiple sites, all sites
followed the same ADNI protocol.2 For the purpose of this work, the
18F-florbetapir PET volumeswere rigidly registered to their correspond-
ing MR volumes using Statistical Parametric Mapping, version 83

(SPM8). The MR volumes were then affinely registered to Montreal
Neurological Institute (MNI) space using FSL's FLIRT software
(Jenkinson et al., 2002; Jenkinson and Smith, 2001), and the resulting
transformations were applied to the 18F-florbetapir volumes. Finally,
the MR and 18F-florbetapir images were skull-stripped using a brain
mask constructed from MR tissue segmentations obtained using
SPM8. Prior to the classification experiments, the transformed 18F-

http://www.adni-info.org
http://www.adni-info.org
http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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florbetapir PET brain volumes were resampled to 2 × 2 × 2 mm resolu-
tion. Axial slices from examples of amyloid negative and amyloid posi-
tive 18F-florbetapir brain volumes, along with their corresponding MR
slices, are shown in Fig. 1(a).

In addition to the 18F-florbetapir data, 214 11C-PiB and correspond-
ing T1-weighted MR volumes were downloaded from the ADNI data-
base. The data belonged to 102 subjects, but even though some
subjects had multiple scans (26 subjects had one scan, 42 subjects had
two scans, 32 subjects had three scans, and two subjects had four
scans), each 11C-PiB/MR pair was treated independently. Each 11C-PiB
volume and its corresponding MR volume were acquired within
12 months of one another. Furthermore, the 11C-PiB scans underwent
the same pre-processing as the 18F-florbetapir volumes. Example amy-
loid positive and amyloid negative axial slices from the 11C-PiB dataset
are shown in Fig. 1(b).

The 18F-florbetaben PET volumes and corresponding T1-weighted
MR volumes were provided from the phase 2A clinical trial of 18F-
florbetaben in 150participants. The participant details and imagingpro-
tocols are all provided in Barthel et al. (2011). Seventeen subjects were
excluded due to severe image artefacts in the PET orMR images. TheMR
and 18F-florbetaben PET volumes were coregistered using an in-house
rigid registration algorithm. The 18F-florbetaben images were then reg-
istered to a PET template inMNI space using an in-house affine registra-
tion algorithm and resampled to 2 × 2 × 2mm resolution. The in-house
rigid and affine registration algorithms were implemented using rou-
tines customised fromSiemens syngo.PETAmyloid Plaque (sPAP) quan-
tification software. The resulting transformations were applied to the
MR volumes. Analogously to the 18F-florbetapir and 11C-PiB, a brain
mask was constructed using tissue segmentations obtained from
SPM8. Both the 18F-florbetaben PET volumes and their corresponding
MR volumes were skull-stripped. Fig. 1(c) shows an example axial
slice for a 18F-florbetaben amyloid negative and 18F-florbetaben amy-
loid positive brain volume. The corresponding axial MR slices are also
shown in Fig. 1(c).

2.3. Visual assessment

In this study, the gold standard amyloid status was determined for
each subject using criteria based on visual assessments from three
image readers. Data were excluded from the study if the median rating
was neither amyloid positive nor amyloid negative. To interpret the PET
volumes as amyloid positive or amyloid negative, the three image
readers (one clinical expert, one senior neuro-PET researcher, and one
junior PET image analysis researcher) interpreted the images a total of
six times. The junior researcher assessed all of the images three times,
the senior neuro-PET researcher interpreted all the images twice, and
the clinical expert read all of the images once. The tracers were assessed
one at a time (i.e. all 18F-florbetapir scans were interpreted before the
11C-PiB scans), but for each tracer the images were presented in a ran-
dom order to prevent observer memory affecting the assessments.
Each reader was given instructions on how to display and interpret
the images on a set of prearranged slices, without access to the corre-
sponding MR image. For the 18F-florbetapir and 18F-florbetaben scans,
the instructions were based on those provided by the tracer manufac-
turers (Amyvid, 2012; NeuraCeq, 2014). The only major difference
was the addition of an “equivocal” image class, for images that did not
clearly fulfil the definitions of positive or negative scans. Note that
since the reading instructions were very thorough, “equivocal” was
typically only selected when image quality was particularly poor. The
instructions for visual assessment of 11C-PiB were based on a combina-
tion of those by Suotunen et al. (2010) and Cohen et al. (2013). Again, an
equivocal image class was included for images that could not be desig-
nated as either amyloid positive or amyloid negative.

Using Fleiss' kappa to assess the inter-reader reliability, the six
image interpretations showed substantial agreement for all tracers
(18F-florbetapir: κ=0.71, 11C-PiB: κ=0.81, 18F-florbetaben: κ=0.84).
The gold standard amyloid status was determined from the median of
the six image interpretations. Any images for which the median inter-
pretationwas not amyloid positive or amyloid negativewere discarded.
In total, 30 18F-florbetapir images, five 11C-PiB images, and five 18F-
florbetaben images were discarded. The final 18F-florbetapir dataset
comprised 264 subjects, the final 11C-PiB dataset consisted of 209 sub-
jects, and the final 18F-florbetaben dataset contained 128 subjects. The
demographics of these are summarised in Table 2. It should be noted
that although the inter-reader agreement and number of equivocal
scans varies by tracer, this is not a reflection of the tracers themselves.
The discrepancies are predominantly due to differences in image quality
and the distributions of amyloid burden.

2.4. Image analysis

In this work we compared three separate amyloid classification
methods: our method, which uses histograms of oriented three-dimen-
sional gradients as inputs to an SVM (3D HOG + SVM), another SVM-
based method using image intensity directly, and SUVR. The three
methods are outlined in Sections 2.5–2.7.

2.5. Histogram of oriented 3D gradients (3D HOG)

2.5.1. Derivation of feature vectors
Image descriptors have been widely used in computer vision to de-

scribe characteristics such as texture, motion, and shapes in images
and video sequences (Belongie and Malik, 2000; Dalal and Triggs,
2005; Lowe, 1999). Given a region of interest, a descriptor represents
the region as a feature vector. By applyingmachine learning techniques
to these feature vectors, they can be used to detect objects in images.
One such method, histogram of oriented gradients (HOG), has been
used successfully to detect pedestrians in static images (Dalal and
Triggs, 2005). The image is partitioned into a grid of uniformly spaced
cells, and the normalised histogram of image gradient orientations in
each cell forms the set of feature vectors. An illustration of HOG in two
dimensions is shown in Fig. 2. The key concepts of this two-dimensional
method were generalised to three dimensions by Kläser et al. (2008).
Although originally used for action recognition in video volumes, we
here propose to apply a similar technique to PET volumes to classify
brain amyloid status.

In order to compute histograms of oriented gradients across a PET
volume, the volume is partitioned into a uniform grid of cells ci of size
k×k×k voxels. Each cell is divided into S×S×S sub-blocks bj, and for
each sub-block the mean gradient is computed. In the same manner
as Kläser et al. (2008), we calculated the mean gradient using a 3D ex-
tension of the integral image (also known as a summed area table),
popularised by Viola and Jones (2001). Given a volume v(x,y,z) and its

gradient ∇v ¼ ð∂v∂x ; ∂v∂y ; ∂v∂zÞ
T
, the integral volume can be written as:

I x; y; zð Þ ¼
X

x0 ≤ x;y0 ≤y;z0 ≤ z
∇v x0; y0; z0ð Þ: ð1Þ

The mean 3D gradient g ¼ ðgx; gy; gzÞT within a cuboid of size
w×h×d at position (x,y,z)T is then given by:

g ¼ I xþw; yþ h; zþ dð Þ−I x; yþ h; zþ dð Þð
−I xþw; y; zþ dð Þ þ I x; y; zþ dð ÞÞ
− I xþw; yþ h; zð Þ−I x; yþ h; zð Þð
−I xþw; y; zð Þ þ I x; y; zð ÞÞ:

ð2Þ

Following computation of the 3D gradient g , its orientation is
quantised into a histogram with n discrete bins. A logical extension of
the 2D HOG method would be to use spherical polar coordinates to
quantise the 3D gradient orientations. By dividing the elevation angle
and azimuth into equally sized bins, gradients are quantised using a



Fig. 1. Axial slices from example amyloid negative (left) and amyloid positive (right) PET volumes for (a) 18F-florbetapir, (b) 11C-PiB, and (c) 18F-florbetaben. The corresponding axial MR
slices are shown to the right of each PET image. These slices were selected after the PET and MR volumes had been preprocessed.
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similar system to latitude and longitude. However, this leads to prob-
lems at the poles because the bins get progressively smaller. This is
demonstrated by the red circle in Fig. 3(a).

We adopted the solution employed by Kläser et al. (2008),which used
a regular polyhedron as an approximation to a sphere. Rather than have a
continuous space of orientations, each side of thepolyhedron corresponds
to a histogram bin. In 3D space, there are only five polyhedra constructed
from congruent regular polygonswith the same number of facesmeeting
at each vertex. Thesepolyhedra are knownas Platonic solids: tetrahedron,
hexahedron (cube), octahedron, dodecahedron, and icosahedron. They
have 4, 6, 8, 12, and 20 faces, respectively.

To quantise a 3D gradient g with respect to its orientation, g is
projected on to the axes going through the origin of the coordinate
Table 2
Demographics of the amyloid positive (P) and amyloid negative (N) subjects used in this stud

18F-florbetapir 11C-

P N P

Count 149 115 167
Age ± std. dev. 75.6 ± 7.6 74.7 ± 8.5 76.7
Sex (male/female) 84/65 60/55 103
system and the centre of all faces of the polyhedron. Letting P
be the matrix of face centre coordinates p1 , … ,pn, the projection q
of g is:

q ¼ P � g
gk k2:

ð3Þ

Opposite gradient directions can be quantised into the same histo-
grambin by halving the set of face centre coordinates and taking the ab-
solute value of q. Histograms organised in this manner are said to have
“half-orientation”.

Since g should only vote in one histogram bin, the projection q is
thresholded. The threshold t=pi

T ⋅pj is subtracted from q and all
y.

PiB 18F-florbetaben

N P N

42 53 75
± 7.6 76.1 ± 7.4 72.0 ± 7.9 69.0 ± 7.0
/64 27/15 27/26 35/40



Fig. 2. An illustration of 2D HOG features for an amyloid positive 18F-florbetapir axial slice (top) and an amyloid negative 18F-florbetapir axial slice (middle). The bottom row shows the
general steps of the HOG algorithm: image gradients in a single cell (left), quantisation of those gradients (centre), and the edge orientations associated with the histogram of gradients
(right). The intensity of edge orientations are determined from the magnitudes of the histogram bins. The actual HOG features used in this work were computed in 3D, as described in
Section 2.5.
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negative elements are set to zero. The magnitude of the gradient is dis-
tributed according to the thresholded projection q0:

q ¼ gk k2 � q0

q0k k2:
ð4Þ

The histogram hci for a given cell ci is the sum of the quantisedmean
gradients of the sub-blocks qbj

in that cell:

hci ¼
XS3

j¼1

qb j
: ð5Þ

The histograms hci for each cell are concatenated over the S3 sub-
blocks to form the final feature vector for the entire volume.

2.5.2. Classification
A classifier is required to separate the feature vectors associatedwith

different image classes (e.g. amyloid positive and amyloid negative).
Typically a support vector machine (SVM) is used to classify HOG fea-
tures (Dalal and Triggs, 2005; Kläser et al., 2008). Using a set of correctly
labelled data, the SVM tries to find the hyperplane that maximises the
margin between the two classes. This hyperplane can then be used to
classify previously unseen data (often called test data). Points on one
side of the hyperplane are classified as one class, and points on the
other side of the hyperplane belong to the other class. In this work we
used the SVM implementation in the scikit-learn package for Python
(Pedregosa et al., 2011).

2.5.3. Parameter optimisation
In order to determine the optimum parameters for the 3D HOG

method, the 18F-florbetapir dataset was split into a training and test
set. The training set comprised 133 subjects (75 positive, 58 negative),
and the test set consisted of 131 subjects (74 positive, 57 negative).
All of the 18F-florbetapir classification results reported in Section 3
were generated using the test set only. To assess the generalisability of
the method, no 3D HOG parameter optimisation was conducted using
the 11C-PiB and 18F-florbetaben data, so the entire datasets were used
for testing.

To optimise the parameters for the 3D HOG feature descriptors, we
computed feature vectors from the 18F-florbetapir training set volumes
for a range of parameter values. Cell size ranged from k=4 voxels to
k=32 voxels in increments of 4 voxels, and the number of sub-blocks
Swere in the set S={1,2,4}.We also assessed thenumber of histograms
bins (dodecahedron and icosahedron), and the effect of full- and half-
orientation. A comprehensive grid search of parameterswas conducted,
resulting in 96 different parameter combinations.

For each of the 3D HOG parameter combinations, a SVM classifier
was trained using the corresponding feature vectors of the 18F-
florbetapir training set. In order to ascertain the optimum SVM



Fig. 3. (a)Using spherical polar coordinates to quantise the 3Dgradients leads to problems
at the poles (red circle) because the bins get progressively smaller. (b) Therefore, we used
a regular polyhedron as an approximation to a sphere (Kläser et al., 2008). The 3D
gradients are projected on to the vectors from the centre of the polyhedron to the
centres of the faces.
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parameters to use on the test data, we performed ten-fold stratified
cross-validation on the training set. The training set was randomly di-
vided in to 10 subsets, each with the same proportion of amyloid posi-
tive/negative subjects. Nine subsets were used to train the SVM, and
the remaining subset was used as the validation test dataset. This was
repeated, such that each subset was used as the test set. We used a
SVM with a Gaussian radial basis function (RBF) kernel, and we
optimised the slackness variable C (where C=10i for i={−2,… ,3})
and the free parameter of the RBF γ (where γ=10i for i={−5,… ,2})
(Boser et al., 1992; Cortes and Vapnik, 1995) using a grid search of
parameters.

2.5.4. Testing
The 3D HOG parameters and SVM parameters that gave the highest

classification accuracy, sensitivity, and specificity on the 18F-florbetapir
training setwere applied to the 18F-florbetapir test set. These parameter
values were also applied to the 11C-PiB and 18F-florbetaben data. Leave-
one-out testing was used to assess the performance of the 3D HOG fea-
tures for amyloid status classification. For each fold, the SVM was
trained using all of the subjects except one. The remaining subject was
then used as the test subject. This process was repeated until all of the
subjects had been used as the test subject. Following leave-one-out test-
ing for all three tracers, we calculated the mean classification accuracy,
sensitivity, and specificity. By adjusting the SVM classifier's decision
boundary, receiver operating characteristic (ROC) analysis was per-
formed on each of the tracers.

2.6. Standardised uptake value ratio

2.6.1. Quantification software
The ratio of tracer uptake in a set of target brain regions to non-spe-

cific tracer uptake in a reference region, also known as SUVR, was com-
puted using the commercially available Siemens syngo.PET Amyloid
Plaque (sPAP) quantification software. Prior to SUVR calculation, the
software automatically registers the subject's PET volume to a synthetic
PET template, in MNI space, in which the cortical regions of interest are
defined (Hutton et al., 2015; Peyrat et al., 2012). The predefined set of
six target regions for 18F-florbetapir were: the frontal, parietal, anterior
cingulate, posterior cingulate, precuneus, and temporal lobes (Hutton et
al., 2015). The reference region was the whole cerebellum. For 18F-
florbetaben, slightly different predefined target and reference regions
were used (target regions: frontal, parietal, anterior cingulate, posterior
cingulate, temporal, occipital lobes, reference: cerebellar cortex; Barthel
et al., 2011). Note that the different tracers used different sets of regions
according to the published literature (Hutton et al., 2015; Barthel et al.,
2011, respectively).

The sPAP quantificationmethod has been validated for use with 18F-
florbetapir and 18F-florbetaben (Hutton et al., 2014, 2015; Peyrat et al.,
2012), but not for 11C-PiB because it is not an FDA-approved tracer.
However, it was still possible to use sPAP for quantification of the 11C-
PiB data. Based on the literature by Jagust et al. (2009) and Landau et
al. (2013), we calculated SUVRs using the 18F-florbetapir target and ref-
erence regions.

During SUVR computation in sPAP, one 18F-florbetapir volume, eight
18F-florbetaben volumes, and three 11C-PiB volumes failed to adequate-
ly register to the PET template. As a result, the registrationwasmanually
adjusted for these subjects.

The composite SUVRs calculated using the sPAP softwarewerewith-
in the ranges reported in the literature (Barthel et al., 2011; Fleisher et
al., 2011). For all three tracers, themean composite SUVR of the amyloid
positive scans was higher than the mean composite SUVR of the amy-
loid negative scans (18F-florbetapir: 1.46 ± 0.18 and 0.99 ± 0.11, 11C-
PiB: 1.62 ± 0.46 and 1.01 ± 0.13, and 18F-florbetaben: 1.73 ± 0.22
and 1.25 ± 0.11, respectively).

2.6.2. SUVR analysis
Following the computation of composite SUVRs for the 18F-

florbetapir test dataset, classification results were obtained using an
amyloid positivity threshold of SUVR N1.12 (Hutton et al., 2015). Simi-
larly, classification results were obtained from the 18F-florbetaben
SUVRs using a threshold of composite SUVR N1.36 (Hutton et al., 2014).

Since sPAP has not been validated for 11C-PiB data, two regression
equations were required to obtain an amyloid positivity threshold that
is appropriate for both the tracer and the SUVR calculation method.
Firstly, Landau et al. (2013) provided a regression equation to convert
the 11C-PiB threshold tJagust from Jagust et al. (2009) into a correspond-
ing threshold for the quantification method used by Joshi et al. (2012):

tJoshi ¼ 0:67tJagust þ 0:15 ð6Þ

where the subscript denotes the study from which the threshold is
acquired.



996 L. Cattell et al. / NeuroImage: Clinical 12 (2016) 990–1003
Hutton et al. (2015) also provided a regression equation to convert
from the Joshi et al. (2012) method threshold into an equivalent unit
for sPAP tsPAP:

tsPAP ¼ 0:9782tJoshi þ 0:04264: ð7Þ

We can combine Eqs. (6) and (7) to get a final equation to convert
between the 11C-PiB threshold tJagust and sPAP tsPAP:

tsPAP ¼ 0:9782 0:67tJagust þ 0:15
� �þ 0:04264

≃0:6554tJagust þ 0:1894: ð8Þ

By substituting tJagust=1.465 (Jagust et al., 2009) into Eq. (8), we get
an equivalent threshold for 11C-PiB in sPAP tsPAP=1.15. Consequently,
following SUVR calculation in sPAP, the accuracy of amyloid status clas-
sification in 11C-PiB data was assessed using an amyloid positivity
threshold of composite SUVR N1.15.

2.7. Image intensity

We compared our method and SUVR to themachine learningmeth-
od proposed by Vandenberghe et al. (2013). In that work, the authors
trained a SVM on voxel intensity to classify amyloid positivity in 18F-
flutemetamol images. Each image is a point in high-dimensional
space, in which each dimension is a voxel within the brain.

To reduce the dimension of the SVM, only voxels inside the brain
were used. Once all of the images were transformed into MNI space
(see Section 2.2), we constructed a brain mask using the linear
MNI152 T1-weighted MR template (Mazziotta et al., 2001). The mask
was dilated by 2 mm to ensure that all of the registered PET brains
were wholly inside the mask. Prior to using the SVM, all of the images
were normalised to have zeromean and unit variance. The SVM param-
eters were then optimised using the same approach as in Section 2.5.3.
The optimum parameters were applied to the 18F-florbetapir test data,
as well as the 11C-PiB and 18F-florbetaben datasets. Leave-one-out test-
ingwas used to assess the ability of the intensity-based SVMs to classify
amyloid status.
Fig. 4. The highest classification accuracies achieved for each of the 96 3D HOG parameter comb
vs. icosahedron, and half-orientation vs. full-orientation), and shows the highest classification ac
parameter combinations, highlighted in red, achieved the same, highest classification accuracy
3. Results

3.1. 3D HOG parameter optimisation

Fig. 4 shows the best classification accuracies achieved on the 18F-
florbetapir training set for each of the 96 3D HOG parameter combina-
tions. Each sub-plot relates to one of the four histogram configurations
(dodecahedron vs. icosahedron, and half-orientation vs. full-orientation),
and shows the highest classification accuracy for each cell size k (horizon-
tal axis) and number of sub-blocks S (vertical axis). A cell size of k=
4voxels universally resulted in the lowest classification accuracy. Howev-
er, 68 different parameter combinations resulted in a mean classification
accuracy greater than 95%. Four parameter combinations (highlighted in
red in Fig. 4) achieved the same, highest classification accuracy of 98.5%.
However, one parameter combination gave the highest combined classi-
fication accuracy, sensitivity, and specificity (98.5%, 0.973, and 1.00, re-
spectively) on the 18F-florbetapir training set: cell size k=16 voxels,
number of sub-blocks S=1, icosahedron, and half-orientation histogram.
This set of optimum 3D HOG parameters was then applied to the 18F-
florbetapir test set, and the 11C-PiB and 18F-florbetaben data.

3.2. Classification results

The classification accuracy, sensitivity, specificity and area under the
receiver operating characteristic curve (AUC) for the 18F-florbetapir test
data are shown in Fig. 5. The black borders indicate the best results. The
classification results for the 11C-PiB and 18F-florbetaben datasets are
presented in Figs. 6 and 7, respectively. For all three tracers, the 3D
HOG + SVM classification method resulted in the largest classification
accuracy (96.2%, 99.5%, and 96.9%, respectively) and AUC (0.962,
0.988, and 0.965, respectively). Using the DeLong method (DeLong et
al., 1988) to statistically compare the AUCs of each classification meth-
od, the 3D HOG + SVM method achieved a significantly larger AUC
than the intensity-SVM method for 18F-florbetapir (pb0.01). Further-
more, the 3D HOG + SVM classification method also achieved a signif-
icantly larger AUC than SUVR for 11C-PiB (pb0.01). Although the 3D
HOG + SVM method had a larger AUC than both the other methods
for 18F-florbetaben, the AUCs were not significantly different. For 18F-
florbetaben, the intensity-based SVM had the same classification
inations. Each sub-plot relates to one of the four histogram configurations (dodecahedron
curacy for each cell size k (horizontal axis) and number of sub-blocks S (vertical axis). Four
(98.5%).



Fig. 5. The classification accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC) for the 18F-florbetapir test data. The best results are highlighted
with a black border.
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accuracy as the 3D HOG + SVM method (96.9%). The 3D HOG + SVM
method had a higher specificity (0.965, 0.976, and 0.987, respectively)
than the SUVR method (0.912, 0.881, and 0.867, respectively) across
all of the tracers tested. However, SUVR gave the highest sensitivity
for 18F-florbetapir and 18F-florbetaben (0.973 and 0.962, respectively).

3.3. Distance to classification boundary

Figs. 8–10 show the distances of the test subjects from their respective
classification boundary. For the SVM-based methods, the distances are
the Euclidean distances to the decision hyperplane. For the SUVRmethod,
the distances represent the subject's SUVRminus the threshold SUVR. The
Fig. 6. The classification accuracy, sensitivity, specificity and area under the receiver operating
black border.
distances are normalised to the maximum absolute distance from the
boundary. Smaller distances indicate a lower confidence in the final clas-
sification decision. In Figs. 8–10, subjects in blue with positive distances
were incorrectly classified by the given classification method. Similarly,
subjects in red with negative distances were also misclassified.

We used a two-sided t-test, corrected for two comparisons, to exam-
ine whether the boundary distances for the 3D HOG + SVM method
were significantly greater than the other two classification methods.
Values of pb0.01 (pb0.005, corrected) are considered significant.

Across all three tracers, the distances from the boundary for the 3D
HOG+SVMmethodwere found to be significantly greater than the dis-
tances of the SUVR method, for both amyloid positive and amyloid
characteristic curve (AUC) for the 11C-PiB test data. The best results are highlighted with a



Fig. 7. The classification accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC) for the 18F-florbetaben data. The best results are highlightedwith
a black border.

Fig. 8. The normalised distances of 18F-florbetapir test subjects from the classification boundary. Subjects in blue with positive distances were incorrectly classified by the given
classification method. Similarly, subjects in red with negative distances were also incorrectly classified. The dashed lines indicate the mean distance from the boundary for the subjects
visually designated as amyloid positive and amyloid negative.
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Fig. 9. The normalised distances of 11C-PiB test subjects from the classification boundary. Subjects in blue with positive distances were incorrectly classified by the given classification
method. Similarly, subjects in red with negative distances were also incorrectly classified. The dashed lines indicate the mean distance from the boundary for the subjects visually
designated as amyloid positive and amyloid negative.
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negative subjects. Furthermore, for both subject groups, the 18F-
florbetapir distances are significantly greater for the 3D HOG + SVM
method than the distances of the intensity-based SVM classification
method. The 3D HOG + SVM distances were also significantly greater
for the amyloid positive 18F-florbetaben subjects. In contrast, the dis-
tances for the amyloid positive 11C-PiB subjectswere significantly great-
er for the intensity-based SVMmethod compared to the 3DHOG+SVM
method.

It is apparent from Fig. 9 that one 11C-PiB imagewas classified differ-
ently to the gold standard visual assessment by all three classification
methods (image #9). Similarly, in Fig. 10, 18F-florbetaben image #104
was classified differently to the gold standard across all three methods.
Axial slices from the PET andMR volumes of these outliers are shown in
Fig. 11.

Although scans with equivocal visual reads were eliminated from
the three datasets prior to classification analysis, we computed the nor-
malised distances of the equivocal scans from the classification bound-
ary for each automated classification method and tracer. The 3D
HOG + SVM method resulted in the largest mean absolute distance
for 18F-florbetapir (0.418), and the intensity-based SVM achieved the
largest mean absolute distance for both 11C-PiB and 18F-florbetaben
(0.878 and 0.700, respectively).

4. Discussion

4.1. Classification accuracy

In this paper we have proposed an amyloid status classification
method that is independent of the predefined regions of interest and
amyloid positivity thresholds typically used to classify based on SUVR.
Our method has been shown to generalise across multiple tracers, and
could be used as an adjunct to visual interpretation of PET images,
which is currently the standardmethod for clinical assessment. In a clin-
ical setting, it would be straightforward to interpret the results due to
the method's straightforward, binary output (amyloid positive or amy-
loid negative). Moreover, unlike SUVR, knowledge of the specific amy-
loid positivity thresholds for each tracer is not required, and there is
no need to check that the target/reference regions are positioned cor-
rectly on the image.

Using visual assessment of the images as the gold standard, the 3D
HOG + SVM method resulted in the highest classification accuracy
and AUC for all three of the tracers we evaluated. This could be because
it uses local intensity gradients as features, rather than intensity direct-
ly. Conceptually, this is similar to visual assessment of 18F-florbetapir,
which utilises local loss of contrast between adjacent grey and white
matter, and consequently, the 3D HOG+ SVMmethod is robust to spa-
tially varying intensity levels. This is advantageous in PET image classi-
fication, when data acquired, and reconstructed, at multiple sites and
multiple scanners, may have different spatially varying intensities.
Moreover, by quantising the gradients, the 3D HOG + SVM method is
more robust to noise than the intensity-based SVM, which uses all of
the voxels, which can include noise, as the feature vector. Itmay be pos-
sible to achieve a higher classification accuracywith the intensity-based
SVM method by smoothing or downsampling the data to reduce the
noise.

Another reason for the high classification accuracy and AUC of the
3D HOG + SVM method could be the use of cells, instead of individual
voxels. As a result, 3D HOG can cope well with minor misregistration



Fig. 10. The normalised distances of 18F-florbetaben test subjects from the classification boundary. Subjects in blue with positive distances were incorrectly classified by the given
classification method. Similarly, subjects in red with negative distances were also incorrectly classified. The dashed lines indicate the mean distance from the boundary for the subjects
visually designated as amyloid positive and amyloid negative.
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of the brain to MNI space. When calculating SUVRs, a small misalign-
ment of the PET brain could result in tracer uptake appearing to be out-
side of the region of interest. As a result, this may have some effect on
SUVR.

For the 18F-florbetapir and 18F-florbetaben tracers the SUVR classifi-
cation method exhibited the highest sensitivity. One reason for this
could be the nature of the amyloid positivity thresholds. In a clinical set-
ting, a test with a high sensitivity will rarely misdiagnose a diseased pa-
tient. Although false positives could cause unnecessary worry or
treatment, a false negative patient could miss out on vital support and
care. However, this notion is merely speculative, especially given that
amyloid PET studies have generally not supported a clinically relevant
bias towards reporting a scan as positive, and furthermore, there is cur-
rently no effective treatment for Alzheimer's disease.

In contrast, the results in Fig. 6 show a relatively lower classification
accuracy (78.5%) and sensitivity (0.760) for SUVR compared to the 3D
HOG + SVM and intensity-based SVM methods in 11C-PiB cases. This
could be due to the choice of brain regions used to compute the SUVR,
as well as the amyloid positivity threshold. Since 11C-PiB has not been
approved for clinical use, the brain regions used to compute the 11C-
PiB SUVRs were taken from 18F-florbetapir literature. Moreover, the
sPAP quantification software that was used to calculate the SUVRs has
not been validated with 11C-PiB data, so we converted the amyloid pos-
itivity threshold from Jagust et al. (2009) (1.465) to the sPAP scale
(1.15). Eq. (8) was constructed from two separate regression equations
and implicitly assumed that the SUVR behaves linearly between the
three quantification methods. In reality, this assumption may not be
true. Moreover, not only could the original threshold of 1.465 be subop-
timal, but every conversion introduces rounding errors. A slight change
in the threshold can have an effect on the classification results. For ex-
ample, by using a threshold of 1.16 instead of 1.15, the classification ac-
curacy decreases from 78.5% to 78.0%. Similarly, the sensitivity
decreases from 0.760 to 0.754. Although these differences appear
small, on a large population a 0.5% difference in classification accuracy
could mean substantial numbers of patients are misdiagnosed. This re-
sult highlights the need for careful validation of new SUVR computation
methods, and amyloid positivity thresholds, for both existing and new
tracers, which is one of the goals of the Centiloid Project (Klunk et al.,
2015).
4.2. 3D HOG parameters

The results of the 3D HOG parameter optimisation in Fig. 4 suggest
that this method is likely to give high classification accuracy, even
with suboptimal parameters. This is confirmed by the fact that 68 out
of 96 parameter combinations resulted in a classification accuracy
greater than 95%. Cell size k had the most profound effect on classifica-
tion accuracy, so very small or very large values of k should not be used.
Interestingly, the optimum number of subblocks was S=1. This is
equivalent to not using sub-blocks, and only calculating gradients in
the larger cells. One possible reason for this result is that PET has a com-
paratively low resolution compared to the video sequences for which
3D HOGwas designed. As a result, there is no need to average gradients
over numerous sub-blocks. All four of the highest scoring parameter
combinations used half-orientation histograms, suggesting that the
sign of the gradient is uninformative in this particular application. This
seems reasonable, given that the visual reading instructions for 18F-



Fig. 11. PET and MR axial slices from the two images which were classified differently to
the gold standard visual assessment by all three classification methods. (a) 11C-PiB
image #9 was visually assessed as amyloid negative, but incorrectly classified as
positive. However, on closer inspection, tracer uptake was observed in the frontal region
(highlighted by the red box), suggesting that the classification should be amyloid
positive. (b) 18F-florbetaben image #104 was correctly assessed as positive, but
automatically classified as amyloid negative.
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florbetaben state that the images should be displayed in grey scale or in-
verse grey scale (NeuraCeq, 2014).

4.3. Distance from the classification boundary

For all cases except positive 11C-PiB subjects, the 3D HOG + SVM
method resulted in the greatest mean distances from the decision
boundary. A large distance is desirable, since points near the classifica-
tion boundary represent low-confidence classification decisions.
Again, one reason for the superior performance of the 3D HOG + SVM
method could be that it utilises image gradients, rather than direct
voxel intensities. The resulting invariance to spatially varying intensity
levels and noise robustness allows the two populations to be more eas-
ily separated than using SUVR or the intensity-based SVM method.

The small distance between amyloid negative subjects and the SUVR
threshold supports its relatively lower specificity in Figs. 5–7. The sub-
jects close to the threshold are classified with a lower confidence, and
are more likely to be misclassified as false positives.

The two images that were classified differently to the gold standard
visual assessment (11C-PiB image #9 and 18F-florbetaben image #104)
were visually assessed again by two of the original three readers. Al-
though the 18F-florbetaben image was again assessed to be an amyloid
positive subject by the readers, the distance from the classification
boundary for the SUVR and 3D HOG + SVM classification methods
was small. This indicates that the different automatic classification deci-
sion has low confidence, and that this subject is a particularly difficult
borderline case. After visual reassessment of the 11C-PiB case, for
which the gold standard amyloid status was negative, a small region
of tracer uptake was identified in the frontal lobe (highlighted by the
red box in Fig. 11(a)), suggesting that the gold standard amyloid status
may have been incorrect for this case. This highlights the importance of
using an adjunct to visual assessment of amyloid images. In this study,
the visual reads were conducted using PET volumes only. However,
using MR images to help localise tracer uptake might make visual as-
sessment more robust.

In this study, scans were given an “equivocal” visual assessment if
they did not clearly fulfil the stringent definitions of amyloid positive
or amyloid negative scans. Typically, scans were only designated as
equivocal when readers lacked confidence in a final classification due
to poor image quality. For this reason, equivocal scans are the type of
scans forwhich automated classification could bemost useful. Although
there is no gold standard to which the classification results can be com-
pared, the distances of the equivocal scans from the boundary indicate
the level of confidence in the final classification of the automated classi-
fication methods. The 3D HOG + SVM method achieved the largest
mean absolute distance from the boundary (0.418) for the equivocal
18F-florbetapir scans, suggesting a higher level of confidence in the
final classification than the SUVR and intensity-based SVM methods.
For the equivocal 11C-PiB and 18F-florbetaben scans, the intensity-
based SVM method resulted in the largest mean absolute distance
from the classification boundary (0.878 and 0.700, respectively). How-
ever, due to the small sample size (only five equivocal scans for both
11C-PiB and 18F-florbetaben), the distances for the intensity-based
SVMmethodwere not significantly larger (pb0.01) than those achieved
by the other two classification methods.

4.4. Methodological considerations

In this study, the gold standard for amyloid status was determined
using criteria based on consistent visual assessments from three image
readers. Although ADNI provides a clinical diagnosis (e.g. cognitively
normal, mild cognitive impairment, Alzheimer's disease) for each sub-
ject at the time of the 18F-florbetapir and 11C-PiB scans, these diagnoses
are determined using a range of clinical tests. Consequently, the visual
interpretations of the scans may not correlate with the clinical diagno-
ses (Frey, 2015). For example, a subject with an amyloid negative scan
may not be clinically diagnosed as a healthy control. Since the methods
employed in this paper focus on classification of amyloid status using
PET images only, the clinical diagnoses from ADNI were discarded.
Moreover, the tracer manufacturer instructions state that a positive
18F-florbetapir scan does not establish a diagnosis of Alzheimer's disease
or other cognitive disorder (Amyvid, 2012).

For this study, the gold standard amyloid status for each scan was
obtained using the median rating from six visual assessments by three
different image readers. The most junior reader interpreted the images
three times and the most senior reader assessed the images once. Al-
though the number of evaluations varied for each reader, this had little
effect on the final gold standard visual assessments and classification
experiments. For example, if the first assessment from each reader
were used, such that each reader only contributed one data point per
scan, the gold standard classification would change for only six 11C-PiB
scans and two 18F-florbetaben scans. The median visual assessment
for both 18F-florbetaben scans would change from amyloid negative to
equivocal, thus excluding the scans from our study, and reducing the
size of the dataset. Similarly, four of the 11C-PiB scans would be
reclassified as equivocal scans. The median visual assessment of the re-
maining two 11C-PiB scanswould change from amyloid negative to am-
yloid positive. Although the gold standard classification would change
for 17 18F-florbetapir scans if the first visual assessment from each read-
er were used, the median rating of all 17 scans would change to
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equivocal. Consequently, these 17 scans would have been excluded
from this work, and therefore the effect on the classification accuracies
presented in Section 3.2 would be minimal.

In this work, we optimised the 3DHOGparameters and SVMparam-
eters completely independently of the test data. We optimised the 3D
HOG + SVM parameters using the 18F-florbetapir training data, and
used a leave-one-out testing approach on the test data for all three
tracers. Since the 3D HOG + SVM parameters were optimised using
18F-florbetapir data only, the entire 11C-PiB and 18F-florbetaben datasets
were used for testing. Therefore, leave-one-out testingwas used so that
the SVMclassifierwas always trained using data from the same amyloid
PET tracer as the test data. However, if the SVM that is applied to the test
data is trained using the original 18F-florbetapir training data,4 the clas-
sification accuracies for the 3D HOG + SVM method are only slightly
lower than using leave-one-out testing (18F-florbetapir: 90.8%, 11C-
PiB: 96.7%, 18F-florbetaben: 93.8%). In contrast, if the same approach is
used to test the intensity-based SVM method, the classification accura-
cies are considerably lower than using leave-one-out testing (18F-
florbetapir: 56.5%, 11C-PiB: 79.9%, 18F-florbetaben: 41.4%).

In future, to fully assess the generalisability of the 3D HOG + SVM
method, we need to analyse the classification results obtained by
optimising the 3D HOG parameters on other amyloid PET tracers than
18F-florbetapir. This is the subject of ongoing research, and for clarity,
we chose not to present our results here. Nevertheless, our preliminary
results indicate that the 3D HOG + SVM method can achieve a higher
classification accuracy than SUVR and the intensity-based SVMmethod,
regardless of the amyloid PET tracer used to optimise the 3D HOG
parameters.

Although we used all of the 11C-PiB and 18F-florbetaben data that
were available to us, the ADNI database contains many more 18F-
florbetapir scans than were used in this work. Therefore, in future, it
would be useful to test our method on a larger dataset.

Prior to computing the 3D HOG feature vectors, we affinely regis-
tered the PET volumes to MNI space to ensure that the cells generally
contained the same brain regions across all subjects. We could have
used a deformable registration algorithm, however, to keep thepre-pro-
cessing steps of our method in line with the sPAP SUVR method, affine
registration was used. Furthermore, it has been shown that classifica-
tion of Alzheimer's disease patients versus cognitively normal controls
using SUVR is not affected by the registrationmethod (affine versus de-
formable registration) (Cattell et al., 2015).

Many other feature descriptors have been developed in addition to
histograms of oriented gradients. For example, the Scale-Invariant Fea-
ture Transform (SIFT) algorithm has been successfully used for object
recognition in computer vision tasks (Lowe, 1999), and has also been
used in feature-based morphometry in MRI to distinguish between pa-
tients with Alzheimer's disease and healthy controls (Toews et al.,
2010). Nevertheless, we chose to use 3D HOG features due to their sim-
plicity and speed of computation. Moreover, unlike SIFT and Speeded
Up Robust Features (SURF) (Bay et al., 2006), HOG operates on a
dense grid of cells rather than individual points of interest. A larger set
of image descriptors over a dense grid will typically offermore informa-
tion than similar descriptors evaluated at a sparse set of image points.

Unlike the original intensity-based SVM method proposed by
Vandenberghe et al. (2013), which used a SVM with a linear kernel,
we used a SVMwith aGaussian radial basis function kernel. Our primary
reason for using a non-linear kernel was because the subjects in the
original input space of the SVM might not be linearly separable. Al-
though a linear SVM is faster to compute, and non-linear kernels can
give rise to overfitting, it has been shown that if complete model selec-
tion using the Gaussian kernel has been conducted, there is no need to
consider a linear SVM (Keerthi and Lin, 2003). In this work, we
4 i.e. If a leave-one-out testing approach is not used, and the SVM used to classify the
11C-PiB and 18F-florbetaben data is trained using 18F-florbetapir data.
optimised the parameters of the SVM and Gaussian kernel on the 18F-
florbetapir training data only, using a grid search of parameters.

On a practical level, our 3D HOG + SVM method uses less memory
than the intensity-based SVMmethod. The 3DHOG feature vector com-
prised 1500 elements, whereas the feature vector for the intensity-
based method contained an element for each voxel inside the brain
mask (290,409 elements in total). As the number of elements increases,
so does the time taken to train the SVM. The SUVR is also very quick to
compute, but unlike ourmethod, knowledge of the underlying anatomy
and disease pathology is required in order to choose suitable target and
reference regions.
4.5. Conclusion

In this paper we have proposed a machine learning method for
amyloid status classification based on histograms of oriented three-
dimensional gradients. We compared our method to SUVRs obtained
from clinically validated amyloid quantification software, as well as an-
other machine learning method based solely on image intensity
(Vandenberghe et al., 2013). Across three separate amyloid tracers,
our method achieved the highest classification accuracy and area
under the receiver operating characteristic curve. Unlike SUVR, our 3D
HOG + SVMmethod required very little recalibration between tracers,
andwe showed that ourmethod has the potential to produce satisfacto-
ry results even with suboptimal parameters. Moreover, the large sepa-
ration between the population groups suggests that our method
makes fewer low-confidence classification decisions. In addition, in
the future, we plan to specify a band of indecision on either side of the
classification boundary to give visual readers a measure of confidence
in the automatic classification, as well as their own classification
decision.
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