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Structural Degradation Modeling Framework
for Sparse Data Sets With an Application

on Alzheimer’s Disease
Abdallah Chehade and Kaibo Liu , Member, IEEE

Abstract— The rapid development of information technologies
provided unprecedented big data environments for condition
monitoring and degradation analyses. However, the available big
data sets are often sparse with a limited number of observations
per recorded unit. For example, in many healthcare systems,
data are collected from a large number of patients, but the
available observations from each patient are quite limited.
Unfortunately, most of the existing approaches for data-driven
degradation modeling may not work well in this scenario as they
either pool the information from the population or require rich
historical observations in each unit. To address the challenges
in “sparse data environments,” this paper proposes a structural
degradation modeling framework (SDM). The SDM is inspired
by the recommender system, which provides recommendations
about specific items for the user. In addition, it is also tailored to
the needs of degradation modeling. In particular, the framework
takes into consideration: 1) the available data from the unit of
interest; 2) the population characteristics; 3) the relationship
between the available units; and 4) the precision of the available
units. Simulation studies and a case study that involves the
Alzheimer’s disease (AD) neuroimaging initiative data set are
conducted, which shows satisfactory performance of the proposed
method.

Note to Practitioners—This paper proposes a framework for
modeling and predicting the degradation level and/or condition
of units with time. Our framework is particularly useful where
many units have missing and/or limited degradation observa-
tions. Essentially, our proposed method integrates two important
ideas: 1) leveraging the available data from the unit of interest
to improve the modeling fitting of the individual unit over
the observed time domain and 2) considering the relationship
between the available units to extract proper and accurate
population characteristics to address the challenge of limited
observations. The proposed approach is validated via simulation
studies as well as a healthcare case study based on AD. In the
future research, we will further explore the extension of the
proposed method such as considering more generic degradation
models and optimal parameter tunings.
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NOMENCLATURE

s j,t Degradation status for unit/recommender
j at time t .

wi j Weight of recommender i in construction
of the model of unit j .

b j Bias term for unit j .
� j,t Random noise for unit j at time t .
m Number of available recommenders.
ti (r) Time at which the r th observation is

obtained for unit/recommender i .
η(θ, t) Functional form of the degradation model.
θ i Parameters of the degradation model for

recommender i .
�θ Covariance matrix of the recommenders’

parameters.
dik Dissimilarity between recommenders

i and k.
d∗

ii Sum of dissimilarities between
recommender i and the remaining
recommenders.

zik Indicator if recommenders i and k are
identical, with 1 if they are identical and
0 otherwise.

h(.) Tuning function.
θ Tuning parameter.
n j Number of available observations for

unit/recommender j .

I. INTRODUCTION

ACCURATE modeling and prediction of the future degra-
dation evolution has been a critically important task

in many applications. For example, in manufacturing equip-
ment, an unexpected failure may lead to significant economic
losses, production downtime, customer dissatisfaction, and
safety issues. Also in healthcare systems, an unexpected dis-
ease onset may lead to severe medical complexities, ineffective
treatment planning, and long-term side effects. Therefore,
it is crucial to accurately monitor the health status of a unit
(e.g., a system, equipment, and a patient) and understand
its degradation process. To achieve this goal, condition-based
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techniques have been rapidly developed, which aim to fully
understand the degradation mechanism of each individual unit
so that optimal intervention decisions can be made [1]–[5]. For
example, in healthcare systems, appropriate implementation
of condition-based techniques can significantly improve early
disease diagnosis, treatment effect monitoring and evaluation,
and reduce medical and economic costs [6]. Similarly, in man-
ufacturing applications, effectively employing a condition-
based strategy can extend the lifespan of a unit, lower the
maintenance cost, enhance equipment safety, and improve
operator experience [7]–[9].

Fortunately, the accessibility and development of informa-
tion technologies (e.g., clouds) have facilitated the collection
and storage of information from a massive number of units
nowadays, which provide a great opportunity to better under-
stand the degradation processes. For example, the Alzheimer’s
disease neuroimaging initiative (ADNI) has been collecting
longitudinal measurements of biomarkers from hundreds of
participating patients. While the data environment is rich in
the number of studied patients, the available observations
from each patient are often quite limited. The “sparse data
environments” result from several reasons such as: 1) data
loss during transmission; 2) high cost or limited feasibility
of acquiring the biomarkers; and 3) the patient being a new
participant in the study. Unfortunately, most of the existing
literature on degradation modeling is not specifically designed
for such sparse data sets [10]–[19].

Generally speaking, the existing literature on data-driven
degradation modeling can be classified into two main cate-
gories. The first category directly constructs an individual-level
degradation model for a unit using only the available data
from that unit such as the least squares model (LSM) [12]
and the maximum likelihood estimation model [14]. These
methods often require a large amount of historical data to
maintain a certain level of model accuracy. Another cate-
gory focuses on the population characteristics across a set
of units, and then, leverages the available data from the
unit of interest to construct an individual-level degradation
model [10], [11], [15]. Direct implementation of the above-
mentioned techniques to sparse data sets may lead to several
issues, including: 1) the high sensitivity of the estimated para-
meters of the degradation model to the given data; 2) the lack
of interpretability of the degradation model; and 3) the poor
prediction accuracy of the degradation model. In Section II,
we review in depth these conventional approaches for degrada-
tion modeling as well as some recent studies that are related
to the sparse data sets. Furthermore, we review some exist-
ing methods for the multivariate analysis [e.g., recommender
systems, multioutput Gaussian process (MOGP)] that model
multiple signals simultaneously. These models may be effec-
tive for sparse data sets because they capture the relationship
between the multiple signals (e.g., biomarkers for patients);
however, they are not mainly designed for degradation
modeling.

To the best of our knowledge, the existing literature still
lacks a reliable degradation modeling approach that is suitable
for the units with a limited number of observations. This
paper seeks to fill this gap and tackle the unique challenges in

sparse data environments by developing a structural degrada-
tion modeling (SDM) framework. Our approach is inspired by
the recommender system, which recommends an item to a user
based on: 1) other recommenders who rated that item before
and 2) the historical ratings of the user. We first define each
available unit with historical observations as a recommender
and the unit of interest as the user; and then, we model the
degradation status of each unit of interest as a combination
of the recommenders by considering: 1) the available data
from the unit of interest; 2) the population characteristics;
3) the relationship between the recommenders; and 4) the pre-
cision of the recommenders. Essentially, our proposed method
integrates two important ideas: 1) leveraging the available
data from the unit of interest to improve the modeling fitting
of the individual unit over the observed time domain and
2) considering the relationship between the available units
to extract proper and accurate population characteristics to
address the challenge of limited observations.

II. LITERATURE REVIEW

As mentioned earlier, our proposed method is inspired by
the recommender system framework, which provides recom-
mendations about specific items for the user of interest. There-
fore, we first introduce some background information of the
existing recommender systems in Section II-A. We then dis-
cuss potential and existing degradation modeling approaches
in Section II-B, which includes: 1) the MOGP and its potential
application for degradation modeling; 2) the Bayesian mixed-
effects model (MEM) that is commonly used for degradation
modeling; and 3) some degradation-based approaches that
attempt to address the sparse data sets.

A. Recommender Systems

There exist different frameworks for the recommender sys-
tem including matrix completion [20], collaborative filter-
ing [21], user-oriented neighborhood [22], and so on. However,
most of those frameworks are oriented to estimate the attitude
of the user toward a finite set of discrete items, which cannot
be leveraged for the continuous time analysis. Also, the exist-
ing frameworks are often application specific and assume
prior correlated characteristics between different items, such
as movies that belong to the same genre, and advertisements
that belong to the same category.

Fig. 1 illustrates one conventional recommender system
framework, which consists of learning the attitude of user j for
item y from other recommenders who previously rated item y.
For example, Koren et al. [22] implemented the recommender
system to provide better movie recommendations to the users.
The dashed box contains the following unknown values that
are calculated upon request: 1) the estimated rating for item y
by user j and 2) the probability that recommender i shares
the same attitude as user j which is denoted by P(Z j = Ri ).
Specifically, the attitude of user j for item y, Z j,y , can be
estimated as the following:

Z j,y =
m�

i=1

P(Z j = Ri ) ∗ Ri,y + � j,y (1)
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Fig. 1. Conventional recommender system framework.

where Ri,y is the rating of recommender i for item y;
� j,y represents the error; and m is the number of available
recommenders for item y.

Different approaches have been proposed in the lit-
erature to estimate P(Z j = Ri ) such as the con-
strained least squares estimator that aims to minimize�

y∈Y j
hist

(
�m

i=1 P(Z j = Ri ) ∗ Ri,y−Z j,y)
2 given that P(Z j =

Ri ) ≥ 0,
�m

i=1 P(Z j = Ri ) = 1, and Y j
hist is the list of

items that were previously rated by user j . However, these
approaches often require that all the suggested recommenders
for item y have already rated enough common items with
user j to achieve an accurate estimation of P(Z j = Ri ).
As mentioned in [23], many approaches alternatively approx-
imate P(Z j = Ri ) based on the similarity sim(i, j) between
user j and recommender i

P(Z j = Ri ) ∝ sim(i, j). (2)

For more details about the similarity metric, refer to [23].
The conventional recommender system framework requires

that all the utilized recommenders should have rated item y
before; otherwise, these recommenders will not be informative
for learning the attitude of user j for item y. However, it is
common in practice that only a few recommenders have previ-
ously rated an item y (e.g., a new movie that has been recently
featured and not yet rated by many recommenders). In such a
case, the estimated attitude for user j for item y based on (1)
is dependent on a limited number of recommenders, which
may not be reliable. To address this issue, further extensions
have been proposed in the literature as shown in Fig. 2 [21].
Here, the dashed box contains the following unknown values
that are calculated upon request: 1) the probability measure
P(Z j = Ri ); 2) estimated ratings from the recommenders;
and 3) the estimated rating for the user. Unlike the con-
ventional approach that only focuses on the actual ratings,
the extended framework utilizes the estimated ratings from the
recommenders based on their historical preference. In other
words, the attitude of user j for item y, Z j,y , is estimated as
the following:

Z j,y =
m�

i=1

P(Z j = Ri ) ∗ R̃i,y + � j,y (3)

Fig. 2. Extended recommender system framework.

where R̃i,y is the estimated rating for recommender i and it is
assumed to follow the parametric form η(β i , y), where β i is
estimated based on the recommenders’ historical preference.

Although this approach tackles the challenge of missing
values from each recommender (i.e., items that a recommender
has never rated), it is very critical to accurately calculate β i
to obtain a reliable estimation of R̃i,y . In addition to that,
P(Z j = Ri ) may not be accurately estimated, if there is only
a limited rating history for user j .

While the recommender system aims to address a different
problem from degradation modeling, it provides a good frame-
work to address sparse data sets by leveraging the relationship
between the user of interest and the recommenders, which
inspires our proposed method in Section III.

B. Degradation Modeling

1) Multioutput Gaussian Process: Gaussian process is a
statistical model where observations occur in a continuous
domain, e.g., time or space. In a Gaussian process, every point
in some continuous input space is associated with a normally
distributed random variable and the main task of the Gaussian
process is to model the covariance between any two input
points. Gaussian processes are mostly designed to analyze
single outputs and their main advantages include: 1) they are
often used as a nonparametric technique to flexibly capture
complex signal forms and 2) they can be utilized for the
continuous time analysis. The MOGP, as an extension of the
conventional Gaussian process further collaboratively captures
the correlation between the different outputs to better predict
a set of multiple outputs.

For degradation modeling, we may consider the degradation
signal from each unit as an output. This allows the MOGP
to simultaneously model the signals from multiple units.
Here, we focus on a recent method, the collaborative MOGP,
introduced in [24] that showed good performance, especially
when some of the outputs have missing data. This is highly
desired for modeling the sparse data set of our interest.
Specifically, Ngyuen and Bonilla [24] assumed all the outputs
(e.g., the degradation signals from the units) share Q latent
functions, where each latent function follows an independent
Gaussian process. They also assumed that each output function
has a Gaussian process prior. Finally, they mixed the stochastic
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processes from the latent functions and the output functions to
construct the MOGP model. They also provided the MATLAB
code with the necessary libraries. In this paper, we will use
the provided code as a comparison study.

Despite the promise, there are also several limitations for
using the MOGP method. As discussed earlier, MOGP is
commonly used as a nonparametric technique to capture
complex signal forms. However, such characteristics limit its
extrapolation performance [25]. While some studies consid-
ered introducing a parametric form for characterizing the mean
function as an extension, it removes the nonparametric nature
of the MOGP and diminishes one of its major contributions.
Finally, another major drawback for the MOGP is the high
computational cost which limits it from real-time analysis in
comparison to other parametric methods such as the MEM.

2) Mixed-Effects Degradation Modeling: For degradation
modeling, the MEM that considers both the population and
individual characteristics, is one of the most commonly used
techniques in the literature. The MEM model was first intro-
duced in [10] and can be written as

st = η(ϕ, ν, t) + �t (4)

where η(·) is the parametric form of the degradation model;
st is the measurement for describing the underlying degrada-
tion status at timet; ϕ is a vector of fixed-effect parameters
that represents common characteristics of the population; ν is
a vector of random-effect parameters that characterizes the
unit-to-unit variability; and �t is an error term that represents
the measurement noises. Depending on the parametric form
of η(·), this degradation model can be used to describe
a variety of functional forms according to the evolution
of the degradation signal. Based on the MEM, extensive
studies have been developed in the literature. For example,
Gebraeel et al. [11] proposed a Bayesian version of the
MEM [(Bayesian MEM (BMEM)] that first fitted a MEM
given a set of historical units, and then, utilized the Bayesian
approach for updating the random-effect parameters given
the degradation history of the unit of interest. This approach
accounts for: 1) the population characteristics via the MEM
and 2) the individual characteristics via the Bayesian update.
Without loss of generality, in the following, we focus on the
pth order polynomial degradation model considered in [15]
for a demonstration:

st =
p�

α=0

(να)tα + �t = �tν + �t (5)

where p is the order of the polynomial model; ν =
[ν0, . . . , νp]T is the random-effect parameters and often
assumed to follow a multivariate normal distribution,
ν ∼ Np+1(u0,�0); �t is the random noise and follows
N(0, σ 2); and �t = [1, t, . . . , t p].

Then, the estimated degradation status at time t can be
calculated as

ŝt |s. = �t ∗ ν1 (6)

where s· = [st (1), . . . , st (n)]T is the vector of the observed
measurements for the unit of interest up to current time t (n);

and ν1 is the posterior distribution of the random-effect
parameters and follows Np+1(u1,�1), where

u1 =
�

�T �

σ 2 + (�0)
−1

�−1 �
�T s·
σ 2 + (�0)

−1
u0

�

�1 =
�

�T �

σ 2 + (�0)
−1

�−1

,

� =
�
�T

t (1) . . . �T
t (n)

�T ∈ Rn×(p+1)

and n is the number of available observations.
Accordingly, the prediction of the degradation status at

time t is just a realization of the distribution ŝt |s· ∼
N(�t u1,�t�

1�T
t ). While the BMEM shows promising results

in rich data sets, the Bayesian update procedure may not be
effective for units with a small number of available obser-
vations. This is because, for units with a limited number of
observations, the updating procedure tends to focus more on
the population characteristics which may not be effective for
future predictions of the degradation status for the unit of
interests.

3) Degradation Modeling Approaches for Sparse Data Sets:
Currently, there are few approaches for degradation model-
ing, which attempt to address the challenges of sparse data
environments. For example, Lin et al. [26] assumed that each
individual degradation model can be written as a weighted
combination of K canonical models, where the weights and
the K canonical models are learned simultaneously by an
iterative algorithm. However, there are several limitations of
the proposed method: 1) this iterative algorithm only leads to a
stationary point, which may not be globally optimal; 2) how to
choose the initial starting point to reach a solution near the
optimal parameters is not discussed, which makes the entire
proposed approach difficult to be implemented in practice;
and 3) the approach cannot be easily employed for real-time
monitoring of the unit of interest due to the high computational
cost of the iterative algorithm involved in learning the weights
as well as the K canonical models.

There also exist other approaches that utilize stochastic
processes to analyze the degradation processes with sparse
data (e.g., large interarrival times between the degrada-
tion observations). Specifically, Peng et al. [27] proposed a
Bayesian framework with inverse Gaussian process models to
analyze the degradation of heavy duty machine tool’s spindle
systems where the position accuracy is measured at intermit-
tent discrete time points. Although such methods showed good
performance to continuously characterize and interpolate the
degradation status of a unit over the observed time domain,
they are ineffective for extrapolation and predictive analytics as
mentioned in [25] because they: 1) mainly focus on modeling
the relationship between the available observations within each
individual unit and 2) fail to capture the functional form of
the model, which is critical for extrapolation.

III. METHODOLOGY DEVELOPMENT

In this paper, we propose an SDM framework that utilizes
the recommender system framework for degradation modeling
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by considering: 1) the available data from the unit of interest;
2) the population characteristics; 3) the relationship between
the recommenders; and 4) the precision of the recommenders.
Specifically, we consider the unit of interest as the user and
the remaining available units with historical observations as
recommenders. Then, we adopt and modify the extended rec-
ommender system framework in Fig. 2 to satisfy the specific
needs for degradation modeling. Section III-A first provides
the problem formulation, and then, a motivation example.
Next, Section III-B discusses the details of the proposed SDM
framework.

A. Problem Formulation

Our main idea is to construct the degradation model of
unit j of interest as a combination of the expected values
from the recommenders

s j,t =
m�

i=1

(wi j E[si,t |si,·]) + b j + � j,t (7)

where
�m

i=1(wi j E[si,t |si,·]) + b j is the predicted degradation
status for unit j at time t; si,· is the vector of available
observations for recommender i ; m is the number of avail-
able recommenders; wi j is the weight of recommender i in
construction of the model of unit j ; b j is a bias term; and � j,t

quantifies the measurement errors. Note that index i in the
summation represents recommender i and it is different from
the unit of interest j .

In (7), wi j is a key parameter because it quantifies the
similarity between the degradation profiles for unit j and
recommender i . Once wi j is accurately estimated, we will
then be able to leverage the degradation profiles of the
recommenders to accurately predict the future degradation
status for the unit of interest. It may be intuitive to calcu-
late wi j via the existing methods such as: 1) maximizing
the likelihood or 2) minimizing the sum of squared errors
over the observed time domain (i.e., least squares approach).
However, such approaches do not explain that wi j quantifies
the similarity between the degradation profiles for unit j and
recommender i ; and therefore, the interpretability is limited.
In addition, for a unit j with limited observations, there is high
uncertainty involved in the estimation of wi j if it is based only
on the limited observations from unit j .

Next, we provide an example to illustrate the challenges
for modeling the AD with limited observations. Specifically,
Fig. 3 shows in red circles, the mini mental score examina-
tion (MMSE) measurements for an AD patient of interest; in
blue squares, a recommender for the MMSE of a typical mild
AD patient; in green stars, a recommender for the MMSE
of a typical moderate AD patient; and in black diamonds,
a recommender for the MMSE of a typical severe AD patient.

Our goal is to estimate the degradation model of the patient
of interest using (7). With the maximum likelihood estimator,
the model parameters learned for this example are

⎡
⎢⎢⎣

b
w1
w2
w3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1.2
0.86
−1.0
0.89

⎤
⎥⎥⎦

Fig. 3. Blue squares: mild AD. Green stars: moderate AD. Black
diamonds: severe AD. Red circles: MMSE measurements of a patient of
interest.

which also minimizes the sum of squared errors. However, this
model is limited in interpretation and does not provide any
insights on the level of sickness. To be specific, the results
indicate that the degenerative process of the patient of interest
is almost equally close to the degradation processes of the
severe patient as well as the mild patient (w1 = 0.86 and
w3 = 0.89). In other words, this model indicates that the
patient should follow the path of a moderate patient. Contra-
dictorily, the results also show that the patient’s degradation
model is far from that of the moderate patient (w2 = −1).
Furthermore, to understand the sensitivity of the model to
newly observed data, we intentionally hide the last observation
and derive the model parameters again:

⎡
⎢⎢⎣

b
w1
w2
w3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−73
2.8
1.9

0.95

⎤
⎥⎥⎦.

It can be seen that there is a large difference in the estimated
parameters after hiding the last observation, which indicates
that the estimated parameters are highly sensitive to newly
observed data and the derived degradation model is not reliable
for extrapolation.

B. Structural Degradation Modeling Framework

To address the challenges in sparse data sets, we propose
to model the degradation status for the unit of interest based
on the recommender system framework by considering the
precision of the recommenders and the relationship between
the recommenders as shown in the solid box in Fig. 4.

However, unlike the conventional recommender system,
the proposed approach estimates the expected value and vari-
ance of the degradation status for recommender i at time t
as E[si,t ] = η(θ i , t) and Var[si,t ] = σ 2

i , where η(θ i , t) is
assumed to be monotonic. The monotonicity assumption on
degradation is natural and common in practice [9], [28], [29].
For example, the National Institutes of Health (NIH) described
AD as an irreversible, progressive brain disorder that slowly
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Fig. 4. SDM framework.

destroys memory and thinking skills. The NIH also mentioned
that “current Alzheimer’s treatments cannot stop AD from
progressing,” and “they can temporarily slow the worsening
of dementia symptoms.”

To highlight our main ideas, we focus on the polyno-
mial degradation process because: 1) it is commonly used
to model the MMSE in AD [26] and 2) various functional
forms such as the exponential and logarithmic models can be
transformed to polynomial functional forms (check Appen-
dix C for more details on estimating the parameters of the
recommenders).

The following SDM formulation is proposed to estimate the
parameters wi j and b j in (7):

min
wi j ,b j

n j�

r=1

{E[s j,t j (r)] − s j,t j (r)}2

+h(n j )

�
m�

i=1

m�

k=1

(wi j dikwkj ) +
m�

i=1

wi j σiσiwi j

�

s.t.
m�

i=1

wi j = 1,

wi j ≥ 0, for all pairs (i, k)

zik(wi j − wkj ) = 0, for all pairs (i, k)

zik =
�

1 if recommenders i and k are identical

0 otherwise
(8)

where E[s j,t ] = �m
i=1(wi j E[Si,t |Si,·]) + b j is the predicted

degradation status for unit j at time t , where si,t |si,· is a
random variable that represents the degradation status of
recommender i given its historical degradation information;
zik is an indicator variable to check if recommenders i and k
are identical, i.e., share the same degradation model; n j is
the number of available observations for unit j ; h(n j ) is
a tuning parameter that depends on n j ; t j (r) is the time
at which the r th observation is obtained for unit j ; and
dki = dik = √

dik ∗ √
dki ≥ 0 is the dissimilarity between

recommenders i and k. Thus, in the objective function,
wi j dikwkj = wi j

√
dik ∗√

dkiwkj is the weighted dissimilarity
between recommenders i and k, which depends on the esti-
mated weights wi j and wkj .

Unlike the existing methods in degradation modeling,
the SDM framework takes into consideration of all the
followings.

1) The precision of the recommenders via the term�m
i=1 wi j σiσiwi j .

2) The relationship between the recommenders via the term�m
i=1

�m
k=1(wi j dikwkj ).

3) The population characteristics via modeling the unit of
interest j as a combination of the recommenders and
by the definition of the weight wi j that it quantifies the
similarity between the degradation profiles for unit j and
recommender i .

4) The individual characteristics via minimizing the sum of
squared errors

�n j
r=1{E[s j,t j (r)] − s j,t j (r)}2.

In the following, we provide detailed discussions for each
term considered earlier. For 1), when predicting the degrada-
tion status of unit j , it is preferred to focus more on precise
recommenders. In other words, if σ 2

i is relatively high with
respect to other recommenders, then we prefer to assign a
low value for wi j . Therefore, to achieve a reliable estimation,
we add the term

�m
i=1 wi j σiσiwi j to diminish the influence

from recommenders with low levels of precision.
For 2), we focus on minimizing the overall weighted dissim-

ilarity for controlling the stability in the constructed degrada-
tion model. Considering two nonsimilar recommenders i and k
(i.e., dik is large), a large value in wi j dikwkj means that large
weights wi j and wkj are assigned to construct the degradation
model for unit j , which thus, leads to an uninterpretable
and unstable model similar to the case in the motivation
example in Fig. 3 (w1 and w3 are very large and close to
each other). To avoid this issue, we propose to minimize the
overall pairwise weighted dissimilarity between the recom-
menders,

�m
i=1

�m
k=1(wi j dikwkj ), to enhance the stability and

interpretation of the constructed degradation model. Ideally,
we prefer wi j dikwkj → 0 when recommenders i and k do not
share similar degradation characteristics (i.e., dik is large). This
is equivalent to mitigating the contribution of recommender
i (i.e., wi j → 0), or recommender k (i.e., wkj → 0), or both
the recommenders (i.e., wi j → 0 and wkj → 0).

The dissimilarity metric is a commonly used measure in
the literature of clustering and classification such as density-
based spatial clustering of applications with noise [30],
k-nearest neighbors [31], k-means [32], [33], and ratio
cut [34]. In particular, most of the existing methods set the
dissimilarity metric dii to 0, because there is no dissimilarity
between the recommender and itself. Furthermore, extensive
studies have been done in the literature of the recommender
systems as well [35]. Without loss of generality, in this paper,
we consider the square of the Mahalanobis distance, dki =
(θ i − θk)

T �−1
θ (θ i − θ k) for i 	= k to measure the dissimilarity

between recommenders i and k. Here, �θ is the covariance
matrix of θ and it can be estimated by the sample covariance
matrix from the parameters of the recommenders.

For 4),
�n j

r=1(E[s j,t j (r)] − s j,t j (r))
2 is the sum of squared

errors over the observed time domain, which is used to
ensure the constructed model accurately characterizes the
degradation evolution of the unit of interest j . In the objective
function, the weighted dissimilarity

�m
i=1

�m
k=1(wi j dikwkj )+�m

i=1 wi j σiσiwi j is more focused on the population character-
istics, whereas the sum of squared errors

�n j
r=1(E[s j,t j (r)] −

s j,t j (r))
2 is more focused on the individual characteristics
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of the unit of interest. h(n j ) balances this tradeoff. In this
paper, we propose to consider h(n j ) as a decreasing positive
function with respect to n j . This is because when there are
more observations available from unit j , we will be more
confident to rely on the individual observations to charac-
terize the unit. As an illustration, we set h(n j ) = θ/n j ,
where θ is a tuning parameter and it is calculated via cross
validation.

Finally, by the definition of wi j that it quantifies the
similarity between the degradation profiles for unit j and
recommender i , the following constraints should be satisfied:
1) wi j ≥ 0 for i = 1, . . . , m and 2) weights from equivalent
recommenders should be equal, which mathematically can
be written as zik(wi j − wkj ) = 0 such that zik = 1 if
recommenders i and k are identical; otherwise, zik = 0. Since
we are given a finite set of recommenders, we focus on the
normalized similarity measure (i.e.,

�m
i=1 wi j = 1).

With all the above-mentioned efforts, we expect the pro-
posed model to be more interpretable and robust to overfitting.
As an illustration, we apply the proposed framework to the
example shown in Fig. 3. The results show that the optimal
solution is ⎡

⎢⎢⎣

b
w1
w2
w3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0.97
0.09
0.77
0.14

⎤

⎥⎥⎦

before hiding the last observation; and
⎡

⎢⎢⎣

b
w1
w2
w3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0.88
0.10
0.78
0.12

⎤

⎥⎥⎦

after hiding the last observation. From these results, we can
see that the proposed method has a nice interpretation that
the patient is more likely to have a moderate AD status.
In addition, the weights do not vary much compared to the
maximum likelihood and the least squares approaches before
and after hiding the last observation. In Sections IV and V,
we will further thoroughly study our proposed method under
different scenarios.

For simplicity, we rewrite the SDM formulation as the
following:

min
w j

wT
j �T �w j − 2sT

j,·�w j + sT
j,·s j,· + h(n j )w

T
j D∗w j

s.t. oT w j = 1

Aw j ≥ 0 (9)

where s j,· = [s j,t j (1), s j,t j (2), . . . , s j,t j (n j )]T is the vector
of available observations for the unit of interest j ; w j =
[b j , w1 j , . . . ., wmj ]T ∈ R(m1)×1 is a vector that contains both
the bias term and the weights

� =
⎡

⎢⎣
1 η(θ1, t j (1)) . . . η(θm, t j (1))
...

...
. . .

...
1 η(θ1, t j (n j )) . . . η(θm, t j (n j ))

⎤

⎥⎦ ∈ Rn j ×(m+1)

is the design matrix; o = [0, 1, . . . , 1]T ∈ R(m1)×1 is a vector
containing all ones except for the first entry to be 0; and

A = diag(o) is a diagonal matrix with a diagonal vector o;
and

D∗ =

⎡

⎢⎢⎢⎣

0 0 . . . 0
0 d∗

11 + σ 2
1 . . . d1m

...
...

. . .
...

0 dm1 . . . d∗
mm + σ 2

m

⎤

⎥⎥⎥⎦ ∈ R(m+1)×(m+1)

is the modified dissimilarity matrix, in which d∗
ii = �m

k=1 dik ,
dki = dik ≥ 0, and dii = 0. The rationale of the definition
of d∗

ii is that if recommender i is mistakenly chosen, then
it adds up to the uncertainty of the constructed model. This
uncertainty would be quantitatively high if recommender i
is totally off from the true degradation model, which is
estimated as a combination of the remaining recommenders’
models. Accordingly, if recommender i is highly nonsimilar
from the remaining recommenders, then it is risky to include
recommender i in the constructed model. The third and fourth
constraints of (8) are removed by the results of Lemma 1.

In Lemma 1, we prove that any two equivalent recom-
menders will have equal weights. This Lemma allows remov-
ing the last two constraints in formulation (8) and maintaining
the interpretation of wi j . In Lemma 2, we further prove that the
proposed SDM formulation (9) is convex. Therefore, the for-
mulation can be efficiently solved at a low computational cost
by many existing solvers [36].

Lemma 1: If recommenders i∗ and k∗ are identical
(i.e., θ i∗ = θ k∗ and σ 2

i∗ = σ 2
k∗), then the resulting weights

wi∗ j and wk∗ j from the SDM formulation (9) are also identical
(see Appendix A for details).

Lemma 2: The SDM formulation (9) is convex (see
Appendix B for details).

IV. SIMULATION STUDIES

In this section, we investigate the performance of the
proposed SDM via simulation studies and compare it with
the following benchmark methods: 1) recommender system
model (RM); 2) BMEM; 3) LSM; 4) collaborative MOGP
with a constant mean function (MOGP); and 5) collaborative
MOGP with a quadratic mean function (MOGP-Q). For the
RM, we estimate wi j by its restricted maximum likelihood
estimator subject to

�m
i=1,i 	= j wi j = 1 and wi j ≥ 0 for

i = 1, 2, . . . , m. In our simulation studies, we focus on the
AD application and simulate the MMSE measurements for AD
patients. The MMSE ranges between 0 (worst condition) and
30 (best condition) and it is expected to decrease with time
for all patients. In total, 100 patients were simulated over a
period of 36 months with measurements taken monthly.

For each simulated patient i , the remaining 99 simulated
patients are considered to be the recommenders. The MMSE
measurement is assumed to follow a second-order polynomial
model [26], [37]:

Mi,t = θi,0 + θi.1t + θi,2t2 + �i,t (10)

where Mi,t is the simulated MMSE measurement for patient i
at time t (t is the time in months); �i,t represents the random
noise in the MMSE measurements and it is assumed to follow
a normal distribution N(0, σ 2

i ); and θ i = [θi,0, θi,1, θi,2]T are
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Fig. 5. Underlying degradation models for AD patients over 36 months.

the parameters for patient i and assumed to follow the normal
distribution N3(u,�) with u = [23; −0.05; −0.005]T and

� =
⎡

⎣
10 −10−4 −10−5

−10−4 10−4 10−5

−10−5 10−5 10−5

⎤

⎦.

Fig. 5 shows the underlying degradation models for AD
patients over 36 months.

In our simulation studies, nine different scenarios are con-
sidered with two varying factors: 1) the variance of the random
noise σ 2

i with values 1, 9, and 16 and 2) the percentage of
missing data (sparsity level) by randomly hiding 20%, 50%,
and 80% of the observations from the full data set, i.e., some
units may have more hidden observations than other units. For
each scenario, we 1) calculate θ via holdout cross validation
and 2) evaluate the metrics in (11) and (12).

Specifically, for each simulated patient j , we define the
mean squared error (MSE) based on the hidden observations
as the following:

MSE( j) = 1

nh
j

�

t∈H

(M j,t − M̂ j,t )
2 (11)

where H is the set of time points for the hidden measurements;
nh

j is the number of hidden measurements for patient j ; and

M̂ j,t is the estimated measurement for patient j at time t
(i.e., M̂ j,t = θ̂ j,0 + θ̂ j,1t + θ̂ j,2t2 via the LSM and the BMEM
approaches, and M̂ j,t = �m

i=1 wi j M̂i,t + b j via the SDM and
the RM frameworks).

Since the true parametric simulation model is known,
we can also calculate the MSE of the parameters (pMSE) for
patient j as the following:

pMSE( j) = (θ j − θ̂ j )
T (θ j − θ̂ j )

p + 1
(12)

where p is the order of the polynomial degradation model
and it is equal to 2 in our simulation study; and θ̂ j =
[θ̂ j,0, θ̂ j,1, θ̂ j,2]T is the estimated set of degradation parameters

for patient j based on the available observations (i.e., exclud-
ing the hidden observations). Note that if a constructed model
fits the available observations of a unit accurately but fails
to estimate the true degradation model, it is expected that
the future predictions from the constructed model will be
inaccurate. Therefore, we utilize pMSE here to measure the
long-term prediction performance of the constructed model,
such that a lower error in the model parameters is expected
to produce better predictions in the future. On the contrary,
the MSE metric in (11) characterizes the prediction perfor-
mance within the observation window.

Table I summarizes the performance comparisons regarding
the MSE metric. From Table I, we can see that the SDM shows
a relatively better performance compared to the benchmark
methods, especially at high percentages of missing data. This
is an expected consequence because: 1) the constructed models
from the LSM and BMEM are unstable and highly sensitive to
the variance of the available data; 2) the MOGP and MOGP-Q
may falsely characterize the correlation between some of the
units due to the limited data availability or the high level
of noise involved in the data; and 3) the MOGP is suitable
for interpolation but not extrapolation [25]. On the contrary,
the SDM framework focuses on precise recommenders and
considers the relationship between the recommenders, which
stabilize the constructed degradation model. As a conclusion
from the MSE metric results, the proposed SDM framework
is expected to have a better performance than the benchmark
methods for sparse data sets and/or in the presence of high
variance of noise. Note that data sets with high noise variance
share some challenges with sparse data sets such as the risk of
overfitting and lack of interpretability. This is because noisy
data sets typically require more observations than a cleaned
data set to achieve a comparable model fitting performance.

To have a better understanding of the computational cost,
we further conduct numerical experiments by using MATLAB
V9.2 in a 64-bit Windows 7 Enterprise operating system with
Intel Core i7-6600U 2.60-GHz CPU and 16-GB RAM. The
overall computational times (seconds) for the SDM, BMEM,
LSM, MOGP, and MOGP-Q are 3.36, 0.046, 0.023, 2330, and
3223, respectively. This time includes model construction and
model prediction for all the patients. The results are expected
because the computational time increases with the increase of
model complexity. For example, 1) the LSM model focuses
only on the data from the patient of interest, which thus is
expected to be the fastest and 2) the MOGP requires solving
a challenging and complex optimization problem, which thus
leads to an extremely slow performance.

Fig. 6 provides a better illustration with the noise vari-
ance equal to 9. It clearly shows that the SDM outper-
forms the benchmark methods at high percentages of miss-
ing data. Note that the MSE metric is based on ran-
domly selected hidden observations; therefore, it measures
the interpolation performance because those hidden observa-
tions are scattered and not concentrated in a specific time
window.

To better understand the predictive performance for the long
run, we further evaluate the results of the pMSE metric, which
are present in Table II. Here, we do not show the results from
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TABLE I

SAMPLE MEAN (μMSE) AND SAMPLE STANDARD DEVIATION (σMSE) OF THE MSE UNDER DIFFERENT
SIMULATED SCENARIOS WITH THE BEST PERFORMING MODEL IN BOLD

TABLE II

SAMPLE MEAN (μpMSE) AND SAMPLE STANDARD DEVIATION (σpMSE) OF THE PMSE UNDER DIFFERENT

SIMULATED SCENARIOS WITH THE BEST PERFORMING MODEL IN BOLD

Fig. 6. Sample mean of the MSE for noise variance equals to 9.

the MOGP and MOGP-Q because they are based on data and
do not give estimates for the parametric model in (10).

From Table II, we can see that: 1) the proposed SDM
framework outperforms the benchmark methods in all the
scenarios and 2) the benchmark methods perform poorly at
high percentages of missing data. The first observation is
expected because the SDM framework considers the relation-
ship between the recommenders, which ensures the stableness
of the constructed degradation models even at high levels of

missing data. The second observation stems from the facts that:
1) the RM and LSM tend to overfit the limited observations,
which thus leads to a good performance over the observed time
domain but not for the future predictions and 2) in presence of
limited observations, the BMEM tends to focus more on the
population characteristics that may not accurately capture the
unique characteristics of the unit of interest. As a conclusion,
Table II gives the predictive power of the proposed method.
For a better visual illustration, Fig. 7 shows the sample mean
value of the pMSE for the scenarios with a noise variance
equal to 9.

Note that: 1) the LSM considers only the sum of squared
errors; 2) the BMEM considers the population characteristics,
but it does not consider the relationship between the recom-
menders and the unit of interest; and 3) the RM considers
the relationship between the recommenders and the unit of
interest via the constraints wi j ≥ 0 and

�m
i=1 wi j = 1, and

the component
�n j

r=1(E[s j,t j (r)]− s j,t j (r))
2. However, the RM

does not consider the relationship between the recommenders
themselves, which is critical for the stability of the model. As a
result, this comparison study further shows the importance of
the considered components in the proposed approach.

Additional simulations are conducted to better understand
the performance of the proposed approach versus the number
of available observations. Specifically, 500 patients are sim-
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Fig. 7. Sample mean of the pMSE for noise variance equals to 9.

Fig. 8. MSE when the noise variance equals to 9 and the level of missing
data equals to 80%.

ulated when the variance of the noise is set to 9 and the
percentage of missing data is set at 80%. We follow (11)
to calculate the MSE of the hidden observations for each
patient. The results are summarized in Fig. 8, which shows
the MSE for each of the 500 patients versus the corresponding
number of available observations and the boxplots of the MSE
at different levels of available observations.

From Fig. 8, 1) there is no clear trend showing that the
performance of the proposed approach improves with more
available observations and 2) there are few extreme patients
that perform poorly, which is mostly due to the limited
available data, and/or the lack of having similar recommenders
to those patients. As a conclusion, this simulation study further
shows the advantage of our proposed method for sparse data
environments.

V. CASE STUDY

This section further investigates the performance of the
proposed SDM framework based on the ADNI data set [38],
which involves participants between the age of 55 and 90 from
USA and Canada. We only consider the RM, BMEM, and
LSM as the three benchmark methods and exclude the MOGP.
This is because there are a little shared observational time
points between the patients, which result in an ill-conditioned
MOGP. The data set contains personal information and lon-

gitudinal measurements of examinations and biomarkers for
the participating patients. Here, we focus on the MMSE
because it has been widely used to predict the AD status of
a patient in practice. Furthermore, in this paper, we consider
all of the 583 participating patients that have four or more
MMSE measurements. This requirement is needed to ensure
the construction of valid models via the LSM and BMEM
approaches. For a better visualization, Fig. 9 shows the MMSE
degradation curves for a subset of the patients. We can observe
that different patients may have a different number of available
observations and that the observations are collected at different
time points. In addition, the data set of MMSE measure-
ments is sparse in nature because: 1) MMSE measurement is
recorded semiannually for each patient typically; 2) patients
may join the program at different AD stages; and 3) some
patients may skip some of their semiannual visits to the clinic.
Thus, the given MMSE data set presents a real practical
challenge and also provides a good example to test the efficacy
of the proposed structural model for sparse data sets.

A. Problem Setup

In this paper, all the participating patients excluding the
patient of interest are considered to be the recommenders,
which totals to 582 recommenders for every patient of interest.
Specifically, we first model the MMSE measurements of the
recommenders as a quadratic model [26], [37]

Mi,t = θi,0 + θi.1t + θi,2t2 + �i,t (13)

where Mi,t is the MMSE measurement for recommender i at
time t ; t is the time after the first visit for each recommender;
θi,0 is the MMSE score of recommender i for the first visit to
the clinic; and θ i = [θi,0, θi,1, θi,2]T are the parameters of the
degradation model for recommender i .

Second, to set up the dissimilarity matrix, we focus on
dik = dki = (θ i − θk)

T �−1
θ

(θ i − θ k) to measure the
dissimilarity between recommenders i and k, and d∗

ii =�582
k=1[(θ i − θ k)

T �−1
θ

(θ i − θ k)] to measure the dissimilarity
between recommender i and all the remaining recommenders.

Third, with our proposed SDM framework, we model the
patient of interest j given the available MMSE measurements
for that patient

M j,· = [M j,t j (1), . . . , M j,t j (n j )]T

as

M j,t =
�

582�

i=1

[wi j (θi,0 + θi.1t + θi,2t2)]
�

+ b j + � j,t (14)

where M j,t is the true MMSE score for patient j at time t ,
and w j = [b j , w1, j , . . . , w582, j ]T is the solution of the
optimization problem in (9) by simply replacing s j,· by M j,·.
Note that for every patient of interest j , there is a different set
of 582 recommenders. To calculate the tuning parameter θ,
we conduct a leave-one-out cross validation (i.e., consider
each patient as a validating patient once). Specifically, we first
initialize θ with a random positive value, estimate w for every
validating patient by considering the remaining patients as
recommenders, and then, we calculate the prediction errors
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Fig. 9. True and predicted MMSE measurements from a subset of patients.

for the validating patients. Next, we update θ iteratively to
minimize the MSE of all the predictions for the validating
patients via a gradient descent algorithm [36].

B. Prognostics Performance

To measure the prognostics performance of the proposed
and benchmark degradation models, we conduct the leave-
one-out cross validation. In other words, for each validat-
ing patient j , we calculate w j such that all the remaining
582 patients are considered as recommenders. Furthermore,
we hide the last two observations for each validating patient j ,
and we calculate the root of the squared difference (rSD)
between the predicted and true measurements for each of the
hidden observations. Mathematically, rSD is defined as

rSD( j, t) =
�

(M j,t − M̂ j,t )2 (15)

where

M̂ j,t =

⎧
⎪⎨

⎪⎩

582�

i = 1

[wi j (θi,0 + θi.1t + θi,2t2)]

⎫
⎪⎬

⎪⎭
+ b j

is the expected MMSE estimate for patient j at time t .
To better visualize and compare the prognostic performance

of the proposed SDM framework and the benchmark methods,
Fig. 9 shows the prediction results of the MMSE for some
patients, and Figs. 10 and 11 show the boxplots of rSD of the
two hidden measurements for all the participating patients.

From Figs. 9–11, we can see that: 1) the SDM framework
results in lower means and lower variances for the rSD
of both hidden measurements compared to the benchmark

methods and 2) the SDM method shows more stable results
and smaller increases in the errors from the first hidden
measurement to the second hidden measurement than the
benchmark methods. The first observation stems from the fact
that the SDM framework considers the relationship between
the recommenders and the precision of the recommenders.
The second observation shows the importance of considering:
1) the relationship between the user and the recommenders
and 2) the pairwise relationship between the recommenders
to construct a stable and accurate degradation model that
shows consistently satisfactory prognostic performance. Note
that unlike the simulation study, here we do not know the
underlying true model, and thus, we cannot calculate the
pMSE metric defined in (12). In summary, this case study
further validates our conclusion that for sparse data sets,
the proposed SDM framework outperforms the benchmark
methods.

VI. DISCUSSION AND CONCLUSION

Predicting and modeling the progression of degradation is
important and critical to a wide set of applications. Fortunately,
the development of information technologies (e.g., clouds)
has facilitated the collection and storage of information from
a massive number of operating units and provided a great
environment for condition monitoring. While the number of
recorded units can be large, many units often have limited
available observations due to different reasons such as data
loss during transmission, and high cost or limited feasibility
of data acquisition. Thus, the direct implementation of the
existing degradation modeling approaches in such sparse data
environments may lead to: 1) a low model accuracy for
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Fig. 10. Boxplot for the rSD of the first hidden measurement.

Fig. 11. Boxplot for the rSD of the second hidden measurement.

prediction; 2) a high uncertainty of the model parameters; and
3) a lack of interpretability of the model.

This paper aims to fill the literature gap by developing an
SDM framework that addresses the unique challenges of the
sparse data environments. Specifically, the degradation model
of each individual unit is structured as a combination of a
set of recommenders by considering: 1) the available data
from the unit of interest; 2) the relationship between the
recommenders; 3) the precision of the recommenders based on
past performance; and 4) the population characteristics. The
developed framework is tested and validated by simulation
studies as well as the ADNI data set and the results show that
the SDM framework outperforms the benchmark methods for
degradation modeling.

There are several important topics for the future research.
First, it is important to further explore functional data analy-
sis techniques and nonparametric approaches to model the
degradation status of the recommenders because for some
applications, the true degradation model may be complicated
and cannot be well characterized by a parametric form.
Second, in this paper, we propose to consider h(n j ) = θ/n j .
In the future studies, it would be interesting to investigate
more on the choice of h(n j ). Third, the proposed method is
expected to perform well in the presence of a large number of
recommenders, i.e., the degradation profiles from the available

recommenders are likely to span the entire set of possible
degradation profiles. How to extend the proposed approach to
more general scenarios is worth studying. Finally, it would
be of high interest to integrate the system performance analy-
sis [39], [40] with the proposed approach for better decision-
making and preventive control.

APPENDIX A

This Appendix proves Lemma 1 that if ∃i∗, k∗ such that
θ i∗ = θ k∗ and σ 2

i∗ = σ 2
k∗ , then the solution of formulation (9)

guarantees wi∗ j = wk∗ j . First, we split the objective function
of the SDM formulation (9) into two pieces

q(wi j ) = wT
j �T �w j − 2sT

j,·�w j + sT
j,·s j,·

=
n j�

r=1

�
m�

i=1

(wi j η(θ i , t j (r))) + b j − s j,t j (r)

�2

and f (wi j ) = wT
j D∗w j . Next, we isolate the indexes i∗ and

k∗ in f (wi j ). This is equivalent to writing

f (wi j )

=
m�

i=1

w2
i j σ

2
i +

m�

i=1

m�

k=i+1

(wi j + wkj )
2dik

=
m�

i=1
i 	=i∗ ,k∗

w2
i j σ

2
i + w2

i∗ jσ
2
i∗ + w2

k∗ j σ
2
k∗

+
m�

i=1
i 	=i∗,k∗

m�

k=i+1
k 	=i∗,k∗

(wi j + wkj )
2dik +

m�

i=1
i 	=k∗

(wi j + wi∗ j )
2di∗i

+
m�

i=1
i 	=i∗

(wi j + wk∗ j )
2dk∗i + (wi∗ j + wk∗ j )

2di∗k∗ = g(wi j )

+ w2
i∗ jσ

2
i∗ + w2

k∗ jσ
2
k∗ +

m�

i=1

(wi j + wi∗ j )
2di∗i

+
m�

i=1

(wi j + wk∗ j )
2dk∗i − (wi∗ j + wk∗ j )

2di∗k∗

where

g(wi j ) =
m�

i=1
i 	=i∗ ,k∗

w2
i j σ

2
i +

m�

i=1
i 	=i∗,k∗

m�

k=i+1
k 	=i∗,k∗

(wi j + wkj )
2dik

and it is independent of wi∗ j and wk∗ j .
Given that θ i∗ = θ k∗ then dii∗ = dik∗ and di∗k∗ = 0,

then

f (wi j )

= g(wi j ) + w2
i∗ j σ

2
i∗ + w2

k∗ jσ
2
k∗ +

m�

i=1
[(wi j + wi∗ j )

2 + (wi j + wk∗ j )
2]dik∗ = g(wi j )

+ w2
i∗ jσ

2
i∗ + w2

k∗ jσ
2
k∗ +

m�

i=1
(w2

i j + 2wi j wi∗ j + w2
i∗ j + w2

i j + 2wi j wk∗ j + w2
k∗ j )dik∗ .
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Also, given that σ 2
i∗ = σ 2

k∗ , then

f (wi j ) = g(wi j ) + (w2
i∗ j + w2

k∗ j )σ
2
k∗

+
m�

i=1

(w2
i j + 2wi j wi∗ j + w2

i∗ j + w2
i j +2wi j wk∗ j + w2

k∗ j )dik∗

Now, we prove that for any feasible solution w̃i j , there exists
another feasible solution

ŵi j =
⎧
⎨

⎩
w̃i j i 	= i∗, k∗
w̃i∗ j + w̃k∗ j

2
i = i∗, k∗

such that h(n j ) f (ŵi j ) + q(ŵi j ) ≤ h(n j ) f (w̃i j ) + q(w̃i j ).
Note that g(ŵi j ) = g(w̃i j ) because g(wi j ) is independent of
wi∗ j and wk∗ j . Also, q(ŵi j ) = q(w̃i j ) because θ i∗ = θ k∗ and
w̃i∗ j η(θ i∗ , ·) + w̃k∗ jη(θ k∗ , ·) = ŵi∗ j η(θ i∗ , ·) + ŵk∗ jη(θ k∗ , ·).
Therefore, h(n j ){ f (w̃i j ) + q(w̃i j ) − h(n j ) f (ŵi j ) − q(ŵi j ) =
h(n j )(w̃

2
i∗ j + w̃2

k∗ j − ŵ2
i∗ j − ŵ2

k∗ j )σ
2
k∗ + �m

i=1(2w̃i j w̃i∗ j +
w̃2

i∗ j + 2w̃i j w̃k∗ j + w̃2
k∗ j − 2ŵi j ŵi∗ j − ŵ2

i∗ j −
2ŵi j ŵk∗ j − ŵ2

k∗ j )dik∗ }. Here, 2w̃i j w̃i∗ j + 2w̃i j w̃k∗ j =
2w̃i j (w̃i∗ j + w̃k∗ j ) = 2ŵi j (ŵi∗ j + ŵk∗ j ) because ŵi∗ j =
ŵk∗ j = (w̃i∗ j + w̃k∗ j )/2; and w̃2

i∗ j + w̃2
k∗ j − ŵ2

i∗ j − ŵ2
k∗ j =

w̃2
i∗ j + w̃2

k∗ j − ((w̃i∗ j + w̃k∗ j )/2)2 − ((w̃i∗ j + w̃k∗ j )/2)2 =
w̃2

i∗ j + w̃2
k∗ j − (w̃2

i∗ j/2) − (w̃2
k∗ j /2) − w̃i∗ j w̃k∗ j=

((w̃i∗ j − w̃k∗ j )/sqrt(2))2. Then, f (w̃i j ) −
f (ŵi j ) = (w̃2

i∗ j + w̃2
k∗ j − ŵ2

i∗ j − ŵ2
k∗ j )σ

2
k∗ +�m

i=1 (w̃2
i∗ j + w̃2

k∗ j − ŵ2
i∗ j − ŵ2

k∗ j )dik∗ = ((w̃i∗ j − w̃k∗ j )/

sqrt(2))2σ 2
k∗ + �m

i=1 ((w̃i∗ j − w̃k∗ j )/2)2dik∗ = ((w̃i∗ j−
w̃k∗ j )/sqrt(2))2 ∗ (σ 2

k∗ +�m
i=1 dik∗ )> 0 if w̃i∗ j 	=w̃k∗ j because

dik∗> 0 for θ i 	= θ k∗ . Accordingly, if θ i∗ = θ k∗ and σ 2
i∗ = σ 2

k∗
then to minimize h(n j ) f (wi j )+q(wi j ), it is necessary to have
wi∗ j = wk∗ j .To finalize the proof, we show that ŵi j is feasible
by showing that it satisfies

�m
i=1 ŵi j = 1 and ŵi j ≥ 0,

i = 1, 2, . . . , m. Since w̃i j is a feasible solution, then�m
i=1 w̃i j = 1 and w̃i j ≥ 0, i = 1, 2, . . . , m. Therefore

ŵi j =
⎧
⎨

⎩
w̃i j ≥ 0 i 	= i∗, k∗
w̃i∗ j + w̃k∗ j

2
≥ 0 i = i∗, k∗

and
�m

i=1 ŵi j = �m
i=1 w̃i j = 1. Thus, if θ i∗ = θ k∗ and

σ 2
i∗ = σ 2

k∗ then the solution of the SDM formulation will
satisfy wi∗ j = wk∗ j .

APPENDIX B

This Appendix proves Lemma 2 that formulation (9),
minw j w j

T �T �w j − 2sT
j ,·�w j + sT

j ,·s j ,· + h(n j )w
T
j D∗w j

subject to oT w j = 1 and Aw j ≥ 0, is convex.
Since h(n j ) ≥ 0 by definition, then it is sufficient to prove

that �T � and D∗ are positive semidefinite (PSD) matrixes.
First, �T � is PSD because for any nonzero vector w j ,
we have wT

j �T �w j = ��w j�2
2 ≥ 0. Second, we proof that

D∗ is PSD by showing that wT
j D∗w j ≥ 0 for any w j .

The dissimilarity matrix can be written as wT
j D∗w j =�m

i=1 w2
i j σ

2
i + �m

i=1 w2
i j d∗

ii + �m
i=1

�m
k=1
k 	=i

wi j dikwkj . Recall

that d∗
ii = �m

k=1 dik and dii = 0, then wT
j D∗w j =

�m
i=1 w2

i j σ
2
i + �m

i=1 w2
i j

�m
k=1 dik + �m

i=1
�m

k=1 wi j dikwkj .
The second part of wT

j D∗w j can be written as:
�m

i=1 w2
i j

�m
k=1 dik = w2

1 j (d12 + d13+ . . .+d1m) + w2
2 j (d21 +

d23+ . . .+d2m)+w2
3 j (d31+d32+ . . .+d3m)+ . . .+w2

mj (dm1+
dm2+ . . .+dm(m1)) = (w2

1 j + w2
2 j )d12 + (w2

1 j +
w2

3 j )d13 + (w2
2 j + w2

3 j )d23+ . . .+(w2
(m1) j + w2

mj )d(m1)m =
�m

i=1
�m

k=i+1 (w2
i j + w2

kj )dik . Similarly, the third part of
wT

j D∗w j can be written as:
�m

i=1
�m

k=1 wi j dikwkj =�m
i=1

�m
k=i+1 2dikwi j wkj because dik = dki

and dii = 0. Then, for any w j , wT
j D∗w j =�m

i=1 w2
i j σ

2
i + �m

i=1
�m

k=i+1 (w2
i j + w2

kj + 2wi j wkj )dik =�m
i=1 w2

i j σ
2
i + �m

i=1
�m

k=i+1 (wi j + wkj )
2dik ≥ 0 because

dik≥ 0. This concludes our proof that the SDM formulation
is convex.

APPENDIX C

As an illustration for practitioners to calculate θ i and σ 2
i for

each recommender, we focus on the constrained least-squares
approach because it is computationally efficient and it satisfies
the monotonicity requirement for degradation. Specifically,
θ i can be estimated by the solution of

�ni
r=1{η(θ i , ti (r)) −

si,ti (r)}2 such that
�

dη(θ i , t)/dt ≥ 0, if monotonically increasing

dη(θ i , t)/dt ≤ 0, if monotonically decreasing

and σ 2
i can be estimated by (

�ni
r=1{η(θ i , ti (r)) −

si,ti (r)}2/degrees of freedom). Here, ni is the number of
available observations from recommender i ; ti (r) is the time
at which the r th observation is obtained for recommender i ;
and si,ti (r) is the degradation status for recommender i
at time ti (r). For example, if we consider the quadratic
model for each recommender that can be written as
si,t = θi,0 + θi.1t + θi,2t2 + �t and given that the degradation
trends are monotonically decreasing, then θ i is the solution of�ni

r=1{η(θ i , ti (r)) − si,ti (r)}2 such that θi,1 ≤ 0 and θi,2 ≤ 0;
and σ 2

i
∼= �ni

r=1{η(θ i , ti (r)) − si,ti (r)}2/(ni − 3). Note that
the least-squares approach is often used under the normality
assumption for si,t because it provides the best linear unbiased
estimator.
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