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Abstract

To acquire larger samples for answering complex questions in neuroscience,

researchers have increasingly turned to multi-site neuroimaging studies. However,

these studies are hindered by differences in images acquired across multiple sites.

These effects have been shown to bias comparison between sites, mask biologically

meaningful associations, and even introduce spurious associations. To address this,

the field has focused on harmonizing data by removing site-related effects in the

mean and variance of measurements. Contemporaneously with the increase in popu-

larity of multi-center imaging, the use of machine learning (ML) in neuroimaging has

also become commonplace. These approaches have been shown to provide improved

sensitivity, specificity, and power due to their modeling the joint relationship across

measurements in the brain. In this work, we demonstrate that methods for removing

site effects in mean and variance may not be sufficient for ML. This stems from the

fact that such methods fail to address how correlations between measurements can

vary across sites. Data from the Alzheimer's Disease Neuroimaging Initiative is used

to show that considerable differences in covariance exist across sites and that popu-

lar harmonization techniques do not address this issue. We then propose a novel har-

monization method called Correcting Covariance Batch Effects (CovBat) that

removes site effects in mean, variance, and covariance. We apply CovBat and show

that within-site correlation matrices are successfully harmonized. Furthermore, we

find that ML methods are unable to distinguish scanner manufacturer after our
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proposed harmonization is applied, and that the CovBat-harmonized data retain accu-

rate prediction of disease group.

K E YWORD S

ComBat, cortical thickness, covariance, harmonization, multi-site analysis, site effect

1 | INTRODUCTION

The need for larger samples in human subjects research have led to a

growing number of multi-site studies that aggregate data across multi-

ple locations. This trend is especially prevalent in neuroimaging

research where the reliability and generalizabilty of findings from the

conventional single-site studies are often limited by the ability to

recruit and study sufficiently large and representative samples from

the population. Many consortia have been formed to address such

issues (Mueller et al., 2005; Sudlow et al., 2015; Trivedi et al., 2016;

Van Essen et al., 2013). The larger samples obtained through these

efforts promote greater power to detect significant associations as

well as better generalizability of results. However, these study designs

also introduce heterogeneity in acquisition and processing that, if not

appropriately addressed, may impact study findings.

Several researchers have determined that variability driven by site

differences, often called site effects, reduce the reliability of derived

measurements, and can introduce bias. Neuroimaging measurements

have been repeatedly shown to be affected by scanner manufacturer,

model, magnetic field strength, head coil, voxel size, and acquisition

parameters (Han et al., 2006; Kruggel, Jessica, Tugan Muftuler, &

Initiative, 2010; Reig et al., 2009; Wonderlick et al., 2009). Yet even in

scanners of the exact same model and manufacturer, differences still

exist for certain neuroimaging biomarkers (Takao, Hayashi, &

Ohtomo, 2011).

Until recently, neuroimaging analyses primarily involved mass uni-

variate testing which treats features as independent and does not

leverage covariance between features. Under this paradigm, the

impact of site effects is through changes in the mean and variance of

measurements. Increasingly, researchers have used sets of neuroimag-

ing features as inputs into prediction algorithms or state-of-the-art

machine learning (ML) methods. This approach has become a powerful

tool for leveraging both functional and structural neuroimaging for

research into pain (Smith, L�opez-Solà, McMahon, Pedler, &

Sterling, 2017; Wager et al., 2013), neural representations (Haxby,

Connolly, & Swaroop Guntupalli, 2014), and psychiatric illnesses

(Koutsouleris et al., 2014). One of the major benefits of ML is that it

leverages the joint distribution and correlation structure among multi-

variate brain features in order to better characterize a phenotype of

interest (Gregorutti, Michel, & Saint-Pierre, 2017; O'Toole

et al., 2007). As a result, site effects on the covariance of measure-

ments are likely to impact findings substantially. In fact, a recent

investigation showed that an ML algorithm was able to detect scanner

with high accuracy and that the detection of sex depended heavily on

the scanners included in the training and test data (Glocker, Robinson,

Castro, Dou, & Konukoglu, 2019).

The major statistical harmonization techniques employed in neu-

roimaging have generally corrected for differences across sites in

mean and variance, but not covariance (Fortin et al., 2018; Fortin,

Sweeney, Muschelli, Crainiceanu, & Shinohara, 2016; Rao, Monteiro, &

Mourao-Miranda, 2017; Yamashita et al., 2019). Increasingly, the

ComBat model (Johnson, Cheng, & Rabinovic, 2007) has become a

popular harmonization technique in neuroimaging and has been suc-

cessfully applied to structural and functional measures (Bartlett

et al., 2018; Fortin et al., 2017, 2018; Marek et al., 2019; Yu

et al., 2018). However, this model does not address potential site

effects in covariance.

Recently, another stream of data-driven harmonization methods

have aimed to apply generative adversarial networks (GANs) or

distance-based methods to unify distributions of measurements

across sites. However, the GAN-based harmonization methods have

only been tested for harmonization of images and lack options to

retain clinical associations of interest (Gao, Liu, Wang, Shi, &

Jinhua, 2019; Nguyen, Morris, Harris, Korgoankar, & Ramos, 2018;

Zhong et al., 2020). A recent distance-based method is applicable to

derived measurements and has been tested in classification of

Alzheimer's disease (AD) using support vector machines (Zhou

et al., 2018). However, the method in (Zhou et al., 2018) has not been

tested for detection of site via ML and also requires several conditions

which may not hold in studies with sufficiently heterogeneous sites or

major differences in subject demographics across sites.

In this article, we examine whether site effects influence ML

results. In particular, we study the cortical thickness measurements

derived from images acquired by the Alzheimer's Disease Neuroimag-

ing Initiative (ADNI) and demonstrate the existence of site effects in

covariance of structural imaging measures. We then propose a novel

harmonization method called Correcting Covariance Batch Effects

(CovBat) that removes site effects in mean, variance, and covariance.

We apply CovBat and show that within-site correlation matrices are

successfully harmonized. Furthermore, we find that ML methods are

unable to detect Siemens scanners after our proposed harmonization

is applied, and that the CovBat-harmonized data retain accurate pre-

diction of disease group. We also assess the performance of the pro-

posed method in simulated data, and again find that the method

mitigates site effects and maintains detection of meaningful associa-

tions. Our results demonstrate the need to consider covariance in har-

monization methods, and suggest a novel procedure that can be

applied to better harmonize data from multi-site imaging studies.
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2 | MATERIALS AND METHODS

2.1 | ADNI dataset

The data for this article consist of baseline scans from ADNI (http://

adni.loni.usc.edu/ which are processed using the ANTs longitudinal

single-subject template pipeline (Tustison et al., 2019) with code avail-

able on GitHub (https://github.com/ntustison/CrossLong). Informed

consent was obtained by all participants in the ADNI study. Institu-

tional review boards approved the study at all of the contributing

institutions.

We briefly summarize the steps involved. First, we download raw

T1-weighted images from the ADNI-1 database, which were acquired

using MPRAGE for Siemens and Philips scanners and a works-in-

progress version of MPRAGE on GE scanners (Jack et al., 2010). We

choose ADNI-1 to highlight a severe site effect situation driven by

greater variability in scanner properties, including magnetic field

strength, which are standardized in later ADNI releases. For each sub-

ject, we estimate a single-subject template from all the image

timepoints. After rigid spatial normalization to this single-subject tem-

plate, each normalized timepoint image is then processed using the

single image cortical thickness pipeline consisting of brain extraction

(B. Avants, Klein, Tustison, Woo, & Gee, 2010), denoising (Manj�on,

Coupé, Luis, Louis Collins, & Robles, 2010), N4 bias correction

(N. J. Tustison et al., 2010), Atropos n-tissue segmentation

(B. B. Avants, Tustison, Wu, Cook, & Gee, 2011), and registration-

based cortical thickness estimation (Das, Avants, Grossman, &

Gee, 2009). For our analyses, we use the 62 baseline cortical thick-

ness values as defined by the Desikan–Killiany–Tourville atlas (Klein &

Tourville, 2012). The sample covariance matrix for these cortical thick-

nesses in the largest site is shown with labels in Figure S1.

We define site based on information contained within the Digital

Imaging and Communications in Medicine (DICOM) headers for each

scan. Specifically, subjects are considered to be acquired at the same

site if they share the scanner location, scanner manufacturer, scanner

model, head coil, and magnetic field strength. In total, this definition

yields 142 distinct sites of which 78 had less than three subjects and

were removed from analyses. The final sample consists of 505 subjects

across 64 sites, with 213 subjects imaged on scanners manufactured

by Siemens, 70 by Philips, and 222 by GE. The sample has a mean age

of 75.3 (SD 6.70) and is comprised of 278 (55%) males, 115 (22.8%)

AD patients, 239 (47.3%) late mild cognitive impairment (LMCI), and

151 (29.9%) cognitively normal (CN) individuals.

The ADNI sample demographics are considerably different across

sites, which precludes application of certain harmonization methods.

For example, (Zhou et al., 2018) relies on “nontrivial overlap” of the

potential confounders across sites and proposed a subsampling

approach that performs distributional shifts on subsamples of data

matched by the discrete stratum of the confounders. Given that our

data are sufficiently heterogeneous, it is challenging to form bins mat-

ched by age, sex, and diagnosis status to ensure that each site has at

least one individual in each bin. This prevents protection of age

effects in applying the harmonization method proposed by (Zhou

et al., 2018).

2.2 | Combatting batch effects

We first review ComBat (Fortin et al., 2017, 2018; Johnson

et al., 2007) for harmonization of neuroimaging measures. ComBat

seeks to remove the mean and variance site effects of the data in an

empirical Bayes framework. Let yij ¼ yij1,yij2,…,yijp
� �T

, i¼1,2,…,M, j¼
1,2,…,ni denote the p�1 vectors of observed data where i indexes

site, j indexes subjects within sites, ni is the number of subjects

acquired on site i, and p is the number of features. Our goal is to har-

monize these vectors across the M sites. ComBat assumes that the

features indexed by v follow

yijv ¼ αv þxTijβv þ γiv þδiveijv

where αv is the intercept, xij is the vector of covariates, βv is the vec-

tor of regression coefficients, γiv is the mean site effect, and δiv is the

variance site effect. The errors eijv are assumed to independently fol-

low eijv �N 0,σ2v
� �

. ComBat first finds least-squares estimates α̂v and

β̂v for each feature. To estimate the site effects using empirical Bayes,

ComBat assumes that the γiv follow independent normal distributions

and the δiv follow independent inverse gamma distributions. The

hyperparameters are then estimated via method of moments using

data across all features. The empirical Bayes point estimates γ�iv and δ�iv
are then obtained as the means of the posterior distributions. Finally,

ComBat residualizes with respect to these estimates to obtain harmo-

nized data

yComBat
ijv ¼ yijv� α̂v �xTij β̂v � γ�iv

δ�iv
þ α̂v þxTij β̂v

2.3 | Correcting covariance batch effects

To address potential covariance site effects, we build on the existing

ComBat framework. We again assume that the features follow

yijv ¼ αv þxTijβv þ γiv þδiveijv

However, the error vectors eij ¼ eij1,eij2,…,eijp
� �T �N 0,Σið Þ may

be spatially correlated and differ in covariance across site. Analogous

to how ComBat modifies observations to bring each within-site vari-

ance to the pooled variance across sites, our proposed method mod-

ifies principal component (PC) scores to shift each within-site

covariance to the pooled covariance structure. We achieve this by

approximating within-site covariance structures using the PCs and PC

scores obtained across all observations. We propose the CovBat algo-

rithm, which accounts for the joint distribution of ComBat-adjusted

observations as follows:
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Step 1. We first perform ComBat to remove the mean and vari-

ance shifts in the marginal distributions of the cortical thickness

measures. Then, we additionally residualize with respect to the

intercept and covariates to obtain ComBat-adjusted residuals den-

oted eComBat
ij ¼ eComBat

ij1 ,eComBat
ij2 ,…,eComBat

ijp

� �T
where p is the number of

features. We then define these residuals using notation from Sec-

tion 2.2 as

eComBat
ijv ¼ yijv� α̂v �xTij β̂v � γ�iv

δ�iv

where i¼1,2,…,M, j¼1,2,…,ni, M is the number of sites, and ni is the

number of subjects acquired at site i. α̂v , xTij , β̂v , γ�iv , and δ�iv are defined

in Section 2.2.

Step 2. The eComBat
ij are assumed to have mean 0; their covariance

matrices which we denote by Σi , however, may differ across sites. We

first perform principal components analysis (PCA) on the full data

residuals and represent the full data covariance matrix as Σ¼Pq
k¼1λkϕkϕT

k where the rank q¼min
PM

i¼1ni ,p
� �

, λk are the eigen-

values of Σ, and ϕk are the PCs obtained as the eigenvectors of Σ. In

practice, PCA is performed on the sample covariance matrix Σ̂ and we

obtain estimated eigenvalues λ̂k and eigenvectors ϕ̂k . The ComBat-

adjusted residuals can then be expressed as eComBat
ij ¼Pq

k¼1ξijkϕ̂k

where ξijk are the principal component scores.

We then aim to bring each within-site covariance matrix Σ i to the

pooled covariance across sites. Since our goal is to recover covariance

structures resembling Σ, we approximate the within-site covariance

matrices as Σ̂ i ¼
Pq

k¼1λ̂ikϕ̂kϕ̂
T
k where λ̂ik are within-site eigenvalues

estimated as the sample variance of the principal component scores

λ̂ik ¼
Pni

j¼1 ξijk�
Pni

j¼1ξijk=ni
� �2

= ni�1ð Þ and ϕ̂k are estimated from the

full data covariance. This model assumes that the covariance site

effect is contained within the variances of the PC scores with the

principal components estimated from the full data. This assumption

may not hold in some cases, but harmonization of these PC score vari-

ances will bring the within-site covariance matrices closer to the

pooled covariance. This is analogous to how ComBat brings site-

specific variance closer to the variance estimated using observations

across all sites.

Step 3. Thus, we posit:

ξijk ¼ μikþρikϵijk

where ϵijk �N 0,τ2k
� �

, τk is the error standard deviation, and μik , ρik are

the center and scale parameters corresponding to principal compo-

nents k¼1,2,…K where K ≤ q is a tuning parameter chosen to capture

the desired proportion of the variation in the observations. If K is cho-

sen such that K¼ q, all principal components are harmonized. Note

that this is similar to the ComBat model, applied to each of the k prin-

cipal component scores instead of the original measures. We can then

estimate each of the K pairs of center and scale parameters by finding

the values that bring each site's mean and variance in scores to the

pooled mean and variance, which we denote μ̂ikÞ and ρ̂ik . We then

remove the site effect in the scores via ξCovBatijk ¼ ξijk� μ̂ik
� �

=ρ̂ik .

Step 4. We obtain CovBat-adjusted residuals eCovBatij ¼
eCovBatij1 ,eCovBatij2 ,…,eCovBatijp

� �T
by projecting the adjusted scores back into

the residual space via,

eCovBatij ¼
XK
k¼1

ξCovBatijk ϕ̂kþ
Xq
l¼Kþ1

ξijlϕ̂l

We then add the intercepts and covariates effects estimated in

Step 1 to obtain CovBat-adjusted observations

yCovBatijv ¼ eCovBatijv þ α̂v þxTij β̂v

2.4 | Simulations

2.4.1 | Simulation settings

Let yij, i¼1,2,3, j¼1,2,…,ni be vectors of length p representing simu-

lated cortical thickness values for three sites, each with ni observa-

tions. The yij are generated using the following model:

yijv ¼ αv þxijβv þ γiv þδiveijv

where xij is a simulated diagnosis variable drawn from a Bernoulli dis-

tribution with probability 0.25, α is the first p=2 elements in each

hemisphere from the sample mean vector of Scanner B observations

in the ADNI data, β is the vector of simulated diagnosis effects on the

mean, and eij is the vector of error terms. We simulate mean and vari-

ance site effects based on the assumptions of ComBat and CovBat.

The mean site effects γi ¼ γi1,γi2,…,γip
� �T

are vectors drawn from

independent and identically distributed (i.i.d.) normal distributions

with mean zero and standard deviation 0:1. The variance site effects

δi ¼ δi1,δi2,…,δip
� �T

are vectors drawn from site-specific inverse

gamma distributions with chosen parameters. For our simulations, we

chose to distinguish the site-specific scaling factors by assuming

δ1v �i:i:d Inverse Gamma 46,50ð Þ, δ2v �i:i:d Inverse Gamma 51,50ð Þ, and

δ3v �i:i:d Inverse Gamma 56,50ð Þ for v¼1,2,…,p.

2.5 | Simple covariance effects

We first assess whether CovBat can recover the underlying covariance

structure when the covariance site effects are captured by its PC directions.

We refer to this simulation setting as the Simple Covariance Effects simula-

tion. For p¼62, we set the underlying covariance S as the sample cor-

relation matrix of cortical thickness observations in the ADNI data,

with eigendecomposition S¼P62
k¼1λ̂kϕ̂kϕ̂

T
k . We then generate error

terms eij that contain site-specific shifts in the first eigenvalue via

eij �N 0,Sþciλ̂1ϕ̂1ϕ̂
T
1

� �

where ci controls the severity of the covariance shift. For our simula-

tions, we set c1 ¼�1=2, c2 ¼0, and c3 ¼1=2 so that the pooled

covariance structure is equivalent to S. We choose βi ¼�0:5 for
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p=4b c regions of interest in both the left and right hemispheres to

associate the simulated diagnosis with decreases in mean simulated

cortical thicknesses.

We also investigate how the rank of the covariance effect influ-

ences CovBat harmonization results. We modify the rank of the sim-

ple covariance effect by varying K in the generation of error terms

eij �N 0,Sþci
XK
k¼1

λ̂kϕ̂kϕ̂
T
k

 !

where ci takes the same values as previously, c1 ¼�1=2, c2 ¼0, and

c3 ¼1=2. We simulate datasets while choosing K as 2, 6, and 12 PCs

and evaluate how harmonization influences detection of site via ML.

2.6 | Complex covariance effects

To evaluate how CovBat performs when the covariance site effects

are not easily captured by the principal components and when the

simulated diagnosis may affect covariance, we modify the simulation

to incorporate high-rank covariance shifts due to site via Ωi and due

to simulated diagnosis as Ψ . For p¼62, the error terms eij are now

generated via

eij �N 0,DijΣ ijDij

� �

where Σij ¼ SþxijΨ þΩi , S is the sample correlation matrix of cortical

thickness observations in the ADNI data, Ψ is a chosen diagnosis-

driven covariance shift matrix, and Ωi are site-specific covariance shift

matrices. The matrices Dij ¼diag dij
� �

where dijk ¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ ij

� �
kk

q
for k¼

1,2,…,62 ensure that these covariance effects do not modify the mar-

ginal variances of eij. To constrain the covariance matrices to be posi-

tive definite, we set the negative eigenvalues of Σ ij equal to a small

constant, 10�12. For p<62, we instead generate eij from the p�p sub-

matrices of DijΣijDij constructed from the rows and columns

corresponding to the first p=2 features in each hemisphere. In this

simulation scenario, S is no longer the pooled covariance structure

since the covariance site effects Ωi can take any form and these site-

specific covariance structures do not necessarily combine across sites

to resemble S. Instead of focusing on recovery of an underlying struc-

ture, we evaluate site effects throughout these simulations via ML.

We design four simulation experiments to test how CovBat per-

forms in multiple settings with varied covariance effects. In our Com-

Bat simulation, we generate data without any covariance site effect

from a model that resembles the ComBat model. In the Diagnosis

Affects Mean simulation, we then introduce a covariance site effect

to assess if CovBat can outperform ComBat in harmonization of

covariance. We next introduce a simulated diagnosis effect on covari-

ance in the Diagnosis Affects Covariance simulation, which better

illustrates how the detection of the simulated diagnosis is affected by

related covariance effects. Finally, we design a Covariance Only simu-

lation, which has no site or diagnosis effects in mean or variance, but

still contains site and diagnosis effects in covariance. This final

simulation illustrates how effects on covariance can influence ML

results and be addressed through our proposed harmonization

method.

In the ComBat simulation, we impose site effects in mean and

variance while having the simulated diagnosis affect only the mean of

the observations. We choose βi ¼�0:5 for p=4b c regions of interest in
both the left and right hemispheres to impose that about half of the

ROIs are negatively associated with the simulated diagnosis. We also

choose the Ωi and Ψ to be 62�62 zero matrices to ensure that the

covariance does not depend on site or the simulated diagnosis.

In the Diagnosis Affects Mean simulation, we again impose that

the simulated diagnosis only affects the mean of the measurements

but also introduce a site effect in covariance. We keep the same β and

Ψ as in the ComBat simulation. However, we choose Ωi to be distinct

62�62 high-rank matrices to distinguish covariance structures across

sites. These Ωi are constructed by downsampling three distinct images

to 62�62 pixels and then scaling the values so that the diagonal is a

vector of ones. These matrices thus have different eigenvectors from

each other and also from the sample covariance matrix S, which simu-

lates complex site covariance structures which do not have the same

eigenvectors.

In the Diagnosis Affects Covariance simulation, we assume that

the simulated diagnosis affects not only mean, but also covariance.

We choose the diagnosis effect on covariance to be proportional to a

site's covariance shift. This scenario represents a situation where

detection of the diagnosis using ML could be highly influenced by the

presence of site effects. We use the same β value as in the ComBat

and diagnosis affects mean simulations but choose Ψ to be related to

Ω3 to force confounding of Site 3 and diagnosis effects on covariance.

To achieve this, we set Ψ ¼� 3=4ð ÞΩ3.

In the Covariance Only simulation, we assume that both site and

the diagnosis influence the covariance, not the mean or variance.

We fix γ¼0 and δ¼1 to remove site effects in mean and variance

while also using the same Ωi as in the Diagnosis Affects Mean and

Diagnosis Affects Covariance simulations. Furthermore, we modify

the diagnosis effect by setting β¼0 while keeping Ψ ¼� 3=4ð ÞΩ3 for

the diagnosis effect in covariance.

2.7 | Simulation experimental design

In our simple covariance effects simulation with rank one covariance

effects, we generate 1,000 datasets across varying sample sizes and

number of features to evaluate recovery of the underlying covariance

structure. For each site, we calculate the average Frobenius distance

across datasets between each sample within-site covariance matrix

and the true covariance S. We then report the average across sites

before and after harmonization, where CovBat harmonization is per-

formed on PCs that explain 95% of the variation.

For the other simulation settings, we generate 1,000 datasets for

several choices of within-site sample size and number of features and

perform experiments to evaluate detection of site and disease using

ML. For each dataset, we (a) randomly split the sample into 50%
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training data and 50% validation data, (b) train a random forests algo-

rithm to recognize if the observations either are from Site 1 or have

the simulated diagnosis, and (c) assess predictive performance on the

testing data. Our random forests algorithm is implemented via the

randomForest package on CRAN with default parameters using R ver-

sion 3.6.1. Lower AUC for detection of Site 1 and higher AUC for

detection of the simulated diagnosis indicate improved harmonization.

CovBat harmonization is performed on PCs that explain 95% of the

variation. For prediction of Site 1, we avoid the possibility that site

could be detected through the simulated diagnosis by using linear

models to residualize out disease from each simulated cortical thick-

ness value. For simulated datasets where the training set does not

contain observations with the simulated diagnosis, the random forest

algorithm cannot be trained so we generate another dataset to

replace it. We repeat these ML experiments while varying the number

of PCs included in the CovBat harmonization. For CovBat including

PCs that explain 95% of the variation, we also perform MANOVA for

testing associations with site and simulated diagnosis and report the

rejection rate at a type I error rate of 0.05 across the 1,000 datasets.

2.8 | Recovery of covariance

We first perform simulations to assess whether either harmonization

method can recover the underlying covariance structure in our simple

simulation setting and harmonize covariance matrices generally. For

ComBat and CovBat, we include our simulated diagnosis status as a

covariate. We apply our CovBat method using the number of PCs that

explain 95% of the variation. In the Simple Covariance Effects simula-

tion, Figure 1 shows that CovBat outperforms ComBat in recovery of

the true covariance structure (denoted S in Section 2.5) across all

parameters considered. Remaining deviation from the true covariance

can be explained by error in covariance estimation; even with 10,000

samples per site and 62 features the distance of the pooled covari-

ance estimate from the true covariance is still 3.14. In Table 1, we

observe in the same simulation setting with a within-site sample size

of 250 and 62 simulated features that CovBat performs best in har-

monizing within-site covariance matrices. That result is replicated with

a more complex covariance site effect in the Diagnosis Affects Mean

simulation as shown in Table 2.

2.9 | Detection of site and diagnosis

We then evaluate CovBat through two ML experiments across all sim-

ulation settings considered. For our main analyses, we simulate 62 cor-

tical thicknesses for 250 subjects per site. We begin by examining a

ComBat simulation, where we generate data from the original ComBat

model. That is, we impose mean and variance site effects while also

simulating a diagnosis that has an effect on the mean. Figure 2a,b

show that CovBat performs almost identically to ComBat in this sce-

nario, showing that our method performs competitively in the absence

of covariance effects. In the Diagnosis Affects Mean simulation,

Figure 2c,d shows that CovBat also substantially reduces the chance

of detecting site and performs similarly to ComBat for detection of

F IGURE 1 Average across sites of the
Frobenius distance between sample site-
specific covariance matrices and the true
covariance matrix for the Simple
Covariance Effects simulation. The
displayed values are averaged across the
mean Frobenius distance for each site,
which are taken across 1,000 simulations
each. Results are plotted for a sample size

per site of 25, 50, 100, 250, 500, 1,000,
5,000, and 10,000

TABLE 1 Mean and standard deviation of pairwise Frobenius
norms between within-site covariance estimates for the simple
covariance effects simulation

Unharmonized ComBat CovBat

1,2 16.85 (3.5) 11.21 (2) 4.27 (0.5)

1,3 30.08 (4.9) 16.78 (2.2) 4.62 (0.6)

2,3 15.65 (4.7) 7.17 (1.7) 4.17 (0.5)

Note: Standard deviations are reported in parentheses.
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the simulated diagnosis. These simulations demonstrate that CovBat

performs at least as well or better than ComBat when the simulated

diagnosis affects only the mean of the observations.

We then incorporate a diagnosis effect on covariance in our Diag-

nosis Affects Covariance simulation and show that CovBat reduces

detection of site (Figure 3a) and maintains the association with the

simulated diagnosis (Figure 3b). In order to further emphasize the

importance of covariance effects, we investigate a Covariance Only

simulation where both site and diagnosis effects exist only in the

covariance of observations, but not the mean or variance. In

unharmonized data, we observe high mean AUC values for detection

of Site 1 and detection of the simulated diagnosis, both of which are

essentially unaffected after implementing ComBat. After CovBat

though, we see substantial improvements on both metrics (Figure 3c,

d). While CovBat performs well in both simulations, we find that Cov-

Bat does not entirely remove the severe covariance site effect.

TABLE 2 Mean and standard deviation of pairwise Frobenius
norms between within-site covariance estimates for the diagnosis
affects mean simulation

Unharmonized ComBat CovBat

1,2 15.77 (2.1) 15.39 (1.4) 12.81 (0.8)

1,3 13.22 (1.4) 13.68 (1.3) 11.69 (0.7)

2,3 12.79 (1.8) 10.98 (0.7) 10.98 (0.5)

Note: Standard deviations are reported in parentheses.

F IGURE 2 Results from ML simulations for detection of site and for detection of the simulated diagnosis in the absence of simulated
diagnosis effects on covariance. The simulated data consists of 62 cortical thicknesses for 250 subjects per site across three sites. For each of
1,000 simulations, the data is randomly split into 50% training and 50% validation. A random forests algorithm is trained using the training set to
predict either Site 1 or the presence of the simulated diagnosis. (a), Boxplot showing Site 1 detection in the ComBat simulation. (b), Boxplot
showing simulated diagnosis detection in the ComBat simulation. (c), Boxplot showing Site 1 detection in the diagnosis affects mean simulation.
(d), Boxplot showing simulated diagnosis detection in the diagnosis affects mean simulation
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Regardless, we observe that CovBat offers notable improvements

over ComBat owing to its harmonization of covariance.

2.10 | Performance across sample properties

We then conduct additional analyses to assess the robustness of Cov-

Bat to reductions in sample size per site and number of features. In

Table S1, we show that the random forests largely hold for simula-

tions without a diagnosis effect on covariance; however, in the

absence of a covariance site effect CovBat performs slightly worse

overall and in situations with small sample size per site (ni ¼25) and

larger number of features (p≥48) we observe that CovBat can inflate

detection of site. Table S2 shows that similar results hold in simula-

tions with a diagnosis effect on covariance with CovBat showing good

performance overall but poor performance with small sample sizes

and large number of features. We also show in Table S3 through the

Covariance Only simulation that site and diagnosis can both be

detected even without affecting the mean of observations, as demon-

strated by high AUCs for detection across all settings. To assess if our

findings may be tied to the ML paradigm, we additionally perform

MANOVA for site and diagnosis status across Diagnosis Affects Mean

and Diagnosis Affects Covariance simulations and show in Tables S4

and S5 that associations with site are reduced after CovBat across all

scenarios while associations with diagnosis are preserved. We repeat

these MANOVA analyses in the Simple Covariance Effects simulation

F IGURE 3 Results from ML simulations for detection of site and for detection of the simulated diagnosis where the simulated diagnosis also
confounds covariance. The simulated data consists of 62 cortical thicknesses for 250 subjects per site across three sites. For each of 1,000
simulations, the data is randomly split into 50% training and 50% validation. A random forests algorithm is trained using the training set to predict
either Site 1 or the presence of the simulated diagnosis. (a), Boxplot showing Site 1 detection in the Diagnosis Affects Covariance simulation. (b),
Boxplot showing simulated diagnosis detection in the diagnosis affects covariance simulation. (c), Boxplot showing Site 1 detection in the
covariance only simulation. (d), Boxplot showing simulated diagnosis detection in the Covariance Only simulation
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and show in Table S6 that CovBat performs better than ComBat at

controlling the rejection rate across nearly all parameters considered.

However, CovBat only successfully controls the rejection rate at 5%

in simulations with less features, small sample size, and large sample

size. The controlled rejection rate in small samples however could be

explained by the low power of MANOVA in small sample size relative

to the number of features (Stevens, 1980).

2.11 | Choosing the number of PCs in CovBat

To better inform the choice of PCs in CovBat, we evaluate the simu-

lation results obtained across varying number of PCs. For simple

covariance effects with varying low rank structures, Figure S2

shows that harmonizing smaller numbers of PCs yields suboptimal

results for reducing the chance of detecting sites. Across varying

ranks of simulated site effects contained in the covariance struc-

tures (2–12 PCs), simulation results show that the median AUC for

detecting site achieves the lowest value when CovBat includes PCs

that explain around 90% of total variation for a sample size of 100.

With a larger sample size of 250, the best performance was

achieved when CovBat includes PCs that explain 95% of the total

variation. Across both sample sizes, the U-shape curves in median

AUC for detecting sites indicate that including excess numbers of

PCs in CovBat hurts the performance due to overfitting and the

optimal number of PCs increases with sample size. For the high rank

covariance effect in our Diagnosis Affects Covariance, we observe

in Figure S3 that for a sample size of 250 increasing the number of

PCs lowers the AUC for detection of site across the whole range of

considered PCs. However, looking at a sample size of 50, we

observe that AUC for site detection increases as we select PCs that

explain between roughly 95% and 100% of the variation. For detec-

tion of simulated diagnosis, Figure S4 shows that CovBat largely

maintains detection of diagnosis across all numbers of PCs included

and sample sizes, with minor increases in median AUC as more PCs

are included.

3 | ADNI DATA ANALYSIS

3.1 | Harmonization

We evaluate the performance of harmonization in the ADNI data

by comparing three different approaches. First, we test the origi-

nal unharmonized data in our subsequent experiments. Second,

we produce ComBat-harmonized data by performing ComBat

while including age, sex, and diagnosis status as covariates. Third,

we obtain CovBat-harmonized data by running CovBat with vary-

ing number of PCs, while also including age, sex, and diagnosis sta-

tus. For our primary analyses, we run CovBat while including

37 PCs, which cumulatively explain 95% of variation. We include

additional analyses evaluating how our results vary with the

choice of PCs.

3.2 | ML experiments

Using the full ADNI sample, we evaluate whether the harmonization

procedures affect the results of ML using the neuroimaging measures

as patterns for a prediction algorithm. We achieve this through a

Monte Carlo split-sample experiment where we (i) randomly split the

subjects into 50% training set and 50% validation set, (ii) train a ran-

dom forests algorithm to detect either scanner manufacturer or a

binary clinical covariate, and (iii) assess predictive performance on the

validation set via AUC. Our random forests algorithm is implemented

via the randomForest package on CRAN with default parameters using

R version 3.6.1. We train separate models for unharmonized,

ComBat-harmonized, and CovBat-harmonized data where both har-

monization methods are performed including age, sex, and diagnosis

status as covariates. We perform steps (i)–(iii) 100 times for each

dataset and report the mean AUC along with standard deviation. For

these experiments, lower AUC for detection of scanner manufacturer

and higher AUC for detection of clinical covariates would indicate

improved harmonization. For prediction of scanner manufacturer, we

avoid the possibility that scanner could be detected through the

covariates age, sex, and disease status by residualizing out these vari-

ables from each cortical thickness value via linear models. To assess

performance across choices of PCs in CovBat, we repeat our ML

experiments across varying numbers of PCs explaining between

44 and 100% of the variation.

3.3 | Classical multivariate analyses

We also evaluate the harmonization methods using multivariate analy-

sis of variance (MANOVA). MANOVA tests for differences in mean

across groups in multivariate data, but is known to be sensitive to dif-

ferences in covariance across groups. We perform MANOVA across

scanner manufacturer, sex, and diagnosis status using Pillai's trace,

which is known to be more robust to inhomogeneity in covariance

than other alternative test statistics (Olson, 1974). We report p-values

for these associations before and after harmonization.

3.4 | CovBat reduces covariance site effects

We first examine the empirical covariance of the ADNI data before and

after harmonization. To evaluate site differences, we investigate the

three largest ADNI sites. Site A consists of 23 subjects acquired on a

Siemens Symphony 1.5T scanner while Sites B and C each consist of

20 subjects acquired on GE Signa Excite 1.5T scanners. See Table 3 for

demographic details. To avoid influence of site demographics on the

covariance matrices, we residualize the cortical thickness measures

across the three sites jointly on age, sex, and diagnosis status in each

dataset using a linear model. Figure 4 shows the covariance matrices

for each site using the residualized cortical measures both before and

after harmonization (ROI labels are shown in Figure S1). The differ-

ences between the unharmonized covariance matrices are striking.
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TABLE 3 ADNI demographics by site
for the three sites with the largest
number of acquired subjects

A (Siemens) B (General Electric) C (General Electric) p

Number of subjects 23 20 20

Age (mean [SD]) 74.48 (5.13) 76.90 (8.18) 78.78 (6.19) .11

Diagnosis (%) .57

AD 7 (30.4) 6 (30.0) 5 (25.0)

CN 6 (26.1) 5 (25.0) 2 (10.0)

LMCI 10 (43.5) 9 (45.0) 13 (65.0)

Male (%) 10 (43.5) 13 (65.0) 16 (80.0) .05

Note: Manufacturer of each site's scanner is displayed in parentheses. ANOVA p-values for testing

differences in the mean of continuous variables and Chi-squared test p-values for testing the differences

in categorical variables are reported in the rightmost column.

Abbreviations: AD, Alzheimer's disease; CN, cognitively normal; LMCI, late mild cognitive impairment.

F IGURE 4 Covariance matrices for cortical thickness values acquired on three sites before and after harmonization. All covariance matrices
are estimated after residualizing the data on age, sex, and diagnosis status. Site A uses a Siemens Symphony 1.5T scanner with 23 subjects and
the other sites use General Electric Signa Excite 1.5T scanners with 20 subjects each
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Especially notable are the increased positive covariance across most

pairs of cortical regions in Site A and the weakened correlation

between the right and left hemispheres in Site C, visible as the diagonal

line in the top-left and bottom-right quadrants. Visually, the covariance

differences remain similar after applying ComBat. These inter-site dif-

ferences are considerably mitigated after CovBat.

We also provide quantitative comparisons for pairwise distances

across sites before and after harmonization in Table 4. A tuning

parameter of the CovBat model is the desired proportion of variance

explained in the dimension reduction space, which we select at 95%

(37 PCs). To ensure that our results do not depend strongly on the

choice of tuning parameter, we also report the minimum and maxi-

mum of the pairwise Frobenius norms after applying CovBat with per-

cent variation explained ranging from 44% (2 PCs) to 100% (62 PCs).

We report the results of this sensitivity analysis in parentheses. We

find that ComBat adjustment can modestly harmonize the covariance

matrices but CovBat adjustment shows large reductions in the

between-site distances across a range of tuning parameter choices.

3.5 | CovBat impairs detection of site

To evaluate the potential impact of site effects in covariance using ML,

we conduct a Monte-Carlo split-sample experiment for prediction of

scanner manufacturer labels using all 213 ADNI subjects before and

after harmonization with existing methods. We train using data harmo-

nized with the state-of-the-art ComBat method and our proposed

method, CovBat. Figure 5a shows that Siemens sites are easily identifi-

able based on unharmonized cortical thickness measurements (median

area-under-the-curve [AUC] 0.89, IQR 0.87–0.90), which is consistent

with recent findings (Glocker et al., 2019). We also note that scanner

manufacturer is still detected after ComBat is applied (0.66, 0.64–0.68).

After CovBat, the ML method's performance for differentiating

between sites is close to chance (0.46, 0.44–0.48). CovBat's perfor-

mance depends on the number of PCs included in the model, but

Figure S5 shows that the performance gain for each PC becomes negli-

gible around the number of PCs that explain 95% of the variation.

DeLong's test results shown in Figure S2 suggest that these AUC values

for site detection are significantly different between ComBat and Cov-

Bat. Using MANOVA, Table 5 shows that the association with scanner

manufacturer is statistically significant in unharmonized and ComBat-

adjusted data but is eliminated in CovBat-adjusted data.

3.6 | CovBat retains biological associations

It is well-known that cortical thickness differs substantially by sex and

AD status (Lerch et al., 2005; Sowell et al., 2007). To assess whether

CovBat maintains biological associations of interest, we perform two

ML experiments using the full ADNI data to classify healthy versus

TABLE 4 Pairwise distances between site-specific covariance
matrices

Unharmonized ComBat CovBat

A,B 5.39 4.29 2.60 (2.59–2.90)

A,C 5.82 4.27 2.50 (2.49–2.76)

B,C 4.69 3.32 2.67 (2.65–3.18)

Note: Differences in covariance structure between sites are reported as the

Frobenius distance between covariancematrices calculated across observations

acquired on each site. Results from adjusting the number of PC scores ranging

from those explaining 44–100%of variation are shown in parentheses as the

minimum andmaximumpairwise Frobenius norms across the range.

F IGURE 5 Multivariate pattern analysis experiments for detection of scanner manufacturer, sex, and Alzheimer's disease status using cortical
thickness data. The data are randomly split into 50% training and 50% validation then used to train a random forests algorithm to predict a
specified trait. AUC values from 100 repetitions of this analysis are reported for unharmonized, ComBat-adjusted, and CovBat-adjusted data.
(a) Boxplot showing results for detecting if subjects were acquired on a Siemens scanner. Results for detection of Alzheimer's disease status are
shown in (b) and results for detection of sex are shown in (c)
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AD and to differentiate patients by sex. Figure 5b,c show that both of

these biological associations are retained after either harmonization

method. For AD classification, the median AUC increases from 0.74

(IQR 0.72–0.75) in unharmonized data to 0.78 (0.75–0.79) in ComBat-

adjusted data to 0.79 (0.77–0.81) in CovBat-adjusted. Similarly, the

median AUC for detection of sex increased from 0.66 (0.64–0.68) to

0.69 (0.67–0.71) to 0.70 (0.67–0.72). For detection of both AD and

male sex, DeLong's test results plotted in Figure S6 support that the

AUCs are not significantly different between ComBat and CovBat.

These findings suggest that CovBat not only provides thorough

removal of site effects, but also maintains clinical associations.

Figure S4 shows that CovBat retains these associations across varying

number of PCs included in the model. Appendix A1 shows that similar

results hold for prediction of age, where both ComBat and CovBat

reduce root-mean-square error for prediction of age compared to the

unharmonized data. Appendix A2 shows that these results for both

detection of site and biological associations largely hold even when

CovBat is trained on a subset of the data and all sites are included in

both the training and validation sets. MANOVA results in Table 5

show that the significant associations with diagnosis and sex are

retained after either harmonization method.

4 | DISCUSSION

The growing number of multi-site studies across diverse fields has

spurred the development of harmonization methods that are general,

but also account for field-specific challenges. In neuroimaging

research, the rise of ML in neuroimaging has established an unmet

need for harmonization of covariance. We demonstrate that strong

site effects in covariance exist, influence downstream ML experi-

ments, and remain after performing the state-of-the-art harmoniza-

tion. We then propose a novel method and demonstrate that it is

effective in removing site differences in covariance and retaining the

detection of biological associations via ML. Simulation studies show

similar ML results and demonstrate that CovBat performs well across

a variety of settings and sample sizes.

In ADNI data, we show that substantial differences exist in the

covariance structures of cortical thickness observations and can be

mitigated through our proposed method. We furthermore show that

ML can detect these site effects, whether through ML or conventional

multivariate analyses. These results mirror recent studies that predict

scanner from neuroimaging features with high accuracy (Glocker

et al., 2019) and a recent study demonstrating that ComBat is insuffi-

cient to prevent detection of Siemens-manufactured scanners in a

large multi-site dataset (Nielson et al., 2018). We then demonstrate

that CovBat can almost entirely prevent site detection in the ADNI

dataset. To ensure generalizability of these results, implementation of

CovBat in other multi-site studies of varying experimental designs

should be pursued in the future.

In simulation, CovBat shows generally strong performance in

removing site effects in medium and large sample sizes across varying

number of features and complexity of the site effect. We demonstrate

that CovBat almost fully removes covariance site effects when they

exist in the principal component directions, but deviations from the

true covariance still remain due to error in covariance estimation,

overcorrection of PCs without site difference, and the remaining site

effects in the marginal variances. Additionally, ML results show that

considerable site effects may remain in more complex scenarios. Cau-

tion should be taken in attempting to address covariance site effects

in smaller samples with many features. We show potential increases

in site detection in these situations, which are potentially the result of

poor covariance estimation in high-dimensional settings. Through

investigating the performance of CovBat across varying number of

PCs being harmonized, we conclude that the chance of detecting sites

could increase when including excessive number of PCs in cases with

simple site covariance effects or small sample size relative to the num-

ber of features. We generally recommend selecting number of PCs

that cumulatively explain 90–95% of the total variation depending on

the sample size. While we do not observe these limitations through

MANOVA, we also acknowledge that MANOVA may be underpow-

ered in our scenarios with low sample size and high dimensionality as

shown in previous studies (Stevens, 1980).

Our proposed method harmonizes covariance across sites by

removing mean and variance shifts in the principal components space,

which we show to be effective in addressing the covariance effects

we observe. This idea resembles spectral models, which also relate

covariates to the eigendecomposition of covariance matrices

(Boik, 2002). Our method assumes that the ideal covariance structure

exists in the eigenspace of the full data covariance matrix. As we show

through our simulations, in some cases this model may be insufficient

to remove site effects, which do not resemble the covariance struc-

ture of the full data. Potential extensions could incorporate methods

that model site effects as separate low-rank structures (Hoff &

Niu, 2012) or identify projections most related to site (Zhao, Wang,

Mostofsky, Caffo, & Luo, 2019). However, implementation of these

methods in a harmonization framework may not be as straightforward

as our proposed method.

A limitation of our methodology is that CovBat is a covariate-

assisted harmonization method similar to ComBat and requires speci-

fication of covariates to protect in the data. Associations with

covariates not included in the harmonization step can certainly be

removed alongside site effects. Furthermore, nonlinear covariate

associations may not be adequately captured by the linear model and

future extensions of CovBat could consider incorporating previous

work on general additive models in ComBat to capture complex

TABLE 5 Multivariate analysis of variance p-values for scanner
manufacturer, sex, and Alzheimer's disease status using cortical
thickness data

Unharmonized ComBat CovBat

Manufacturer < :001 < :001 1

Sex < :001 < :001 < :001

Diagnosis < :001 < :001 < :001

Note: The analysis is performed using Pillai's trace as the test statistic.
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covariate effects (Pomponio et al., 2020). Recent articles have identi-

fied situations where spurious associations can be introduced via

ComBat (Nygaard, Rødland, & Hovig, 2016; Zindler, Frieling, Neyazi,

Bleich, & Friedel, 2020). While we do not observe CovBat introducing

false positives in our investigation, care must be taken in

implementing CovBat protecting for the outcome of interest espe-

cially in unbalanced study designs. We reiterate previous advice that

analyses should be performed with and without harmonization and

the analysis design be made very clear to ensure that results can be

interpreted properly (Zindler et al., 2020).

Our study demonstrates that site effects can exist in the covari-

ance of structural neuroimaging data and can be mitigated via our pro-

posed methodology. Future studies should determine how scanner

properties can influence the covariance structure of the data and if

other multi-site multivariate neuroimaging studies contain similar

effects. Further methodological work could utilize other covariance

modeling strategies in order to address more complex site effects.

Since our method operates on general multivariate data, our findings

extend directly to functional, metabolic, and other imaging modalities.

However, our method does not currently handle time series from

functional imaging, which could be the subject of future investigation.

Further studies should also determine the extent to which multivari-

ate statistical and ML studies of genomic data are susceptible to the

biases documented.

4.1 | Software

All of the postprocessing analysis was performed in the R statistical soft-

ware (V3.6.1). CovBat is available for both R and Python (https://github.

com/andy1764/CovBat_Harmonization). Reference implementations

for ComBat are available in R and Matlab (https://github.com/

Jfortin1/ComBatHarmonization) and in Python (https://github.com/

ncullen93/neuroCombat). Our R implementation of CovBat runs in

reasonable time, even in large samples. We generate observations

with 62 features with varying sample sizes. On a MacBook Pro (16-in.,

2019) with a 2.3 GHz 8-Core Intel Core i9 and 32 GB 2667 MHz

DDR4 memory, CovBat runs in 0.014 s for 100 samples, 0.090 s for

1,000 samples, 1.088 s for 10,000 samples, and 12.235 seconds for

100,000 samples.
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APPENDIX

CovBat preserves prediction of age

ComBat has previously been shown to preserve age prediction via

linear regression and support vector regression (Fortin et al., 2018).

To evaluate whether this result holds in ADNI data for ComBat or

CovBat, we propose an additional ML experiment. We (i) randomly

split the subjects into 50% training set and 50% validation set,

(ii) train a random forests algorithm to predict age, and (iii) assess

predictive performance on the validation set via root-mean-square-

error (RMSE). We perform steps (i)–(iii) 100 times each for

unharmonized, ComBat-adjusted, and CovBat-adjusted data.

Figure A1 shows that the mean RMSE for age prediction decreases

from 6.05 (�0:22) in unharmonized to 5.81 (�0:23) in ComBat-

adjusted data to 5.75 (�0:21) in CovBat-adjusted data. These findings

are consistent with previous work (Fortin et al., 2018) and show that

CovBat provides similar recovery of the association between cortical

thickness and age.

Parameter estimation using training subset

Both ComBat and CovBat estimate and residualize out the covariate

effects using the full data; however, there are cases were only a sub-

set of the data is available when performing harmonization. For

instance, if a group of subjects has already been acquired, prediction

on subjects subsequently acquired on the same sites could only lever-

age data from the original sample. In this scenario, the new sample

can be harmonized using ComBat or CovBat by estimating the covari-

ate effect using the original sample, then proceeding with subsequent

steps as usual.

We evaluate this modification by repeating our main ML analyses

using ADNI data with different subsampling of the patients. Specifi-

cally, we replace step (i) in our ML experiments by instead splitting

the sample into 270 training subjects and 235 testing subjects such

that both the train and test sets contain at least one subject acquired

at each site. We then apply ComBat and CovBat by estimating the

covariate effects using only the training subjects. Figure A2 shows the

results for all ML experiments. Detection of site (AUC 0:89�0:02 in

raw data) still worsens after ComBat (0:66�0:03) and is almost at

chance after CovBat (0:54�0:03). For detection of AD, improve-

ments over unharmonized (AUC 0:74�0:03) are still demonstrated

after ComBat adjustment (0:77�0:03) and CovBat adjustment

(0:78�0:02). For detection of male, lesser improvement is observed

from unharmonized (AUC 0:67�0:03) to ComBat (0:68�0:03) to

CovBat (0:68�0:03). Mean RMSE for age prediction decreases from

5.99 (�0:22) in unharmonized to 5.86 (�0:23) in ComBat-adjusted

data to 5.82 (�0:22) in CovBat-adjusted data. Overall, the results

appear quite similar to harmonization using the full dataset, showing

that CovBat performs well even when only a limited training subset is

available. These results also demonstrate that splitting the sample

across sites does not substantially mitigate site effects.

F IGURE A1 Multivariate pattern analysis experiments for
detection of age using cortical thickness data. The data is randomly
split into 50% training and 50% validation then used to train a random
forests algorithm to predict age. RMSE values from 100 repetitions of
this analysis are reported for unharmonized, ComBat-adjusted, and
CovBat-adjusted data
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F IGURE A2 ML experiment results
for harmonization using only training
data. The data is randomly split into
270 training subjects and 235 testing
subjects such that every site is
represented in each group. The training
set is then used to train a random forests
algorithm to predict Siemens scanners or
patient characteristics. a shows the AUC

values for detection of Siemens. AUC
values for detection of AD are displayed
in b and detection of male in (c). RMSE
values for prediction of age are displayed
in (d)
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