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Summary
Background Alzheimer’s disease (AD) is a neurodegenerative disease associated with widespread disruptions in
intrinsic local specialization and global integration in the functional system of the brain. These changes in integration
may further disrupt the global signal (GS) distribution, which might represent the local relative contribution to global
activity in functional magnetic resonance imaging (fMRI).

Methods fMRI scans from a discovery dataset (n = 809) and a validated dataset (n = 542) were used in the analysis. We
investigated the alteration of GS topography using the GS correlation (GSCORR) in patients with mild cognitive
impairment (MCI) and AD. The association between GS alterations and functional network properties was also
investigated based on network theory. The underlying mechanism of GSCORR alterations was elucidated using
imaging-transcriptomics.

Findings Significantly increased GS topography in the frontal lobe and decreased GS topography in the hippocampus,
cingulate gyrus, caudate, and middle temporal gyrus were observed in patients with AD (Padj < 0.05). Notably,
topographical GS changes in these regions correlated with cognitive ability (P < 0.05). The changes in GS topography
also correlated with the changes in functional network segregation (ρ = 0.5). Moreover, the genes identified based on
GS topographical changes were enriched in pathways associated with AD and neurodegenerative diseases.

Interpretation Our findings revealed significant changes in GS topography and its molecular basis, confirming the
informative role of GS in AD and further contributing to the understanding of the relationship between global and
local neuronal activities in patients with AD.
*Corresponding author. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
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Evidence before this study
The global signal (GS) is a traditional confounder that is removed
from functional magnetic resonance imaging (fMRI) data.
However, recent literature has shown the informative role of GS,
suggesting that GS removal should be performed carefully based
on a specific question. In addition to artifacts, GS represents an
overall fluctuation of the global activity in the brain. Alzheimer’s
disease (AD) is a neurodegenerative disease associated with
widespread disruptions in local specialization and global
integration in the functional brain network. These changes in
functional integration may further disrupt the spatial
configuration of GS, which represents the local relative
contribution to global brain activity. Investigations of GS can
help guide GS removal and promote an understanding of
alterations in the functional network in patients with AD.

Added value of this study
This study directly investigates the alterations in GS and
its topography in patients with AD. The GS topography

shows a pattern of bidirectional changes in patients with
AD compared with normal controls (NCs), suggesting
that the spatial configuration of GS changed in
individuals with AD. Meanwhile, topographic GS changes
correlate with cognitive ability and brain functional
network properties. Moreover, the genes identified based
on GS topographical changes are enriched in
pathways associated with AD and neurodegenerative
diseases.

Implications of all the available evidence
These findings show a nonuniform pattern of alterations
in local-global integration in the functional brain network
of patients with AD, suggesting that cognitive
impairment and functional network disruption might be
linked to abnormal local-global integration. Additionally,
the strong clinical relevance of GS topography indicates
that global signal regression should be carefully performed
in fMRI studies of patients with AD.
Introduction
The global signal (GS) refers to the average signal of the
gray matter voxels, representing an overall fluctuation of
the global blood oxygen level-dependent (BOLD) activity.
The GS is suggested to be linked to the artifacts of head
motion, hardware, respiratory, and other unknown ef-
fects.1 Therefore, it is regressed out as a nonneuronal
signal in the preprocessing of fMRI data.2 However,
numerous studies have highlighted the potential bio-
logical mechanisms of GS,3–5 providing convergent evi-
dence that GS topography is related to human cognition
and behavior.6,7 The GS or its topography (i.e., the rep-
resentation of GS in specific regions) was additionally
reported to be associated with electrophysiological met-
rics,8 tasks,9 vigilance,10,11 schizophrenia,12–15 and autism
spectrum disorder,16 suggesting that GS may encompass
neuronal signals in addition to nonneuronal signals. As
a GS is composed of both neural and nonneural signals,
a consensus has been established to determine whether
to remove the GS based on the specific question.17

The human brain is organized into segregated
complex systems with different functional areas that
interact with each other for daily cognitive function.18,19

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease associated with widespread disruptions in distinct
areas through disconnection mechanisms.20–22 These
widespread disruptions upset the balance between local
specialization and global integration in the brain and
consequently impair cognitive ability, affecting a pa-
tient’s ability to perform daily tasks.23 Several studies
have documented that changes in global and local brain
activity play important roles in advancing our under-
standing of AD.20,24,25 Because substantial evidence has
shown that the GS potentially reflects global neural ac-
tivity, changes in the relationship between the global
status and local activity might contribute to GS topo-
graphical changes.26 Although the investigation of GS
alterations is beneficial for guiding GS removal and
understanding functional network disruptions, these
changes have not been well studied in AD. Here, we
proposed to investigate the contribution of GS topog-
raphy in patients with AD to reveal the changes in the
relationship between global integration and local
specialization in individuals with AD, as well as to
facilitate the preprocessing strategy for GS.

Because of the difficulties in eliminating artifacts
from the GS, researchers should be careful when
determining whether the alteration in the GS spatial
configuration is due to neural changes or artifacts.1 At
the molecular level, single–cell activity is driven by
www.thelancet.com Vol 89 March, 2023
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fluctuations in gene expression and protein synthesis in
neurons.27,28 Imaging transcriptomics has created a new
opportunity to elucidate the molecular mechanism of
brain function.29–31 The utilization of transcriptional ac-
tivity may reveal the potential biological basis of changes
in the GS.

The primary purpose of this study was to explore the
abnormal pattern of the GS and the potential biological
mechanisms underlying this alteration. For this pur-
pose, we utilized a large-sample fMRI dataset from the
Multi-Center Alzheimer Disease Imaging Consortium
Dataset (MCADI) as the discovery dataset. We first
investigated the alterations in GS topography among
patients with AD, participants with MCI, and normal
controls (NCs). Then, we examined the relationship
between alterations in GS topography and functional
network organization (i.e., network integration and
segregation). Next, the associations between GS topog-
raphy and biological pathways were computed by per-
forming spatial whole-brain gene mapping using the
Allen Human Brain Atlas (AHBA).32,33 Finally, we vali-
dated the robustness of our findings with samples from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI).
Methods
Participants
The primary discovery dataset included 809 participants
(including 257 NCs, 257 participants with MCI, and 295
patients with AD) from the MCADI.34–36 All of the par-
ticipants were enrolled in local hospitals in China. The
discovery dataset was used to investigate the main
findings of the study. Detailed information, including
demographic, ethics, and clinical status, are presented
in Supplementary Methods S1 and Table S1.

The validation dataset includes 542 subjects (265 NCs,
161 participants with MCI, and 116 patients with AD)
from the ADNI (http://adni.loni.usc.edu) to replicate our
analysis of the discovery dataset and verify the robustness
of our findings. The detailed demographics and clinical
information are shown in Supplementary Methods S1
and Table S1. Additional information about the ADNI
dataset is available at http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Image acquisition and preprocessing
The resting state (rs)-fMRI acquisition, preprocessing,
and quality control were performed using the same
protocols described in our previous studies.34,35 There-
fore, this section provides only a brief overview of these
protocols, with further details provided in the
Supplemental material. All the rs-fMRI scans were
preprocessed using the Brainnetome Toolkit (http://
brant.brainnetome.org),37 which included the following
steps: (1) slice-timing correction; (2) realignment to
the first volume; (3) spatial normalization to Montreal
www.thelancet.com Vol 89 March, 2023
Neurological Institute (MNI) space at 2 mm × 2
mm × 2 mm; (4) regression of nuisance signals, inclu-
ding linear trends, six motion parameters, and their
first-order differences, and signals representing white
matter and cerebrospinal fluid; (5) temporal bandpass
filtering (0.01–0.08 Hz) to reduce high-frequency noise;
and (6) Gaussian filtering with 6 mm full-width at half
maximum (FWHM). Subsequently, any voxel where the
mean absolute deviation in the fMRI signal was less
than 0.05 was labeled absent; a voxel that was absent in
more than 1% of individuals was excluded from the
research.34

Definition of the GS and GS topography
GS time series were obtained by averaging the signals of
gray matter voxels, and the GS topography was esti-
mated by calculating the GS correlation (GSCORR). For
each voxel, the GSCORR was the Pearson correlation
coefficient between the GS and its time series, which
reflects the relative contribution of a voxel to the GS.
The GSCORR was subsequently transformed by
Fisher’s r-to-z transformation to improve the normality
of the correlation coefficients.

The signal power of the GS
We estimated the signal power of the GS to determine
the total alterations in BOLD activity in patients with
AD. We computed the signal power in the frequency of
the GS among the participants in the AD, MCI, and NC
groups by performing a multitaper spectrum estimation
with the Nitime Time-Series Analysis library (http://
nipy.org/nitime). The mean signal power (across fre-
quencies ranging from 0.01 to 0.08 Hz) of the GS
showed failure in normality validation by Shapiro–Wilk
test in the three groups separately or together (Ps < 0.05)
and therefore compared between participants in the AD,
MCI, and NC groups using the Kruskal–Wallis test,
which is a nonparametric method for testing whether
samples originate from the same distribution. Consid-
ering the variation in different fMRI scanning lengths,
we retained only the first 170 time points of fMRI data
for each individual.

Alteration of GS topography in patients with AD
A one-sample t test was applied to the GSCORR map for
individuals to illustrate the spatial configuration of GS
topography in each group. A general linear model
(GLM) was then introduced to investigate the difference
in GS topography between patients with AD and NCs
while adjusting for age, sex, and site. The significant
regions were identified by a voxel level threshold
(P < 0.05, false discovery rate (FDR)-corrected) and a
cluster threshold (cluster size >20). Regions with
significantly increased voxels and decreased voxels in
the MCADI dataset were extracted separately as regions
of interest (ROIs) for investigating the alterations in
GSCORR. The average GSCORR for the increased ROIs
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(iGSCORR) and the decreased ROIs (dGSCORR) were
compared between participants with MCI and the other
two groups using two-sample two-sided t tests to show
the alterations in GSCORR in the early stage of AD. We
performed correlation analyses of the iGSCORR and
dGSCORR by calculating Spearman’s coefficients be-
tween these values and the Mini-mental State Examina-
tion (MMSE) scores within each group after regressing
out age, sex, and site effects to evaluate further whether
the GSCORR in the significant areas changed within
each clinical stage.

Alterations in network segregation and integration
measurement in patients with AD
We performed a graph theory network analysis to
investigate the potential contribution of the GS to
functional network organization. An undirected func-
tional network was constructed by measuring the func-
tional correlations between 246 parcels according to the
Brainnetome Atlas.38 Node segregation in the functional
network was primarily measured by calculating the
clustering coefficients, which were determined as the
ratio of the number of connections between the direct
neighbors of the node to the total number of possible
connections between these neighbors. Meanwhile, node
integration in the brain was measured by determining
the shortest path length, which is the average minimum
number of connections that link any two nodes of the
network.39 The clustering coefficient and shortest path
length were calculated with a range of sparsity thresh-
olds (from 0.05 to 0.15, step of 0.01). Finally, a GLM was
employed to compare the brain network segregation and
integration between patients with AD and NCs while
adjusting for age, sex, and site.

The association between changes in GSCORR and
gene expression
The cortex and subcortex were parcellated into 246
parcels based on the Brainnetome Atlas.38 We consid-
ered 123 brain parcels in the left hemisphere since the
AHBA only includes data for the right hemisphere for
two subjects.29 The regional-based GSCORR was
computed by averaging the GSCORR across all voxels
included in this region, and region-based gene expres-
sion from AHBA was estimated using abagen.29,40

Separate z score normalization procedures were
applied for cortical and subcortical regions due to the
strong anti-correlation between cortical and subcortical
gene expression.41 Regional changes in GSCORR (t-
statistic) were assessed by performing a two-sample t
test between patients with AD and NCs after controlling
for age, sex, and data site.

Partial least squares (PLS) regression analysis between
the changes in GS and gene expression was performed to
identify the potential biological mechanism. PLS regres-
sion analysis has been widely used for transcriptomic
analyses,42 and it can find linear combinations of
weighted gene expression scores (predictor variables) that
are the most predictive of GSCORR alterations (response
variables).43 We performed 1000 permutations using the
surrogate maps generated from spin rotations in cortical
regions and resampling of the subcortical regions to
examine whether the explained variance in the compo-
nent was significantly larger than that achieved by
chance.44 Then, the correlation between the PLS compo-
nent and GS alterations was also examined using the
same method to determine whether it was greater than
chance. Furthermore, we performed bootstrapping to
estimate the error of the weight of each gene, and the
normalized weight of each gene was generated by
dividing the weight by the estimated error.42 Finally, we
performed an enrichment analysis of Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways for statistically
significant genes using a background gene list of all
human genes with "clusterprofiler" software.45

Replication analysis
The alterations in GSCORR between the participants in
the AD and NC groups were compared again with the
independent samples from the ADNI dataset to verify the
robustness of the results. The protocol used for the an-
alysis was the same as that described above. Then, cor-
relation analyses between the MCADI and the ADNI
database were performed for the GSCORR alterations to
investigate whether the altered pattern was consistent
between the two datasets. Spearman’s correlation coeffi-
cient was calculated between the statistical map of the two
datasets. Next, we mapped the results fromMNI standard
space to fsaverage_LR32k and extracted voxels in
subcortical areas (thalamus, basal ganglia, hippocampus,
and cerebellum) to exclude the confounding effect driven
by spatial autocorrelation. The spatial autocorrelation ef-
fect was excluded using the generative modeling imple-
mented in BrainSMASH software to address the spatial
autocorrelation effect of numerous subcortical voxels.46

Furthermore, we investigated the GS topography using
a GLM, which measured the contribution by calculating
the beta coefficients (Supplementary Methods S3).13 The
correlation determined using Spearman’s correlation
analysis was also calculated between the GS beta map and
the GSCORR map.

Role of the funding source
The funders supported the data collection but played no
role in the study design, data analyses, interpretation, or
writing of this manuscript.
Results
Alterations in the GS and GS topography in
patients with AD
Participants from the MCADI were used in the discov-
ery analysis to obtain results. No difference in the mean
power of the GS was observed between the NC, MCI,
www.thelancet.com Vol 89 March, 2023
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Fig. 1: GS and GS spatial topography. (a) An illustration of the calculation of GSCORR, which is a correlation between the GS and time series in
each voxel. (b) The group-level average power of the GS in the NC, MCI, and AD groups in the frequency domain. (c) Comparisons of the
average power of the GS across all frequencies among the three groups. (d) GSCORR topography (t-map of the one-sample t test) in the NC,
MCI, and AD groups.
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and AD groups (P = 0.41), suggesting that the whole-
brain activity showed no significant differences that
were attributed to the disease (Fig. 1b and c).

In the analysis of GS topography, the results showed
that participants in the NC, MCI, and AD groups had a
similar GSCORR spatial pattern, which was higher in the
posterior cingulate cortex/precuneus and inferior parie-
tal lobule than in other regions (Fig. 1d). However,
bidirectional alterations in GS topography were observed
between patients with AD and NCs (Fig. 2a). Fig. 2b
shows the significant regions that were compared be-
tween patients with AD and NCs (P < 0.05, FDR-
corrected, and cluster size >20). The GSCORR of par-
ticipants in the AD group was increased in the middle
frontal gyrus, inferior frontal gyrus, and thalamus and
decreased in the cingulate gyrus, caudate, middle tem-
poral gyrus, inferior parietal lobule, and hippocampus/
parahippocampus (Supplementary Fig. S2).

We examined the relationship between head mo-
tion and the GS to evaluate whether head motion
affected our results. The results showed no direct
relationship between the clinical relevance of head
motion and that of the GS in patients with AD
(Supplementary Results S1). Furthermore, we applied
the same method to the participants with strict criteria
for head motion, which showed highly correlated
patterns compared to those in the original dataset
www.thelancet.com Vol 89 March, 2023
(Supplementary Results S2, Fig. S3), indicating that
the effect of head motion was small.

The regions that constituted significantly increased
voxels and decreased voxels were extracted separately as
ROIs based on the GSCORR alterations in the MCADI
dataset (Supplementary Fig. S2). In the MCADI dataset,
participants with MCI showed a higher level of
dGSCORR than participants with AD (t = 4.90,
P = 1.25e-6) and a lower dGSCORR than NCs (t = −3.77,
P = 1.98e-4) (Fig. 2c). Interestingly, the dGSCORR
significantly correlated with the MMSE score of patients
with AD (Spearman’s coefficient ρ = 0.13, P = 0.024) and
had no significant relationships in NCs (P = 0.88) and
participants with MCI (P = 0.078) (Fig. 2d). Participants
with MCI showed a lower iGSCORR than those with AD
(t = −4.55, P = 6.23e-6) and a higher GSCORR than NCs
(t = 3.14, P = 1.80e-3) (Fig. 2e). The iGSCORR was also
significantly correlated with the MMSE score of patients
with AD (ρ = −0.13, P = 0.030) and showed no signifi-
cant correlation with the MMSE score of NCs (P = 0.81)
and participants with MCI (P = 0.21) (Fig. 2f).

We further analyzed the samples from the ADNI
using the same ROIs to validate the finding of cognitive
relevance and alteration of dGSCORR and iGSCORR.
Similar alteration patterns and cognitive associations
were observed in the groups by analysis of variance
(Fig. 2g–j), showing the authenticity of the cognitive
5

www.thelancet.com/digital-health


-5

a

b

c d e f

g h i j

unthreshold z statistic

FDR corrected z statistic

5

0

ρ = 0.13
P = 0.024

ρ = -0.13
P = 0.030

-5

5

0

ρ=-0.19, p=0.044 ρ=0.30, p=0.001

M
C
A
D
I

A
D
N
I

Fig. 2: Altered GSCORR in patients with AD. (a) Unthresholded z-map of the comparison between individuals with AD and NCs. (b) Areas
showing significant differences between patients with AD and NCs (FDR-corrected P < 0.05 and cluster size >20). (c) Comparison of the average
GSCORR in the decreased area (dGSCORR) between the MCI group and the other two groups in MCADI. (d) Scatterplot of the relationship
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(f) Scatterplot of the relationship between MMSE scores and iGSCORR scores of participants within each group in MCADI. The labeled figure
indicates the correlation within the AD group. (g) Comparison of the dGSCORR among participants in the NC, MCI, and AD groups in ADNI. (h)
Scatterplot of the relationship between cognition (CDRSB scores) and dGSCORR scores of participants in the AD groups in ADNI. (i) Comparison
of the iGSCORR among participants in the NC, MCI, and AD groups in ADNI. (j) Scatterplot of the relationship between cognition (ADAS13
scores) and iGSCORR scores of participants in the AD groups in ADNI.
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relevance. The dGSCORR did not show a significant
difference among participants in the NC, MCI, and AD
groups (F = 1.69, P = 0.180) after regressing the effects
of age and sex (Fig. 2g). However, the dGSCORR was
still significantly correlated with the CDRSB in patients
with AD (ρ = −0.19, P = 0.044) (Fig. 2h). The iGSCORR
also showed a significant difference among participants
in the NC, MCI, and AD groups (F = 4.23, P = 0.023)
www.thelancet.com Vol 89 March, 2023
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after regressing the effects of age and sex (Fig. 2i).
Participants with AD showed a higher iGSCORR than
NCs (t = 2.85, P = 0.005) and a similar level to partici-
pants with MCI (t = 1.93, P = 0.054). The iGSCORR was
also significantly correlated with ADAS13 in patients
with AD (Spearman’s correlation coefficient ρ = 0.30,
P = 0.001) (Fig. 2j).

Relationship between changes in GSCORR and
network organization
The regional changes in GSCORR strongly corre-
sponded to the voxel-level results in the MCADI dataset
(Fig. 3a). Interestingly, the changes in network organi-
zation showed a strong relationship with the changes in
GSCORR. At the sparse threshold of 0.08, the increased
chances of a clustering coefficient and decreased chan-
ces of the shortest path length located in the frontal lobe
and inferior parietal lobule were similar to the changes
in GSCORR (Spearman’s coefficient ρ = 0.50 and
ρ = −0.57, respectively) (Fig. 3b and c, results for other
thresholds are shown in Supplementary Fig. S2).

Mapping changes in GS topography to gene
expression
Associations between GS topography and gene expres-
sion were determined in the MCADI dataset. PLS
identified a gene expression profile with high expression
in the frontal and parietal cortices. The first component
of the PLS (PLS1, explained variance = 0.38,
Pperm = 0.004) was the linear combination of gene
expression levels that were most strongly correlated with
regional changes in GSCORR ( ρ = 0.60, Pperm < 0.001)
(Fig. 4a and b). The subset of 3772 positively and
negatively weighted genes (|z| > 3) comprised a topo-
logically interactive network that was enriched for
-5        0        5
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c

Regional GSCORR t statistic

Fig. 3: Relationship with network organization. (a) T-map of regional
groups. (b) Scatterplot of regional t-statistic values of GSCORR vs
threshold = 0.08). (c) Scatterplot of regional t-statistic values of GSCOR
threshold = 0.08).
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several KEGG pathways (Fig. 4d and Fig. S5).42 The
identified KEGG pathways have been reported to
modulate a wide variety of neurodegenerative diseases,
including AD, Huntington’s disease, amyotrophic
lateral sclerosis, prion disease, and Parkinson’s disease.
Apart from these diseases, the genes identified by PLS1
were also enriched in pathways associated with ther-
mogenesis, chemical carcinogenesis-reactive oxygen
species, autophagy, and oxidative phosphorylation,
among others. Enrichment analysis was also performed
when choosing the 1964 genes identified with another
threshold (|z| > 4), and a consistent result was obtained
(Supplementary Fig. S5).

Replication analysis
With the replication samples from ADNI, the
GSCORR of each group (i.e., NC, MCI, and AD) in the
ADNI dataset showed a similar spatial pattern
compared to that in the MCADI dataset, which was
mainly located in the posterior cortex, including the
visual cortex and parietal lobe (Fig. 5). The changes
observed in patients with AD compared with NCs
were mainly an increased GSCORR in the superior
frontal lobe and inferior parietal lobule and decreased
GSCORR in the posterior superior temporal sulcus
(Fig. 5g). All the results were significantly correlated
in the spatial distribution between the two datasets at
the surface level after controlling for the spatial
autocorrelation effect (all P values < 0.001, Fig. 5b, d, f,
h). The significant association was consistent when
correlating the values at the volume level without
controlling for the spatial autocorrelation effect
(Fig. S6). Furthermore, highly similar patterns of GS
topography were also observed in the GS beta map
(ρ = 0.74, P < 0.001, Fig. S7).
ρ = 0.50, P = 4.68e-15 
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Discussion
In the present study, we initially investigated alterations
in the GS in patients with AD, which is essential for
understanding the changes in global functional activity in
patients with AD. Our results provided convergent evi-
dence that the GS topography exhibited a pattern of
bidirectional changes in patients with AD, which was
strongly related to network segregation and integration.
Moreover, alterations in GS topography were associated
with the genetic foundation of AD and multiple neuro-
degenerative diseases. Furthermore, the reproducibility
of GS alterations between the MCADI and ADNI data-
sets, which include large samples from multiple centers
and are representative of the AD populations with
different ethnicities from China and North America,
confirmed the generalization of the clinical relevance of
the GS in patients with AD. The spatial reconfiguration,
clinical relevance, association with the functional
network, and potential molecular associations with dis-
eases of the GS might contribute to studies of the func-
tional system in individuals with AD in the future.

Although the GS is suggested to be linked to arti-
facts, which usually should be regressed out when pre-
processing fMRI data, several studies have found that
GS topography is potentially modulated by neuronal
factors.3,4 The nonuniform modulation of the GS, which
might be associated with functional changes in various
regions,9 was detected in patients with AD by investi-
gating the GSCORR. The GS topography observed in
the present study reflects the high GSCORR located in
the posterior cortex of the brain in NCs, similar to
previous studies.9,13 Several studies consistently found
www.thelancet.com Vol 89 March, 2023
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that functional activity within the frontal lobe is
increasingly altered with the development of AD,23,47–50

and the frontal lobe was proposed to be a substrate of
functional compensation to resist cognitive disability.51,52

Compared with NCs, the GSCORR in patients with AD
was also elevated in the middle frontal gyrus, suggesting
that the increased functional activity in the frontal lobe
increased its relative contributions to global neuronal
activity. Our results showed that GSCORR values in
patients were decreased in several hub regions of the
default mode network, including the cingulate gyrus,
precuneus, middle temporal gyrus, and hippocampus/
parahippocampus, compared with those of NCs. The
default mode network is preferentially disrupted in pa-
tients with AD and is associated not only with various
cognitive functions and episodic memory but also with
amyloid deposits.21,53 Another notable area is the
caudate, which is impaired in patients with AD but has
received less attention than the hippocampus.54–56 The
caudate plays an important role in learning, and the
stimulation of this region may modulate learning-
related changes in the power of the dorsolateral pre-
frontal cortex.57 The GSCORR in the bilateral caudate
exhibited a clustered alteration, suggesting that the
synchronization between caudate and global neuronal
activity changed extensively.
www.thelancet.com Vol 89 March, 2023
Furthermore, the changes in GSCORR were strongly
correlated with functional network organization and
cognition. This finding is supported by previous studies
showing that the integration and segregation of func-
tional networks changed and played an essential role in
the progression of AD.20,23–25 Based on our results,
global-local coupling was indeed changed and driven by
the disease and might be a factor underlying network
segregation. The average GSCORR was significantly
correlated with cognitive ability in patients with AD,
indicating that GS alterations are associated with un-
derlying pathological changes. Moreover, the altered
GSCORR showed a progressive trend among the three
groups in several important functional systems, which
provides further evidence that GS alterations might
provide an opportunity to track disease progression.

AD is extensively associated with motor dysfunc-
tion,58 and individuals with AD tend to exhibit more
head motion than normal individuals.59 Motor
dysfunction may cause more unconscious motions, and
the artifacts derived from head motion were identified
in previous studies60,61; therefore, studies using fMRI
usually regressed out the head motion and controlled
the head motion of subjects by thresholding the values
of FD.62 Interestingly, no difference in the sum of FD
was observed between participants in the AD and NC
9
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groups, significant differences in the signal power of FD
were still detected. Meanwhile, the signal power of head
motion in patients with AD is higher than that in NCs,
but the power of the GS in NCs is comparable to that in
patients with AD, suggesting that the signal driven by
head motion did not dominate the GS. We further
investigated the head motion correlation (framewise
displacement correlation, FDCORR), which showed a
high representation in the sensorimotor cortex (Fig. S9).
This representation partially revealed that those
conscious or unconscious tiny movements had a tight
relationship with the functional activities in the senso-
rimotor cortex. Hence, the relatively low GSCORR in
the sensorimotor cortex compared with previous studies
may be due to the use of different head motion criteria.

Moreover, AD has a vital genetic component,63 which
helps us to prove that the alteration in GS topography is
attributed to the disease. Previous studies have
confirmed that GSs show different alterations in in-
dividuals with different psychiatric disorders (i.e.,
schizophrenia and bipolar disorder14) or different phases
of psychiatric disorders (i.e., manic, depressive, and
euthymic of bipolar disorder26). According to the genetic
association with AD, our results further confirmed
that patients with AD had a different pattern of GS al-
terations than patients with psychiatric disorders.
Moreover, the genes are enriched not only in the AD-
associated pathway but also in multiple neurodegener-
ative disease pathways, reflecting a potential mechanism
shared by a series of neurodegenerative diseases. The
basal ganglia might be a bridge that connects GS alter-
ations in individuals with AD with those of patients with
other diseases. For example, the major pathological site
of Huntington’s disease is located in the basal ganglia,
particularly the caudate,64 and Parkinson’s disease also
had structural alteration in the basal ganglia and medial
temporal lobe.65 AD and amyotrophic lateral sclerosis
have an etiopathogenic connection linked to inhibitor-2
of protein phosphatase-2A.66 Prion disease and AD have
different neuropathologies, but both are strongly asso-
ciated with neuroinflammation,67,68 and prion disease
may even trigger biochemical changes similar to those
triggered by AD.69 In addition to related neurodegener-
ative diseases, other pathways, such as autophagy, also
showed strong associations with AD.70 Mitochondrial
defects are known to occur in aging, cancer, heart dis-
ease, and a wide variety of degenerative diseases,71 and
increasing evidence implicates mitochondrial dysfunc-
tion resulting from molecular defects in oxidative
phosphorylation.71 Aβ and tau synergistically impair the
oxidative phosphorylation system.72 A superficial rela-
tionship between diabetic cardiomyopathy and AD was
not observed, but underlying correlations existed
beneath the surface. Diabetes is a typical metabolic
disease that is closely correlated with abnormal ther-
mogenesis,73 and impaired thermoregulation is associ-
ated with AD-like neuropathology.74 In conclusion, the
enriched pathways derived from PLS1 of GSCORR
collectively suggested the neuropathogenesis underlying
AD and related neurodegenerative diseases, which not
only strongly suggested the informative role of GS but
also revealed the associated molecular mechanisms of
the altered GS topography.

More importantly, our findings provide instructive
information about the global signal regression, which
should be performed depending on the specific topic.17

The GSR usually results in some difference in the
analysis of fMRI data, and it is important to examine the
relationship between GSR and disease-related
changes.26,75 Brain global connectivity is powerful for
measuring connectivity of the brain network and has
been shown to correlate with GS spatial patterns.26,76 We
also investigated the effect of GSR on alterations in the
global connectivity of the brain in patients with AD
(Supplementary Results S3). The increased area of
global connectivity in the brain was expanded in the
comparison between AD and NC groups with GSR
compared with that without GSR. The changes might be
attributed to the attenuation of nonneural artifacts and
be a more accurate result.14,17 However, the alteration in
the GS was not directly driven by head motion and
correlated with cognition, brain network properties, and
the molecular mechanism of AD, suggesting that alter-
ations are driven by the disease. Hence, our findings
indicated that GSR should be performed carefully in
studies of patients with AD, and reporting both results
will be beneficial for interpreting disease-related
changes.14,75

This study had several limitations. First, insufficient
physiological and pathological data may have restricted
the current findings. The GS was suggested to be closely
associated with physiological noise and motion.1 The
effect of head motion was minimized to prevent noise
and confirmed to have a limited effect on the between-
group comparisons. We further validated the main re-
sults when removing the individuals with correlations
between GS and FD. Future studies would enrich our
findings by analyzing neurobiological data (i.e., imaging
data of Aβ and tau) to further verify the pathological
basis of GS alterations. Second, other neuroimaging
modalities might be complementary in understanding
the alterations in the GS in patients with AD. Specif-
ically, anatomical connectivity derived from diffusion
MRI would be one of our focuses in future studies to
identify the relationship between areas with an altered
GS. Third, patients who had comorbidities with other
disorders were excluded. The brains of elderly in-
dividuals usually are affected by multiple proteino-
pathies and vascular injuries.77 Investigating the effects
of comorbidities on AD is also important for assessing
neuropathology and clinical phenotypes in individuals
with dementia. Cohorts containing participants with
multiple diseases and comorbidity information are
promising for a large contribution to AD and AD-
www.thelancet.com Vol 89 March, 2023
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associated dementia research in the future. Finally, the
regional gene expression patterns identified in the six
postmortem brains from the AHBA dataset represent a
conserved canonical signature of healthy subjects.78

Although imaging transcriptomics contributed to the
understanding of the macroscopic neuroimaging phe-
notypes, the association is a potential interpretation and
not a direct molecular basis. A promising approach is to
investigate the molecular mechanism of GS by
combining gene expression data from participants with
AD and genome-wide association studies when the
relevant data are available.

In summary, the present study initially characterized
AD dementia-associated changes in the GS using two
large AD rs-fMRI databases, and the relevant findings
were quite robust, based on the validation analysis. GS
topography displayed a pattern of bidirectional changes
in patients with AD, and alterations in GS topography
were associated with the brain network organization and
pathways of AD and multiple neurodegenerative dis-
eases. These findings highlight the relationship between
local and global neuronal activity that is changed during
disease progression and provide a new perspective for
understanding the disruption of brain functions in pa-
tients with AD.
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