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Aim: Construct a clinical predictive model based on easily accessible clinical features and imaging data to
identify patients 65 years of age and younger with mild cognitive impairment(MCI) who may progress to
Alzheimer’s disease(AD).
Methods: From the ADNI database, patients with MCI who were less than or equal to 65 years of age and
who had been followed for 6–60 months were selected.We collected demographic data, neuropsycholog-
ical test scale scores, and structural magnetic images of these patients. Clinical characteristics were then
screened, and VBM and SBM analyses were performed using structural nuclear magnetic images to obtain
imaging histology characteristics. Finally, predictive models were constructed combining the clinical and
imaging histology characteristics.
Results: The constructed nomogram has a cross-validated AUC of 0.872 in the training set and 0.867 in the
verification set, and the calibration curve fits well.We also provide an online model-based forecasting
tool.
Conclusion: The model has good performance and uses convenience,it should be able to provide assistance
in clinical work to screen relatively young MCI patients who may progress to AD.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Alzheimer’s disease(AD) is a neurodegenerative disorder char-
acterized by cognitive impairment and limited behavioral ability,
it’s the 5th leading cause of death for people aged 65 and older
[1]. In addition, the incidence of AD increases exponentially with
age greater than 65 years [2]. This places a heavy financial burden
on families and society [2,3]. Mild cognitive impairment(MCI) is
the prodromal stage of AD. Studies have shown that the earlier
the disease is identified and intervened in, the higher the probabil-
ity of successful treatment [4]. A number of existing prediction
studies on AD have combined demographic characteristics, neu-
ropsychological test scales, cerebrospinal fluid markers, genes,
and PETCT, and have obtained good predictive performance [5–
8]. However, in view of the high cost and inconvenience of PETCT
and the unavailability of primary hospitals, as well as the invasive-
ness of cerebrospinal fluid, the clinical application of these
research results is limited. In addition, the identification of rela-
tively young patients with MCI who may progress to AD is of
greater socioeconomic importance. Due to the relative youth of
the patients, we therefore chose a relatively midium-term
(5 tears) follow-up period, and medium-term(5-years) based
follow-up also helps to improve the predictive performance of pre-
dictive models [9]. Therefore, there is a strong need to have a sim-
ple predictive tool suitable for most clinical conditions to primary
screen relatively young MCI patients who are likely to progress to
AD for further testing and clinical medication decisions.

Nomogram is a graph-based and easy-to-understand prediction
tool, which can be easily used in complex clinical settings, and it is
easy to communicate the results with patients [10]. Moreover,
nomograms can predict individualized specific risk for each patient
[11].

In this study, based on easily accessible clinical features and
structural MRI, we hypothesized that a predictive model
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combining simple clinical and imaging features would correctly
identify patients aged 65 years and younger with MCI who are
likely to progress to AD with a follow-up of 6 to 60 months and
guide further clinical decision making.We also provide a web-
based calculation software based on this model to make this pre-
dictive screening tool easier to use in clinical practice (https://
chenwh2020.shinyapps.io/DynNomapp/).
2. Materials and methods

2.1. Participants

Our data were all from Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) databases. Full inclusion and exclusion criteria are
described in detail at (http://adni.loni.usc.edu/methods/docu-
ments/). Demographics and clinical data of participants were col-
lected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu/). All patients diagnosed
with mild cognitive impairm- ent(MCI)(included EMCI and LMCI)
at baseline, and were followed up for 6–60 months were selected.
The stage of MCI (early and late) patients are determined using the
Wechsler Memory Scale (WMS) Logical Memory II [6]. Exclusion
criteria were those older than 65 years of age and lack of follow-
up information. Finally, a total of 151 patients were selected. Sub-
sequently, we removed cases with incomplete information and
abnormal image processing results. To that point, we retained
138 patients, 103 of whom did not convert to AD(MCI-MCI) and
35 of whom eventually converted to AD(MCI-AD),We randomly
divided all patients into a training set and a varidation set at a ratio
of 6:4. The detailed process is shown in Fig. 1.

2.2. Clinical preditor collection and selection

In order to make clinical application more convenient and fea-
sible [12], we only collected clinical features that are more acces-
sible.Demographic characteristics we collected age, gender, years
of education, marital status, family history and MCI stage. Neu-
ropsychological test scale including Clinical Dementia Rating Scale
Sum of Boxes(CDRSB), Functional Activities Questionnaire (FAQ),
Fig. 1. Detaile
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Mini-Mental State Examination(MMSE) scores. We classify
patients whose parents or brothers/sisters have a clear history of
AD diseaseas as Yes, others as No. Furthermore, we classify married
status as Yes, divorce and others as No.All grouped data were
tested for normality and homogeneity of variance. Continuous data
using two independent sample T test or Mann-Whitney U test.
Counting data using chi-square test or Fisher’s exact test, P
< 0.05 as statistically significant. And then, the logistic regression
(Forward:LR) was further used to select the clinical features, in this
step,only those variables that retained p < 0.01 were determined to
be significant and incorporated into the final prediction model. The
above statistical analyses were performed using SPSS 26.0.
2.3. Image acquisition

Only 3.0T T1-weighted anatomical MRI images were used in
this study. The ADNI website (http://adni.loni.usc.edu/meth-
ods/documents/) provided the detailed imaging protocols.
2.4. Image processing and feature selection

The T1-weighted anatomical MRI images were preprocessed
using automated procedures in Computational Anatomy Toolbox
(CAT12) (http://www.neuro.uni-jena.de/cat/) within SPM12
(http://www.fil.ion.ucl.ac.uk/spm/) while running in MATLAB
(R2018a; MathWorks, Natick, MA, USA). All settings were default.
Briefly, T1 images were biasfield corrected, skull-stripped, aligned
to a Montreal Neurological Institute standard space (MNI-152 tem-
plate), and split into gray matter(GM), white matter (WM) and
cerebros pinal fluid [13]. According to the cat12 manual (http://
www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf), we get the
Voxel-Based Morphometry (VBM) features. VBM is a more com-
mon voxel-based approach to analyzing gray matter volume in
the whole brain,Jhon Ashburner et al. [14,15] detailed the VBM.
Additionally, this study also obtains the surface-based morphome-
try (SBM) features based on the region of interest (ROI). These arti-
cles have a detailed introduction to SBM [16–18]. As suggested by
the CAT12 manual and previous reports [17], 18 mm and 25 mm
FWHM kernels for CT(local cortical thickness) and folding data,
d process.
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respectively, were used. Extraction of SBM measures was applied
according to the gyral based Desikan-Killiany cortical atlas
(DK40) [19].

We analyzed the volume of whole brain gray matter obtained
based on VBM. In the training set, we used two groups of data,
MCI-AD and MCI-MCI, to establish full Factorial modle, was cor-
rected using sex, age and total intracranial volume (TIV) as covari-
ates.We used MarsBaR ROI toolbox (http://marsbar.sourceforge.
net) to obtain the gray volume of the corresponding regions of
interest in the validation set. Clusters with Uncorrected p < 0.001
would be used as VBM features.

SBM is able to provide measurements with features such as:
Cortical Thickness [16], Fractal Dimensionality Index (Cortical
Surface Complexity) [20], Gyrification Index [17], Sulcal Depth
[20–22]. The SBM feature selection based on the region of interest
uses lasso regression.We added gender and age to the equation to
correct the effects of both. Because of insufficient samples, 3-fold
cross-validation was used to obtain more robust results. Finally,
we combined the VBM features and SBM features to construct a
regression formula, which resulted in the final imaging histology
score(Imgscore) for each individual. The general process of VBM
and SBM is shown in Fig. 2.
2.5. Image feature’s validation

In order to verify the effectiveness of image features, We used a
logistic regression classifier for validation. Given the unbalanced
data distribution due to more MCI individuals than AD individuals,
we double-sampled the data.Sensitivity, specificity, accuracy, and
area under the receiver operating characteristic curve(AUC) were
obtained for the training and validation sets, respectively.
2.6. Nomogram construction, varidation and calibration

Detailed methods about nomogram construction have been
described previously [12]. Using the selected clinical features and
imaging features, a multi-factor logical regression equation was
constructed to reconfirm the effectiveness of the selected features.
The features of p < 0.05 were preserved and used to construct a
nomogram in the training set. To evaluate the discriminative
Fig. 2. VBM and SB
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ability of the nomogram, we used the concordance index
(C-index) and the receiver operating characteristic curve (ROC)
and assessed the area under the curve (AUC).Internal validation
of performance was estimated with a bootstrapping method (500
replications) and a 3-fold cross validation of the training dataset,
and the testing dataset. Calibration was graphically assessed with
the relationship between the actual observed probabilities and
predicted probabilities (calibration curve). The selection of image
features and the establishment and verification of nomogram were
carried out on R3.4.3 (Vienna, Austria; http://www.R-project.org/).
3. Results

3.1. Characteristics of study participants

Demographic and clinical characteristics of the training set and
validataion set are shown in Table 1. The total number of cases was
138, aged 55–65 years, with an average age of 61.4 (SD = 2.55)
years. There was no significant difference in age,years of educaion,-
family history, gender and marital status between MCI converters
and MCI nonconverters in both cohorts (p > 0.05). Both the training
set and validation set, the CDRSB scores and FAQ scores of the MCI-
AD group were larger than those of the MCI-MCI group, according
to the Mann–Whitney U test,the difference between the two
groups (p < 0.001) was statistically significant.MCI staging in the
MCI-AD group was later than that in the MCI-MCI group,according
to two-sample independent T tests,the difference was significant,
both the training set (p = 0.003) and the testing set (p = 0.001).
However,the MMSE scores has no statistical difference in training
set (p = 0.062), but statistical difference in varidation set
(p < 0.001).

3.2. Clinical predictors selection

We retained the clinical indicators with statistical differences in
the significance test of the training set, and make further choices.
There were only three indicators left, including the CDRSB scores
(p < 0.001), FAQ scores (p < 0.001) and MCI stage (p = 0.003). Used
these three indicators to construct a multivariable logical
regression(Forward:LR). The results showed CDRSB (OR 3.36,95%
M processes.
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Table 1
Demographic and neuropsychological characteristics of the training and validation data set.

The training set The validation set

MCI–AD (N = 21) MCI-MCI (N = 61) p MCI-AD (N = 14) MCI-MCI (N = 42) p

Age,y(SD) 61.4(2.4) 61.4(2.5) 0.996 60.2(3.3) 61.7(2.4) 0.076
CDRSB,y(SD) 2.1(1.1) 1.2(0.7) <0.001 2.3(0.8) 1.3(0.7) 0.000
MCI stage
EMCI,N(%) 2(6.7) 28(93.3) 0.003 2(6.9) 27(93.1) 0.001
LMCI,N(%) 19(36.5) 33(63.5) 12(44.4) 15(55.6)
Education,y(SD) 16.2(2.5) 16.5(2.6) 0.696 15.9(2.9) 16.4(2.6) 0.526
FAQ(SD) 5.3(4.6) 2.0(3.7) <0.001 6.1(3.6) 1.5(2.3) <0.001
FHx
Yes,N(%) 6(18.8) 26(81.3) 0.255 6(20.0) 24(80.0) 0.353
No,N(%) 15(30.0) 35(70.0) 8(30.8) 18(69.2)
Gender
Male,N(%) 11(26.2) 31(73.8) 0.902 5(19.2) 21(80.8) 0.353
Female,N(%) 10(25.0) 30(75.0) 9(30.0) 21(70.0)
MaritalS
Yes,N(%) 18(26.1) 51(73.9) 1.000 13(27.1) 35(72.9) 0.664
No,N(%) 3(23.1) 10(76.9) 1(12.5) 7(87.5)
MMSE(SD) 27.4(1.5) 28.2(1.8) 0.062 26.34(2.0) 28.7(1.6) <0.001

SD standard deviation; y years; CDRSB Clinical Dementia Rating Scale Sum of Boxes score; EMCI early mild cognitive impairment; LMCI late mild cognitive impairment; N
number;FAQ Functional Activities Questionnaire; FHx family history of AD, we classify patients whose parents or brothers/sisters have a clear history of AD diseaseas as Yes,
others as No; MaritalS marital status,we classify married status as Yes, divorce and others as No; MMSE mini-mental state examination.
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CI 1.57–7.20, p = 0.002), MCI stage (OR 6.89, 95%CI 1.37–34.57,
p = 0.019). In order to make the model more simplified, we only
keep the indicator of p < 0.01.Only the CDRSB scores was left as
a clinical indicator to be included in the construction of the
nomogram.
3.3. Image feature’s selection

After VBM analysis of whole brain based on voxel level, no sta-
tistically significant cluster was obtained.

The screening of SBM features used Lasso regression in the
training data set. Fig. 3a shows the coefficients for all features that
have undergone lasso regression Then,minimized the mean square
error (0.23) and having undergone 3-fold cross-validation, only one
feature remained as the indicator:left:lbankssts.thick (Banks of
Superior Temporal Sulcus), coefficienct equal to �0.05. Then veri-
fied in the veridation set and obtained the mean square error as
0.19. The fearture selection by LASSO sea in the Fig. 3b.
Fig. 3. Filtering features using lasso regression. Fig3: text a:Feature coefficients obtain
square error, the features were selected,only one feature remains at this point.
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3.4. Image feature’s validation

Validation of impact histological features using logistic regres-
sion classifiers. The data from the training set was double-
sampled, and the predictive power had shown accuracy 0.702,
sensitivity 0.714, specificity 0.690,AUC 0.702. The validation set
exhibited accuracy 0.735, sensitivity 0.583, specificity 0.784, AUC
0.684.We constructed a linear equation based on the imaging char-
acteristic coefficient and intercept obtained by LASSO regression
equation,and the imaging scores were obtained for each individ-
ual,used those imaging scores as the final imaging feature.

3.5. Nomogram construction, varidation and calibration

The nomogram constructed using clinical features and imaging
features in the training set is shown in Fig. 4. The modle achived
C-Index = 0.872(95%CI 0.74–1), R2̂ = 0.533, Imgscores (OR 12.39,
95%CI 1.77–86.99, p = 0.011), CDRSB (OR 10.05, 95%CI 2.00–50.40,
p = 0.005). The calibation curve shown in Fig. 5a. The closer the cal-
ed using lasso regression.b:After 3-fold cross-validation and minimizing the mean



Fig. 4. Nomogram for predicting the conversion of MCI to AD.

Fig. 5. The calibration curve. Fig 5: Calibration curves validated by 500 bootstrap methods and 3-fold cross-validation. Dotted line:apparent calibration accuracy; solid line:
bias-corrected calibration curve; dashed line:ideal. The closer the bias-corrected calibration curve is to the 45 degree slope, the better the calibration. a: Calibration curves for
training sets. b: Calibration curves for verification sets.
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ibration curve is to the diagonal, the better the predictive power of
the nomogram. Then verify in the verification set. The modle of
the validation set got C-Index = 0.867(95%CI 0.72–1) R2̂ = 0.48, Img-
scores(OR 2.75, 95%CI 1.07–7.06, p = 0.036), CDRSB(OR 4.30, 95%CI
1.34–13.80, p = 0.014). The calibration curve shown in Fig. 5b. The
results show that the nomogram performs well in the training set
and the verification set.

4. Discussion

We divided patients followed for 6–60 months into MCI-MCI
and MCI-AD groups by final outcome,and constructed the nomo-
gram using the screened clinical and imaging features. The predic-
tion model achieves good prediction performance in both the
training set (c-index 0.872) and the validation set (c-index
0.867). The results showed that the prediction model of this study
could better predict the probability of AD conversion in MCI
patients aged 65 years and younger in 5 years. Most of the existing
studies on Alzheimer’s disease prediction models have achieved a
high level of accuracy, but also mostly include cerebrospinal fluid
marker tests, genetic screening and PETCT examination [5–8].
The invasive nature of cerebrospinal fluid examination, the high
cost of genetic screening and PETCT testing, and the lack of neces-
sary equipment result in the low applicability of these findings in
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clinical practice [23]. We therefore selected only low-cost and
widely available clinical features and sMRI to construct this model
[24], and provided an online computational tool to facilitate clini-
cal use.

In the process of screening clinical features, we found that
CDRSB (p = 0.002) and MCI stage (p = 0.019) were related to out-
come events according to logistic regression. CDRSB is widely used
in clinical practice and has shown good sensitivity in the staging of
dementia [1,25]. The MCI stage also correlates with the final out-
come of AD, which is consistent with previous studies [26–28].
Given the relative lack of sample to avoid overfitting of subsequent
predictive models, and to simplify the model, we use a more rigor-
ous of the statistical results, only clinical indicators with p < 0.01
were included.

VBM-based whole-brain gray matter analysis is considered one
of the more reliable methods for the diagnosis of AD, and some
VBM studies have shown that pathological brain regions associated
with AD may be concentrated in the medial temporal lobe, frontal
lobe, and hippocampus, which can be used as an important bio-
marker [29–31]. A multicenter, long-term study confirms the
stable predictive value of medial temporal lobes in MCI transfor-
mation [32]. For VBM analyses, the statistical significance thresh-
old was set to p < 0.001 uncorrected.In the present study, no
statistically significant clusters were found in the training group
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after correction for sex and age. This may be due to insufficient
sample size.

SBM has received a lot of attention and is used in research for a
variety of diseases including Alzheimer’s disease. Previous studies
have shown that cortical thickness, cortical surface complexity, etc.
are strongly associated with Alzheimer’s disease [33]. CAT12 pro-
vides ROI-based SBM measurements with robust and reliable
results [34]. We use LASSO regression to screen SBM features.
LASSO regression is especially suitable for small samples and high
dimensional data. After cross-verification, we select the index fil-
tered when the minimum value is selected as the final feature.In
the end, lbankssts.thick was the only indicator left. This is consis-
tent with previous studies that lesions in the brain regions of AD
may be concentrated in the temporal lobe [5,35]. We used a logis-
tic regression classifier to validate the imaging features, with an
AUC of 0.702 for the training set and 0.684 for the validation set,
which confirmed the effectiveness of the imaging features.

Finally, we combined clinical features and imaging features to
construct and verify the nomogram.Our model performs well in
both training and validation sets. Our conclusion is that this model
can be used to screen MCI patients who may progress to Alzhei-
mer’s disease under most medical conditions. At the same time,
our model inevitably has some shortcomings. We are committed
to making the model more suitable for use in most clinical condi-
tions, and the study population is relatively young patients, Clinical
data is therefore very insufficient. Additionally, only one screening
of imaging features remains in this study, the generalization
ability, stability and relationship between imaging features and
disease pathology of the model need to be proved by further
studies. In addition, we only selected a single research center for
modeling, which is not necessarily suitable for all other races or
other groups, therefore, external optimization of future model
optimization is necessary.
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