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Highlights: 

 Latent imaging representation is learned to exploit inter- and intra-modal 

interactions. 

 Structure constraints are combined to detect the correlations among SNPs and QTs. 

 A nonlinear kernel-based method is used to analyze associations between QTs and 

SNPs. 

 Our method is applied in the ND data to detect disease-related biomarkers. 

 Modality-shared and modality-specified imaging and genetic biomarkers can be 

detected. 
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Abstract: Multimodal imaging data are widely applied in imaging genetic studies to 

identify associations between imaging and genetic data for the biomarker detection of 

neurodegenerative diseases (NDs). However, the incomplete multimodal imaging data and 

complex relationships among imaging and genetic data make it difficult to effectively 

analyze associations between imaging and genetic data and accurately detect 

disease-related biomarkers. This study proposed a novel structure-constrained 

combination-based nonlinear association analysis method to exploit associations between 

incomplete multimodal imaging and genetic data for potential biomarker detection of NDs. 

Two types of structure constraints were used in imaging and genetic data. First, a parallel 

concatenated projection method with multiple constraints was adopted to handle missing 

data. Modality-shared and modality-specific information could be well captured to obtain 

latent imaging representations. A locality preserving constraint was applied to the imaging 

data for retaining structure information before and after projection. A connectivity penalty 

was also included to capture structure associations among latent imaging representations. 

Second, a group-induced graph self-expression constraint was incorporated into our 

method to exploit strong structure correlations among inter- and intra-group of genetic 

data. Finally, a nonlinear kernel-based method was used to explore the complex 

associations between latent imaging representations and genetic data for biomarker 

detection. A set of simulation data and two sets of real ND data, which were obtained from 

Alzheimer’s disease neuroimaging initiative and Parkinson’s progression markers 

initiative databases, were applied to assess the effectiveness of our method. High accuracy 

of biomarker detection was achieved. Moreover, the identification of disease-related 

biomarkers was confirmed in previous studies. Therefore, our method may provide a novel 

way to gain insights into the pathological mechanism of NDs and early prediction of these 

diseases. 

 

Keywords: Neurodegenerative diseases, Incomplete multimodal imaging data, 

Structure-constrained combination, Nonlinear imaging genetics.  

                  



 

1. Introduction 

Neurodegenerative diseases (NDs) are a heterogeneous group of disorders that are 

characterized by the progressive degeneration and death of nerve cells (Lei et al., 2020). 

Among the NDs, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two most 

common types that occur among the elderly (Adeli et al., 2016; Sperling et al., 2011). To 

date, the underlying pathogenesis of most NDs (e.g., AD and PD) remains unclear, and an 

effective treatment for the disease is lacking. Fortunately, previous studies demonstrate 

that disease-related biomarkers detected from different neuroimages can be applied to 

describe the structural and functional changes of the brain regions during the progression 

of NDs, which contributes to their early prediction and thus slows down their progression 

(Huang et al., 2021b; Huang et al., 2019). However, the pathological mechanisms of NDs 

are difficult to be interpreted using imaging biomarkers alone (Wachinger et al., 2018). 

Some reports indicate that NDs are linked with genetic factors (Scheltens et al., 2021). 

Therefore, biomarkers exploited from genetic data may provide pathological interpretation 

for NDs. However, directly associating genetic variants with pathological behaviors, such 

as disease status, may result in inaccurate or even incorrect detection results due to genes 

that cannot correctly encode pathological behaviors (Bi et al., 2017). To solve this 

problem, imaging quantitative traits (QTs) can be used as endophenotypes to construct an 

indirect correlation between genetic variants and pathological behaviors. Detecting NDs’ 

biomarkers from imaging QTs and genetic variants is a potential means to gain insights 

into the underlying pathological mechanism of the disease and early prediction of this 

disease. 

Recently, brain imaging genetics have been applied to analyze associations between 

imaging QTs and genetic variants (such as single nucleotide polymorphisms, SNPs) and 

detect disease-associated biomarkers. The QTs obtained by using different imaging 

technologies can be used to measure the brain from different perspective and might provide 

complementary information of the brain. For example, the structural magnetic resonance 

imaging (sMRI) can reveal structural abnormalities of the brain. Some changes can be 

observed in the sMRI of patients with NDs, such as atrophy in the hippocampus and medial 

temporal lobe of AD patient compared with those of normal control (NC) (Huang et al., 

2015; Salvatore et al., 2014), and structural changes in middle frontal gyrus and superior 

                  



 

temporal gyrus of PD patients (Sheng et al., 2014). Diffusion-weighted tensor imaging 

(DTI) scans can detect the degeneration of the dopaminergic neurons, whose loss results in 

PD (Mishra et al., 2019). Moreover, the positron-emission tomography (PET) scans can 

capture functional abnormalities of the brain. For instance, the accumulation of β-amyloid 

protein in the human body can be discovered by using PET, and more β-amyloid proteins 

can be found in AD patients than those in NC (Jagust and Mormino, 2011; Marcus et al., 

2014). Therefore, combining multimodal imaging QTs could help in effectively 

identifying NDs’ biomarkers (i.e., QTs and SNPs).  

However, multimodal imaging data have data missing problem due to imaging quality 

and high cost. When the missing samples are removed, and only the complete modal data 

are used in the analysis of imaging genetics, some useful information may be lost. 

Therefore, it is important to handle the missing data problem to employ more samples to 

train a more reliable model. Some studies (Huang et al., 2021a; Zhou et al., 2019b) 

demonstrated that the association between QTs and SNPs is a complex many-to-many 

relationship. For example, an SNP is probably associated with multiple imaging QTs or 

one imaging QT is associated with multiple SNPs. In this case, the association between 

QTs and SNPs is difficult to analyze with a linear model. Therefore, how to improve the 

performance of biomarker detection for NDs by solving the abovementioned problems is 

an attractive issue in this work. 

1.1. Related works 

Existing relevant works with regard to the abovementioned problems include 

multi-task regression, missing data handling, and imaging genetic analysis with a nonlinear 

model. 

1.1.1. Multi-task regression 

Multi-task regression for association analysis between QTs and SNPs can be applied to 

simultaneously identify the disease-related SNPs and QTs (Du et al., 2021; Kim et al., 

2020; Wang et al., 2012). Wang et al. (Wang et al., 2012) proposed a group-sparse 

multi-task regression and feature selection (G-SMuRFS) method, which considered each 

QT as a response variable (i.e., a learning task), and formulated a multitask regression 

framework to identify the relationship between QTs and SNPs. Moreover, the SNP effects 

                  



 

of group and individual levels are taken into account in the G-SMuRFS method. Although 

the G-SMuRFS method can be used to simultaneously identify the disease-related SNPs 

and QTs, the correlation information among QTs is discarded, which may lead to the 

decrease in the detection performance of QTs. Du et al. (Du et al., 2021) proposed a 

multi-task sparse canonical correlation analysis (MTSCCA) that uses complementary 

information carried by different imaging multimodal data to identify bi-multivariate 

associations between SNPs and multimodal imaging QTs. However, the abovementioned 

methods are applied to separately explore the associations between SNPs and imaging QTs 

of each modality; these approaches ignore the underlying associations among different 

modalities. Therefore, modality-shared biomarkers may remain undiscovered when these 

methods are used. Recently, Kim et al. (Kim et al., 2020) proposed a joint 

connectivity-based SCCA (JCB-SCCA) for incorporating biological prior information to 

identify associations between SNPs and QTs, where the inter- and intra-modal information 

were included. Although the information of SNPs and QTs were incorporated into the 

SCCA-based models, and promising results were obtained by using these methods, they 

removed missing data and only applied complete data in the multimodal data for 

association analysis. 

1.1.2. Missing data handling 

Multimodal data have the missing data issue (i.e., not all the samples have complete 

multimodal data) due to imaging quality and high cost. To address this issue, two 

commonly used approaches were proposed in previous studies (Candès and Recht, 2009; 

Hastie et al., 2015; Schneider, 2001; Thung et al., 2014; Zhu et al., 2011): 1) discard the 

samples with missing data, or 2) impute the missing data. Most existing methods discard 

samples with at least one missing multimodal data and perform imaging genetic studies to 

identify associations between SNPs and QTs based on the remaining multimodal data. This 

approach discards much of the available information, which might result in the decrease in 

the detection performance of imaging genetics. Besides, imputation methods for missing 

data are also widely used, which estimate missing values based on the available data by 

using specific imputation techniques. Schneider et al. (Schneider, 2001) used expectation 

maximization (EM) algorithm to estimate the mean and the covariance matrix of an 

incomplete dataset and fill in missing values with imputed values. Hastie el al. (Hastie et 

                  



 

al., 2015) proposed a singular value decomposition (SVD) to impute missing values. 

Although the missing data issue can be solved by using these methods, unnecessary noise 

may be introduced, diminishing the detection performance (Zhou et al., 2019a). 

Accordingly, the correlations across multiple modalities cannot be effectively exploited by 

using these methods. To solve this problem, Zhou et al. (Zhou et al., 2019a) proposed a 

projection method based on latent representation learning to consider the associations 

between inter- and intra-modal data and handle missing data. The data used in this method 

are divided into two parts to utilize all available data. One part consists of complete modal 

data, which is projected into a common latent space to learn the common latent imaging 

representation. The other part consists of incomplete modal data, which is projected into a 

modality-specific latent space to learn the modality-specific latent imaging representation. 

Then, the common latent imaging representation is cascaded with all modality-specific 

latent imaging representations to form a feature representation in the latent space. The 

missing data issue can be solved with this procedure, and correlations among different 

modality data can be exploited. 

1.1.3. Imaging genetic analysis with a nonlinear model 

As reported in previous studies (Wang et al., 2018), analyzing the complex associations 

between SNPs and QTs is difficult by using a simple linear model, using the nonlinear 

model can alleviate such a difficulty to an extent. Kernel canonical correlation analysis 

(KCCA) is a typical nonlinear model. KCCA maps input features provided from multiple 

views into a common space, and employs the kernel method to maximally capture 

nonlinear associations between multiple views (Yoshida et al., 2017). However, carrying 

out feature selection or capturing important canonical components is difficult for KCCA, 

so it is mainly applied in feature fusion and classification (Yoshida et al., 2017). 

Additionally, additive-based methods have been presented to explore the complex 

nonlinear associations between SNPs and QTs (Huang et al., 2021a; Yin et al., 2012). Yin 

et al. (Yin et al., 2012) proposed a group sparse additive model (GroupSpAM) to identify 

the association between SNPs and QTs, where each additive component is a smooth 

function of a single SNP. Consequently, the nonlinear effect of SNP can be incorporated 

into the association model to improve the detection performance. However, the 

GroupSpAM method only uses a single QT data and rich information of multiple brain 

                  



 

regions is ignored. Huang et al. (Huang et al., 2021a) proposed a temporal group sparse 

regression and additive model (T-GSRAM) to identify disease related QTs and SNPs 

simultaneously. The T-GSRAM method assumed that the effects of each SNP on QT are 

regarded as a smooth function of time, where the smooth function can be a specified 

parametric form (such as a polynomial of a variable) or nonlinear transformation. 

However, these nonlinear image genetic studies applied only unimodal data for association 

analysis, and the possible association information prior to multimodal data is ignored, and 

could only be applied to the complete multimodal data.  

Four main challenges are involved in imaging genetics. First, some traditional methods 

merely analyze single SNP and single QT correlation without considering the group 

information of SNP and correlation among QTs. Second, most existing methods often use 

imaging QTs extracted from a single modality, whereas some multimodal methods simply 

concentrate on features from each modality without regarding the inter- and intra-modal 

correlations. Third, the missing data issue is common in multimodal settings; hence, how 

to train a more reliable model by using all available subjects is highly essential. Fourth, 

most existing methods for association analysis of imaging genetics assume that a linear 

correlation exists between SNP and QT. However, the association between SNP and QT is 

complex, and this complex association is difficult to detect with only a simply linear 

model. 

1.2. Overview of the proposed method 

In this study, a novel structure-constrained combination-based nonlinear association 

analysis (ScCNAA) is proposed to analyze associations between incomplete multimodal 

imaging and genetic data for potential biomarker detection of NDs. The contributions of 

this study are three-fold. 

First, for incomplete multimodal imaging data, a two-stage projection strategy was 

applied to explore the associations between QTs and SNPs for biomarker detection. In the 

first stage, a parallel concatenated projection method combined with several constraints 

was applied to handle missing data. Modality-shared and modality-specific information 

can be well captured to obtain latent imaging representations. All samples were divided 

into two parts: samples with complete multimodal data and those with incomplete 

multimodal data. The samples with complete multimodal data are used to learn common 

                  



 

latent imaging representations (i.e., correlation among different modalities). The samples 

with incomplete multimodal data were applied to learn an independent latent imaging 

representation (i.e., modality-specific) for each modality. The projection from different 

modalities to common and specific latent imaging representations is expected to efficiently 

exploit inter- and intra-modal interactions, respectively. In contrast with Zhou’s work 

(Zhou et al., 2019a), we assumed that some modality-shared and modality-specific QTs 

and SNPs can be detected by using all modalities or specific modality data, respectively. 

The independent latent imaging representation of each modality is concatenated in parallel 

with the common latent imaging representations to generate a new latent imaging 

representation for each modality (Fig. 1). Subsequently, a locality preserving constraint 

was incorporated into the proposed method to retain structure information before and after 

the first stage projection. Moreover, brain connectivity can be used for imaging QTs to 

measure the degree of coherence or collaboration between different brain regions 

connected by dissecting fiber bundles or functional connections. Accordingly, a 

connectivity constraint was applied in the proposed method to explore the structure 

associations among QTs, and an l21 norm was added to exploit the individual information 

of QTs. In the second stage, the latent imaging representations were projected into an 

association space. After the two-stage projection in imaging QTs, SNPs were also 

projected into the association space by using a nonlinear kernel-based method. Therefore, 

the association analysis between QTs and SNPs can be performed in the association space. 

With the first stage of projection, modality-shared and modality-specific information can 

be included in the latent imaging representations. Therefore, exploring the associations 

between the latent imaging representations and the SNPs can be used to detect the 

modality-shared and modality-specific biomarkers for QTs. Moreover, the second 

projection of QTs and the projection of SNPs are inspired by the idea of CCA (Hardoon 

and Shawe-Taylor, 2011). Unlike CCA, the proposed method considered the nonlinear 

association between QTs and SNPs was taken into consideration, given by their complex 

relationship. Moreover, instead of using nonlinear projections in QTs and SNPs, only a 

nonlinear projection was used in SNPs in the proposed method. The reasons were two-fold: 

First, model complexity and parameter number would be increased considerably if 

nonlinear projection was used in QTs because a two-stage projection strategy was used in 

                  



 

QTs. Second, nonlinear projection was used in SNPs, supposing that the nonlinear 

association between QTs and SNPs was adequate and could be used to explore the complex 

association between QTs and SNPs well. 

Second, for genetic data, a novel group-induced graph self-expression constraint was 

adopted, which mainly consists of a group and graph self-expression constraints. The 

graph self-expression constraint was used to exploit associations among SNPs. Given that 

several SNPs in a gene carried the same inherent functions, a group constraint (i.e., G21 

norm) was applied to the proposed method, which could be introduced as group 

information into the graph self-expression constraint and SNPs to learn gene-gene 

correlations and joint effects of SNPs in a gene. Therefore, most effective components in 

SNPs can be detected by using the proposed group-induced graph self-expression 

constraint. Moreover, an l21 norm was used to incorporate individual level information of 

SNPs into the proposed method. Unlike traditional group lasso (i.e., G21 and l21 norms), 

relationships among all SNPs are considered and strong correlations among SNPs within a 

group are retained in the proposed method by using the group-induced graph 

self-expression constraint, which contributes to the following SNP biomarker detection. 

 

Fig. 1. Flowchart of the proposed ScCNAA 

Finally, the complex association between QTs and SNPs is difficult to be effectively 

analyzed by using linear models. A nonlinear kernel-based method was applied in the 

proposed method to explore the complex association between QTs and SNPs, where the 

feature selection is performed via applying an l2 norm and a kernel function to learn the 

                  



 

corresponding weights of SNPs. An optimization method is then applied to effectively 

solve the whole nonlinear model. 

A set of simulation data is first applied to evaluate the performance of the proposed 

method, and an advanced biomarker detection accuracy is achieved. Moreover, two real 

datasets provided by Alzheimer’s disease neuroimaging initiative (ADNI) and Parkinson’s 

progression markers initiative (PPMI) are used to further assess the effectiveness of the 

proposed method. Based on previous reports, no research has combined parallel 

concatenated projection, self-information in a group of genetic data, and kernel-based 

method into imaging genetics to investigate the underlying information on incompletely 

multimodal imaging and genetic data and analyze the complex associations between 

imaging and genetic data for potential biomarker detection of NDs. The rest of this paper is 

organized as follows. Section 2 introduces the proposed ScCNAA. Section 3 describes the 

neuroimaging and SNP preprocessing steps and the simulation and real data experimental 

results. Section 4 provides the related discussion. 

2. Methods 

The proposed ScCNAA model (Fig. 1) mainly consists of four components. First, we 

preprocessed multimodal imaging and genetic data to obtain QTs and SNPs, respectively. 

Second, a two-stage projection strategy was applied in QTs. In the first stage, we used a 

parallel concatenated projection method to address missing data issue in the multimodal 

QTs. We first divided multimodal imaging QTs into two parts: complete multimodal QTs 

and incomplete multimodal QTs. Then, we projected the complete and incomplete 

multimodal QTs into latent imaging representations to obtain a common latent imaging 

representation and an independent latent imaging representation of each modality, 

respectively. The independent latent imaging representation of each modality was 

concatenated in parallel with the common latent imaging representations to generate a 

latent imaging representation for each modality. In the second stage, the latent imaging 

representations were projected into an association space. Third, SNPs were also projected 

into the association space by using a nonlinear kernel-based method. Therefore, we 

identified the associations between the QTs and SNPs in the association space combined 

with the structure constraints in SNPs and QTs.  With these three steps, some 

                  



 

disease-related biomarkers, which includes QT and SNP biomarkers, can be finally 

achieved. The details of the proposed method are provided in the following subsections. 

Moreover, the code of ScCNAA is available at the coding sharing site 

(https://github.com/Meiyan88/ScCNAA). 

2.1. Mathematical formulation 

In this work, we write matrices, vectors and scalars as boldface uppercase, boldface 

lowercase, and italic letters, respectively. Let n p
X  be the SNPs, where n  and p  

denote the sample number and the feature dimension of SNPs, respectively. Let 

mq n

m


Y  ( 1, ...,m M ) represent the QTs of the m-th modality, where M  is the 

modality number of imaging QTs; and 
m

n  and q  denote the sample number of the m-th 

modality QTs and the feature dimension of QTs, respectively. Moreover, 

2

i jF i j
x  X  denotes its Frobenius norm. 2

2 ,1 i j
i j

x  X  denotes the 
2 1

l  

norm, where i j
x  denotes the element of the i-th row and j-th column of X , and the i-th row 

and j-th column of X  are denoted as i
x  and j

x , respectively. The main notations used in 

this study are listed in Table 1. 

Table 1. Main notations used in the proposed method. 

Notation Size Description 
c

m
Y  

c
q n  The imaging QTs of m-th modality for samples with complete multimodal QTs 

c

m
Y  

c

m
q n  The imaging QTs of m-th modality for samples with incomplete multimodal QTs 

m
Z  q h  Projection matrix for the m-th modality QTs 

c
H  

c
h n  Latent imaging representations for samples with complete multimodality QTs 

c

m
H  

c

m
h n  

Latent imaging representation of the m-th modality for samples with incomplete 

multimodality QTs 

m
E  c

h n  Sparse error matrix for the m-th modality QTs 

m
X  

m
n p  SNP data corresponding to the m-th modality QTs 

m
U  p p  Graph self-expression matrix of SNP data corresponding to the m-th modality QTs 

m
s  1p   Association matrix of SNP data corresponding to the m-th modality QT data 

m
p  

 
Association matrix of the learned latent imaging representation of QTs 

p  Feature dimension of SNPs 

q  Feature dimension of QTs 

m
n   Sample number of the m-th modality QTs 

n
c 

 Sample number of complete multimodal QTs 
c

m
n   Sample number of the m-th modality for incomplete multimodal QTs. 

h  Feature dimension of the latent imaging representations 

M  Modality number of imaging QTs 

                  



 

,    Constraint parameters 

 

2.2. ScCNAA model 

A two-stage projection strategy was applied in QTs to explore the association between 

QTs and SNPs. In the first stage, we used a parallel concatenated projection method to 

address the missing data issue in the multimodal QTs. We first divided the multimodal QTs 

into two parts, namely, complete and incomplete multimodal data. Then, we projected 

complete multimodal QTs to a common latent imaging representation to learn shared 

features of all modalities. We also projected the remaining m-th modality data to modality 

specific latent space to learn specific features of m-th modality. Subsequently, the 

independent latent imaging representation of each modality was concatenated in parallel 

with the common latent imaging representation to form a new latent imaging 

representation for each modality. The proposed parallel concatenated projection method 

not only utilized all available samples to train a reliable model but also considered the 

inter- and intra-modal interactions. In the second stage, the latent imaging representations 

were projected into an association space. Afterward, the SNPs were also projected into the 

association space by using a nonlinear kernel-based model. Thus, the complex associations 

between QTs and SNPs can be well contemplated. Moreover, the structure constraints on 

SNPs and QTs were also added in the proposed method to incorporate structure and 

individual level information of the SNPs and QTs, respectively. Therefore, the proposed 

ScCNAA model can be defined as follows: 

          

2

12, , , ,
1 1 1

1
m in ( ) ( ( ) )

2

( ) ( ) , . . , {1, 2 , , } ; .

M M M

T T T T

m m m m m m m m m m
S P

m m m

T T

m m m m

f tr

s t m M

 

  

  

           

  
Ζ H E

H p X s E Z Y L Z Y

S Z Z Y H E P P I

 (1) 

where ( )
[ , ]

c c
mc c q n n

m m m

 
 Y Y Y  denotes the imaging QTs of m-th modality, c c

m m
n n n 

denotes the sample number of the m-th modality; and c
n  and c

m
n  are the sample number of 

complete multimodal QTs data and incomplete m-th modal QTs data, respectively. 

( )
[ , ]

c c
mc c h n n

m m

 
 H H H  is the latent representation of the m-th modality, where h is the 

feature dimension of the latent imaging representation, c
H  denotes common latent 

imaging representation for samples with complete multimodal QTs, and c

m
H  denotes the 

                  



 

independent latent imaging representation of the m-th modality for samples with 

incomplete multimodal QTs. mh n

m


E  is the sparse error matrix for the m-th modality 

QTs. 1h

m


p  is an association matrix of the learned latent imaging representation of 

QTs. q h

m


Z  is a projection matrix of the m-th modality QTs. 1p

m


s  is an 

association matrix of SNP data corresponding to the m-th modality QTs. ( ) S  and ( ) Z  

are the constraints for selecting relevant SNPs and imaging QTs by using prior 

information. f  denotes nonlinear transformation to construct nonlinear associations with 

SNPs and QTs. 

As mentioned by Zhou et al. (Zhou et al., 2018), if H
c
 is not really used in model 

calculation and analysis, then 
2

1

M

T c

m m
F

m 

 Z Y H  can be simplified to 
2

1 1 2 2

T T

F

Z Y Z Y  

when the M = 2. Specifically, 
2

1 1 2 2

T T

F

Z Y Z Y  is used to enforce the projections of each 

modality to as close as possible. Thus, the inter-correlations across different modalities can 

be captured (Shao et al., 2020). Similar to this idea, the inter-modality correlations can be 

exploited by projecting the complete multimodal imaging QTs into a common latent 

imaging representation. Moreover, a locality preserving constraint 

1

( ( ) )

M

T T T

m m m m m

m

tr



 Z Y L Z Y  is added in Eq. (1) to maintain the structure information among 

neighborhood before and after projection, where  m mn n

m m m m


  L L D C  is the 

Laplace matrix and 
m

D  is a diagonal matrix with the i-th diagonal element that represents 

the sum of the i-th row in 
m

C . 
m

C  is a similarity matrix for the m-th modality, whose 

( , )i j -th element is 
2

,: ,:
2

e x p ( )
m i m j

 Y Y , where ,:m i
Y  and ,:m j

Y  denotes the i-th column 

and j-th column of 
m

Y , respectively; and 1   is empirically set in this study.  

2.2.1. QT constraints 

Brain connectivity measures the degree of coherence or synergy between different 

brain regions connected by anatomical fiber bundles or functional associations. Therefore, 

a connectivity constraint was applied to incorporate neurological prior information, and 

can be formulated as follows: 

                  



 

 ( )
T z

m m m m
P Z Z L Z  (2) 

where z q q

m


L  is the Laplacian matrix of connectivity matrix of m

Y , which can be used 

to explore the structure correlations between two QT features. Moreover, Laplacian matrix 

can be calculated as z z z

m m m
 L D C , where z

m
D  is a diagonal matrix with the i-th diagonal 

element that represents the sum of the i-th row in connectivity matrix z

m
C . z

m
C  can be 

obtained by calculating the Pearson correlation between the two features of m
Y . Although 

the connectivity constraint is meaningful, there is a lack of feature selection at individual 

level. The model for a large number of imaging features is complex and difficult to 

comprehend because of the non-sparse results without feature selection. Therefore, sparse 

induction constraint is also necessary for imaging QTs, and an l21 norm was used on the 

imaging QTs: 

 2

,2 1

1 1

q h

m m ij

i j

z

 

  Z  (3) 

Therefore, the constraint ( ) Z  of QTs can be defined as follows: 

 
2 1

1 1

( )

M M

T z

m m m m

m m 

   Z Z L Z Z  (4) 

2.2.2. SNP constraints 

SNPs within a gene usually carry out the same genetic function. Moreover, linkage 

disequilibrium (Barrett et al., 2005) describes the non-random association between alleles 

at different loci, through which the SNPs in high linkage disequilibrium are linked together 

in meiosis. This information should be considered in a realistic modeling method. A 

group-induced graph self-expression constraint was applied in the proposed method to the 

explore correlations among the SNPs. This constraint, consisting of graph self-expression 

and a G21 norm, can be defined as follows: 

2 1

1

2

2 1 2 1

1 1 1 1 1 1

( ) [ , ] [ , ]

k

pM M M M K

m m m m m m m m m m m ijG

m m m m g i g j



      

           P U X X U s U X X U s U  (5) 

where  
2 1

1

M

m m m

m 

 X X U  is a graph self-expression constraint, which can be used to 

exploit pair-wise structure correlations among SNPs. Moreover, Um is a self-expression 

                  



 

matrix of SNP data corresponding to m-th modality QT data, where the value of uij (uij is 

the element of the i-th row and the j-th column of Um) measures the correlation between 

two samples, namely, xi and xj. 
2 1

[ , ]
m m G

s U  is a group sparsity constraint on 
m

s  and 
m

U  

in the m-th modality to explore structure correlation among the inter-group of SNPs, where 

the SNPs are portioned into K groups 1
{ }

K

k k
g


 . 

Although the strong structure correlations among all SNPs was introduced in the 

group-induced graph self-expression constraint, not all SNPs in the group are 

disease-associated SNPs, which may result in a lack of feature selection at the individual 

level. The SNPs related to disease are almost impossible to be in the same group. 

Moreover, a few SNPs within a particular group may be related to QT, whereas the 

remaining SNPs may be unrelated. Therefore, we added an l1 norm to select an individual 

feature, which is defined as follows: 

 ;1

1 1

p p

m m ij

i j

u

 

  U  (6) 

Therefore, the constraint of SNPs ( ) S  can be defined as: 

 
1 22 1 2 1 1

1 1 1

( ) [ , ]

M M M

m m m m m m

m m m

S  

  

      X X U s U U  (7) 

2.3. Optimization 

The objective function in Eq. (1) is not jointly convex with respect to all variables, we 

can update each of these variables by fixing other variables iteratively. The Augmented 

Lagrange Multiplier (ALM) (Lin et al., 2010) was applied to solve the optimization 

problem in Eq. (1). Thus, the Eq. (1) can be solved by minimizing the following ALM 

problem 
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1 21 2 1 1

1 1 1
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1 22 1

1 1

1
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2
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( , ).
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T
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m m
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m m m

M M

T z T
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m m m

f
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
 

 

  

 

   

   

      

 

  

  

Z E Q S H p H p X s X X U

E Z Y L Z Y s U U

Z Z L Z p Q Z Y H E

 (8) 

where 
2

( , ) ,
2

F


     Q Q , ,  denotes the matrix inner product,   is a positive 

                  



 

penalty scalar, and 
m

Q  is a Lagrange multiplier. Given that the form of the nonlinear 

transformation of SNP was unknown, we introduced the kernels to represent the nonlinear 

transformation. 
m

s  can be rewritten as ( )
T

m m m
fs X a  with 1mn

m


a . Thus, ( )

m m
f X s  

can be rewritten as 
m m

K a , where 
m

K denotes kernel function. Eq. (1) can be rewritten as: 
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   

  

Z E Q S H p H p K a X X U

Z Y L Z Y E X s U U

Z Z L Z P Q Z Y H E

 (9) 

We needed to alternately update the variables (i.e., update one variable while fixing 

other variables) to find the minimize . Thus, we decomposed the above-mentioned 

optimization problem into the following subproblems. 

2.3.1. Optimizing Zm 

Fixed all other variables except 
m

Z  in Eq. (2), the expression can be rewritten as 

 

1 2 1

1 1

2

1

m in ( ( ) )

( , ).

m

M M

T T T

m m m m m m

m m

M

T z T

m m m m m m m m

m m
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Z

Z Y L Z Y Z

Z L Z Q Z Y H E

 (10) 

Then, Eq. (3) can be simplified to 
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2
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.
2

m

T T T
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T z T
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F
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
 



    

Z

Z Y L Z Y Z

Z L Z Z Y H E Q

 (11) 

We can solve Eq (4) by taking the derivative with respect to 
m

Z  and setting it to zero. We 

have 

 
1 1 2

( ( ) ) 0 .
2

T z T T

m m m m m m m m m m m m m m


         Y L Y Z D Z L Z Y Y Z Y H E Q  (12) 

Thus, the 
m

Z  is given as 

 1

1 1 2
( ) ( ( ) ) .

2 2

T z T T

m m m m m m m m m m m

 
   


     Z Y L Y D L Y Y Y H E Q  (13) 

where 1

q q
D  is a diagnose matrix, and its j-th diagonal element is 

, :
2

1
m j

Z . 

                  



 

2.3.2. Optimizing Em 

All other variables, except 
m

E  in Eq. (2), are fixed, the expression can be rewritten as 
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 (14) 

We can obtain the optimal 
m

E  by 

 [ ]
T

m m m m m
S 



  E Z Y H Q  (15) 

where S 



 is a soft threshold operator (Lin et al., 2010), and it can be defined as 
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S e e if e

o th e r w is e
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   

 


  




 (16) 

2.3.3. Optimizing c

m
H  

Fixed all other variables except c

m
H  in Eq. (2), Eq. (2) can be rewritten as 

 
2

2

1

1
m in ( , )

2
c
m

M

c T c c c T c c c

m m m m m m m m m

m m

     
H

H p K a Q Z Y H E  (17) 

We can obtain the optimal c

m
H  by 

 ( ) ( ) 0
T c c c T c T c c c

m m m m m m m m m m m
       p p H p K a H Z Y E Q  (18) 

Thus, the c

m
H  is given as 

 1
( ) ( ( ) ( ) )

c T c c T T c c c

m m m m m m m m m m
P  


    H p p I K a Z Y E Q  (19) 

2.3.4. Optimizing H
c
 

Fixed all other variables except c
H  in Eq. (2), the expression can be rewritten as 

follows: 
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 (20) 

The close-form solution is given as 

                  



 

  1
( ) ( ( ) ( ) )

c T c c T T c c c

m m m m m m m m m

m m m

  


      H p p I p K a Z Y E Q  (21) 

2.3.5. Optimizing P 

Fixed all other variables except P  in Eq. (2), Eq. (2) can be rewritten as 
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1
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M
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m m m m FP
m





  H p K a P  (22) 

Hence, the close-form solution is given as 

 1
( )

T c c

m m m m m m



 p H H I H K a  (23) 

2.3.6. Optimizing A 

Fixed all the other variables except S in Eq. (2), the expression can be rewritten as  
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 (24) 

Let ' 1 / 2

m m
s F s , Eq. (17) can be rewritten as 
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m in ( ) ( )

2

T T

m m m m m m
f tr


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S

H p X F s s s  (25) 

Then, let '
( )

T

m m m
fs X a , Eq. (18) can be rewritten as 

 
2

1
2

1
m in ( )

2

T T
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Therefore, the close-form solution is given as 

  1

1
( )

m m m m



 a K I H p  (27) 

2.3.7. Optimizing Um 

Fixed all the other variables except 
m

U  in Eq. (2), Eq. (2) can be rewritten as 
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The close-form solution is given as 

 1

2 1 2 2 2 2
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where 2

n n
D  is a diagnose matrix, and its i-th diagonal element is 

; ;
2

1
m i m i m

X X U . 

2
D  is a block diagonal matrix with the k-th block being 

;
2

k m k
F

I U , and 
k

I  is an identify 

matrix that has the same size as the k-th group. The grouping information can be given on 

the basis of genes. 2
D  is diagonal matrix, where 1

ij
u  is the j-th diagonal element in 

2
D . 

2.3.8. Optimizing Qm 

The multipliers ( 1, 2 , , )
m

m M   Q  can be updated by 

 : ( )
T

m m m m m m
   Q Q Z Y H E  (30) 

The detailed steps for optimizing the objective function described in Eq. (1) are 

summarized in Algorithm 1. 

Algorithm 1. 

1.Input: , m
q nn p

m
R R


 X Y , 1, ,m M    , 

1 2
, , ,    ,

1 2
, , , h    

2. Initialize: Initialize , , , , , ,
m m m m m m

Z E Q s H P a , 5
1 0


 , 

4
1 0


 , 6

m a x 1 0

  

3. While not convergence do 

4. Update 
m

Z  according to Eq. (13); 

5. Update 
m

E  according to Eq. (15); 

6. Update 
c

m
H  according to Eq. (19); 

7. Update c
H  according to Eq. (21); 

8. Update 
m

p  according to Eq. (23); 

9. Update 
m

a  according to Eq. (27); 

10. Update 
m

U  according to Eq. (29); 

11. Update 
m

Q  according to Eq. (30); 

11. Update the parameter   via m in ( , m a x )


  ; 

12. end while 

Output: , , , , ,
m m m m m

Z E Q a H P  

2.4. Convergence analysis 

We have the following theorems regarding the ScCNAA algorithm. We first 

introduced Lemma 1 and 2 described by (Du et al., 2016; Nie et al., 2010). 

Lemma1: For the following inequality that holds for two nonzero vectors z  and z , we 

have 
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z z

 (31) 

Lemma2: For any real number z  and any nonzero real number z , we have 

 

2 2

1 1

1 1

1 1
2 2

z z
z z

z z
    (32) 

Proof: The proof is obvious. Given Lemma 1, 
1 2

z z and 
1 2

z z . 

1) Theorem 1: Algorithm 1 decreases the objective value in each iteration in ScCNAA. 

Proof: We denote the updated 
m

Z , 
m

E , 
m

Q , 
m

a , 
m

H , 
m

U and P  as m
Z , m

E , m
Q , 

m
a , m

H , m
U  and P . We first proved that the objective decreases after updating 

m
Z . 

Thus, we should prove that the following inequation is satisfied: 
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Based on definitions of 
1

D , Eq. (33) can be rewritten as  
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 (34) 

Applying Lemma 1 twice to Eq. (34), we have  

                  



 

 

1
2 1

1 1

2

2

1

1 2 1

1 1

2

2

1

( ( ) )

2

( ( ) )

2

M M

T T T

m m m m m m

m m

M

T z T

m m m m m m m m
F

m

M M

T T T

m m m m m m

m m

M

T z T

m m m m m m m m
F

m

tr

tr

 


 

 


 

 



 





    

 

    

 



 



Z Y L Z Y Z

Z L Z Z Y H E Q

Z Y L Z Y Z

Z L Z Z Y H E Q

 (35) 

Therefore, the objective value decreases when 
m

Z is updated.  

2) Theorem2: We can also prove that the objective value decreases in each iteration 

when 
m

E  is updated, i.e., we should prove that the following inequation is satisfied: 
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We applied Lemma 2 twice to Eq. (36); Thus, we have  
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 (37) 

Therefore, the objective value decreases when 
m

E  is updated.  

3) Similarly, we can prove that the objective also decreases with each update of 
m

Q , 

m
a ,

m
H , 

m
U , and P . 

The proof is completed by combining conclusions 1), 2), and 3). 

3. Experiments 

3.1. Simulation study 

3.1.1. Experimental setup 

We generated two sets of simulation data by using different methods to evaluate the 

performance of our proposed ScCNAA (e.g., linear and nonlinear associations between 

SNPs and QTs). First, linkage disequilibrium (LD) blocks defined by Haploview (Barrett 

                  



 

et al., 2005) and PLINK (Purcell et al., 2007) are applied to generate SNP sets. To calculate 

the LD blocks, n subjects were simulated randomly by combining the haplotypes of 

HapMap CEU subjects. Thus, the LD blocks could be determined by using PLINK based 

on these subjects. Then, we randomly selected 100 blocks, and combined the haplotype of 

HapMap CEU subjects in each block to form genotype variables for these subjects. We 

randomly selected 10 SNPs in each block and had 1000 SNPs for each subject. 

Subsequently, we applied the following two cases to generate Y: 

Case 1: 

  Y V X S  (38) 

Case 2: 

 ( )
e  

X
Y V S  (39) 

where 2
~ ( 0 , )N   is the error term and X is the simulated SNP data as described above. 

We randomly generated sparse matrices q M
V  and p M

S  (i.e., the disease-related 

QTs or SNPs were set to nonzero values, whereas the others were set to zeros), where p and 

q are the feature dimensions of SNP and QT with values of 1000 and 500, respectively. The 

modality number M is set to two. Afterward, we simulated Y by using Eqs. (38) and (39). 

The constraint parameters for each method should be fine-tuned during experiments. In 

this work, we employed nested five-fold cross-validation method to select the optimal 

parameters in different methods. In particular, the parameters in the inner loop that 

generate the minimum mean root mean square error (RMSE) values will be selected as the 

optimal parameters (i.e., 
5

2

; ; ; ;

1 1

1
R M S E  =  ( )

5

M

i m i m i m i m

i m 

  Y v X s , where ;i m
X  and ;i m

Y  

are the i-th validation sets in the inner loop). Then, the external loop calculates the final 

results based on the optimal parameters obtained from the inner loop. The ScCNAA 

method would take a significant amount of time if we simultaneously tune eight 

hyper-parameters (i.e., 
1 2 1 2

, , , , , ,       , and h ). In this case, we tuned parameters 

step by step. At each time, two parameters were tuned while the other six parameters were 

fixed. We tuned 
1 2 1

, , , , ,       and 
2

  from a moderate interval 

1 0 ( 5, 4 , , 4 , 5 )
i

i    , and h  from [1, 10, 50, 80, 100, 150, 200, ···, 450, 500]. During 

the experiments, the ALM algorithm will be stopped when 1
m a x | |

i te r ite r



 V V  and 

                  



 

1
m a x | |

i te r ite r



 S S  are satisfied, where   is the predefined tolerable error and set to 

5
1 0

  empirically. In the simulation study, the area under the curve (AUC) was used as the 

quantitative metric to assess the biomarker detection performance in different methods. 

The AUC can be obtained by calculating the area under of the receiver operating 

characteristic curve, which uses the values of false positive rate (FPR) as the x-axis and 

values of true positive rate (TPR) as the y-axis. Moreover, the TPR and FPR can be defined 

as follows: 

 
T P

T P R =
T P F N

 (40) 

 
F P

F P R =
T N + F P

 (41) 

where TP, FP, TN, and FN are true positive, false positive, true negative, and false 

negative, respectively. 

We conducted five sets of experiments on the simulation data to evaluate fully the 

performance of our proposed ScCNAA. In these experiments, LD block information was 

applied to define SNP groups on the simulation data. We initially set M, n, p, and q to 2, 

500, 1000, and 500, respectively. The numbers of the missing samples of each modality 

was 10% of all sample number unless otherwise specified. In the first set of experiments, 

we varied parameters with different values to evaluate the influence of different parameters 

on the proposed method. In the second set of experiments, we removed one of the 

constraints at each time to investigate the effectiveness of using different constraints on 

ScCNAA. In the third set of experiments, two experiments were performed to investigate 

the advantages of the proposed method in the handling missing data issue. First, we varied 

the number of missing samples in different modalities from 10%, 20%, and 30% of the 

total samples to assess the effects of missing samples with different number on ScCNAA. 

Second, we compared the ScCNAA with the following four missing data handling 

methods: 1) Zero imputation, in which the missing values were set to zeros after all the 

features are normalized. 2) EM imputation. 3) SVD imputation. 4) Protection method 

proposed in (Zhou et al., 2019a). In the fourth set of experiments, we performed the first 

and the second stage projection separately to assess the effectiveness of the two-stage 

projection strategy used in QTs. From the first to fourth sets of experiments, we generated 

                  



 

simulation data by using a linear model in Case 1. In the fifth set of experiments, we fully 

compared the proposed ScCNAA method with three state-of-the-art methods, namely, 

G-SMuRFS, MTSCCA, and JCB-SCCA, on the two datasets generated by Cases 1 and 2, 

respectively. Moreover, the objective functions of these three comparison methods and our 

proposed method are provided in Table 2. 

 

 

Table 2. Objective function of all comparison methods. 

Method Objective functions 

G-SMuRFS  
2 ,1

2

1 2 2 ,1

1

m in

n

T

GF

i

 



  
W

W X Y W W  

MTSCCA  
2 ,1

2 2

2 2 2 ,1,
1

m in . . 1, 1, , , .
j j

M

T T

m m m m m m G

m

s t a b m



     
u v

u X Y v X u Y v U V  

JCB-SCCA  

'

'

1 2

1 1,
1 1

2 2

1 1 2

1

1
m in

2 2 2

. . 1, 1

M M

T T T T m

m m u m v m
u v

m m

M

m m m F

m m m

s t

 


 

 

 

   

    

 

 

u X Y v u L u u v L v

v v v u V

 

ScCNAA 

2

12, , , ,
1 1 1

22 1 2 1 1

1 1 1 1

1 2 1

1

1
m in ( )

2

( ( ) )

[ , ] . . , {1, 2 , , } ;

M M M

T T z

m m m m m m m m
S P

m m m

M M M M

T T T

m m m m m m m m m m

m m m m

M

T T

m m m m m m

m

f

tr

s t m M



 



  

   



   

   

        

  

   



Ζ H E

H p X s E Z L Z

Z Y L Z Y Z X X U U

s U Z Y H E P P I

 

 

3.1.2. Influence of parameters on the simulation data 

In this section, we studied the influence of hyper-parameters (i.e., 
1 2 1

, , , , ,      , 

2
 , and h ) on the proposed method. Specially, we set the values of 

1 2 1
, , , , ,      , and 

2
  in the range of a moderate interval 10

i
 ( 5, 4 , , 0 , , 4 , 5)i     and h in the range of 

(1, 10, 50, 80, 100, 150, 200, ···, 450, 500). Two parameters were tuned, while the other six 

parameters were fixed. Fig. 2 shows the AUC of SNPs achieved by our proposed method 

with different parameters in Case 1. Fig. 2 demonstrates that the AUC values fluctuated 

greatly when fixing six parameters and tuning 
1

 , 
2

  or 
1

 , 
2

 . The AUC values of SNPs 

slightly varied when fixing the six parameters and tuning   and h . The experimental 

results demonstrate that the proposed method obtains better detection performance when 

                  



 

the values of 
1 2 1
, , ,   and 

2
  fell in [10

1
, 10

3
], [10

5
, 3

1 0
 ], [10

2
, 10

3
], and [10

4
, 10

5
], 

respectively. 

 

Fig. 2. The AUC results of different parameter setting (i.e., 
1 2 1

, , , , ,       and 
2

 ) in ScCNAA. 

3.1.3. Effectiveness of the constraints 

To assess the effectiveness of using different constraints, we implemented and 

compared different variants of our proposed method. The experimental results are shown 

in Table 3. The following observations are obtained: 1) The detection AUC values of SNPs 

and QTs decrease when the graph self-expression constraint is discarded, indicating that 

the correlation included among the intra-group of SNPs can help improve the detection 

performance on SNPs and QTs. 2) The AUC values of SNP and QT detection decrease 

when the G21 norm is removed, implying that the correlation among the inter-group of 

SNPs plays an important role in detecting SNPs and QTs. 3) The AUC values of QT 

detection fluctuate when connectivity penalty and l21 norms are removed, indicating that 

                  



 

considering structure correlations among QTs and individual level information of QTs can 

help induce considerable information to improve detection the performance on QTs. 4) Our 

proposed method outperforms all variants of the proposed method, indicating that the 

constraints utilized in our method are useful for detecting SNPs and QTs. 

Table 3. The AUC of removed one of the constraints at each time in ScCNAA. 

Constraint of SNPs Constraint of QTs AUC 

Graph 

self-expression 
G21 l21 connectivity l21 

Local preserving 

constraint 
SNPs QTs 

-- √ √ √ √ √ 0.80±0.02 0.75±0.12 
√ -- √ √ √ √ 0.72±0.06 0.84±0.01 

√ √ -- √ √ √ 0.80±0.02 0.97±0.01 

√ √ √ -- √ √ 0.75±0.02 0.52±0.04 

√ √ √ √ -- √ 0.71±0.06 0.62±0.03 

√ √ √ √ √ -- 0.81±0.02 0.95±0.08 

√ √ √ √ √ √ 0.83±0.02 0.99±0.01 

3.1.4. Effectiveness of missing data handling 

Table 4 lists the AUC values of ScCNAA in different numbers of missing samples. 

Table 4 shows that a slight fluctuation is observed in the AUC values of SNP and QT 

detection in different numbers of missing samples, demonstrating the stability of the 

proposed method in handling missing data with different numbers. Moreover, we 

compared the proposed method with the four missing data handling methods and report the 

AUC results in Table 5. Table 5 illustrates that our proposed method outperforms four 

missing data handling methods. On the one hand, this finding is obtained probably because 

our proposed method does not involve any imputation and avoid imputation errors that 

may affect detection performance based on imputation methods. On the other hand, this 

situation may also result from the use of latent imaging representations when performing a 

correlation analysis, which includes minimal noisy information. Moreover, inter- and 

intra-modality correlations are considered. In addition, we performed paired t-test between 

the proposed method and other comparison methods. The results indicate that the AUC 

values between the ScCNAA and all compared methods are significantly different. 

Table 4. AUC values of SNPs and QTs under different missing samples in the ScCNAA. 

AUC 10% 20% 30% 

SNP 0.83±0.02 0.82±0.01 0.81±0.01 

QT 0.99±0.01 0.97±0.01 0.97±0.01 

Table 5. AUC of different methods and their p-values of paired t-tests comparing the different missing data 

handling methods with ScCNAA for SNPs and QTs. 

                  



 

AUC Zeros EM SVD Zhou ScCNAA 

SNP 0.5±0.20 0.62±0.17 0.56±0.02 0.77±0.02 0.83±0.02 

p-value 0.006 0.029 0.002 0.001 -- 

QT 0.51±0.34 0.91±0.07 0.89±0.01 0.96±0.01 0.99±0.01 

p-value 0.014 0.040 0.006 0.040 -- 

3.1.5. Effectiveness of two-stage projection strategy  

In this section, the first and the second stage projection used in QTs were conducted 

separately to assess the effectiveness of the two-stage projection strategy on ScCNAA 

performance. For the first stage projection-based method (denoted as Stage_1), the second 

stage projection used in the proposed method was ignored, i.e., pm was removed, whereas 

Zm was removed for the second stage projection-based method (denoted as Stage_2). All 

constrains of QTs and SNPs used in the proposed method were retained in Stage_1 and 

Stage_2 methods for a fair comparison. Moreover, the objective function in Eq. (8) can be 

revised as Eqs. (42) and (43) for Stage_1 and Stage_2, respectively. 
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Table 6 shows that the detection AUC of SNPs and QTs decreased when the first or the 

second stage projection was removed in the proposed method. In particular, compared with 

our proposed method, the AUC values of Stage_1 (the second stage projection is removed) 

on SNPs and QTs are decreased considerably. The first stage projection mainly aims to 

deal with the missing data issue, achieve latent imaging representations (i.e., Hm), and 

explore modality-shared and modality-specific information associated with QTs. 

Moreover, the latent imaging representations were projected into an association space (i.e., 

Hmpm) in the second stage. Therefore, the association space was discarded when the second 

stage projection was removed (i.e., pm is removed). This scenario may lead to the enlarged 

                  



 

distance between Hm and SNPs, and thus results in poor detection AUC on QTs and SNPs. 

On the contrast, the inter-modality correlation within QTs was discarded when the first 

stage projection is removed (Stage_2 method), and each modality QT was projected into 

the association space to perform association analysis between QTs and SNPs. Moreover, 

modality-shared information and modality-specific information were included in each 

modality QT. In this case, modality-shared information may be reused when the 

association between multimodal QTs and SNPs was analyzed in Stage_2 method, possibly 

resulting in information redundancy in the association coefficient of SNPs (i.e., S). 

Therefore, compared with that of the proposed method, the AUC value of SNPs is 

decreased in Stage_2. 

Table 6. AUC values of SNPs and QTs after removing one of two-stage projection in the ScCNAA. 

AUC SNP p-value QT p-value 

Stage_1 0.64±0.08 0.004 0.58±0.06 8.8×10
–5

 

Stage_2 0.64±0.16 0.03 0.94±0.01 0.01 
ScCNAA 0.83±0.02 -- 0.99±0.01 -- 

3.1.6. Comparison with previous studies 

In this experiment, we compared the proposed ScCNAA method with three 

state-of-the-art methods on two datasets generated by Cases 1 and 2. First, three 

comparison methods were performed on the complete multimodal data discarding missing 

data (i.e., n = 400) because these methods can only be conducted on complete data. By 

contrast, the proposed method was performed on the incomplete multimodal data. Then, to 

make a further comparison between the proposed method and three methods, the three 

comparison methods were performed on the complete multimodal data with n = 500. 

Meanwhile, the proposed method still performed on the incomplete multimodal data. The 

results are listed in Tables 7 and 8. Our proposed method achieves the best detection 

performance among different methods (paired t-test p-value < 0.05), indicating that 

potential structure correlations among QTs and SNPs can be well captured by using the 

proposed method, and thus detection performance can be improved. The performance of 

the three comparison methods on the complete multimodal data with n = 500 is higher than 

that on the complete multimodal data discarding missing data (i.e., n = 400). The 

bi-multivariate analytical methods (i.e., MTSCCA and JCB-SCCA) outperform with 

G-SMuRFS method. Moreover, the detection performance of JCB-SCCA is better than 

                  



 

that of MTSCCA, indicating that considering inter- and intra-modal correlations and 

structure correlations among QTs may improve detection performance. Our proposed 

method outperforms JCB-SCCA, which implies that our proposed method is more flexible 

in analyzing the complex association between SNPs and QTs. 

Table 7. AUC of different methods and their p-values of paired t-tests comparing the different methods with 

ScCNAA for SNP and QT detection, where three comparison methods were performed on the complete 

multimodal data discarding missing data (i.e., n = 400). “--” in the table indicates that only single QT is used 

in the corresponding method, or no self of paired t-test in ScCNAA. 

 AUC G-SMuFS MTSCCA JCB-SCCA ScCNAA 

Case 1 

SNP 0.65±0.03 0.75±0.01 0.74±0.01 0.83±0.01 

p-value 6.30×10
–7 

1.50×10
–6

 6.50×10
–5

 -- 

QT -- 0.78±0.03 0.87±0.01 0.99±0.01 

p-value -- 1.70×10
–5 

1.20×10
–5 -- 

Case 2 

SNP 0.57±0.003 0.63±0.02 0.70±0.01 0.77±0.02 

p-value 4.90×10
–6

 0.01 0.002 -- 

QT -- 0.70±0.03 0.90±0.01 1.00±0.00 

p-value -- 2.10×10
–7

 0.01 -- 

Table 8. AUC of different methods and their p-values of paired t-tests comparing the different methods with 

ScCNAA for SNP and QT detection, where three comparison methods were performed on the complete 

multimodal data with n = 500. “--” in the table indicates that only single QT is used in the corresponding 

method, or no self of paired t-test in ScCNAA. 

 AUC G-SMuFS MTSCCA JCB-SCCA ScCNAA 

Case 1 

SNP 0.68±0.01 0.79±0.01 0.78±0.02 0.83±0.01 

p-value 1.38×10
–7 0.04

 
0.008 -- 

QT -- 0.81±0.03 0.90±0.01 0.99±0.01 

p-value -- 4.01×10
–7 

2.35×10
–9 -- 

Case 2 

SNP 0.62±0.01 0.72±0.02 0.70±0.03 0.77±0.02 

p-value 0.002 0.01 0.001 -- 

QT -- 0.77±0.03 0.91±0.03 1.00±0.00 

p-value -- 7.8×10
–5

 0.01 -- 

 

3.2. Real data study 

3.2.1. Data preprocessing on the real data 

In this article, the genetic data and multimodal brain imaging data were obtained from 

the ADNI1 database (www.adni.loni.usc.edu) and PPMI database 

(https://www.ppmi-info.org/). ADNI was launched in 2003 by the National Institute on 

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), 

the Food and Drug Administration (FDA), private pharmaceutical companies and 

                  



 

non-profit organizations, as a $60 million, 5-year public–private partnership. The primary 

goal of ADNI has been to test whether serial MRI, PET and other biological markers are 

useful in clinical trials of mild cognitive impairment (MCI) and early AD. Determination 

of sensitive and specific markers of very early AD progression is intended to aid 

researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. ADNI subjects aged 55 to 90 from over 50 

sites across the US and Canada participated in the research and more detailed information 

is available at www.adni-info.org. Moreover, PPMI is the first internationally recognized 

observational study created to identify and validate biomarkers for prediction of PD 

progression. For up-to-date information on the study, visit www.ppmi-info.org. 

From ADNI dataset, T1-weighted MRI and fluorodeoxyglucose PET (FDG-PET) 

images were used in this study. The scanning parameters of 1.5T MRI images can be found 

in a previous study (Jack Jr et al., 2008). For the PD, we utilized the T1-weighted MRI and 

DTI images obtained from the PPMI database. The details of multimodal imaging data in 

the AD and PD datasets are listed in Tables 9 and 10, respectively. 

Table 9. Participant characteristic of sMRI and PET imaging QTs in ADNI dataset. 

 sMRI PET 

 NC MCI AD NC MCI AD 

Num (n) 198 346 164 90 175 81 

Gender (M/F) 108/90 233/123 90/74 57/33 118/57 49/32 

Age at Baseline (mean±SD) 76.4±4.9 75.2±7.3 75.6±7.6 75.92±4.8 75.5±7.1 75.8±7.2 

Table 10. Participant characteristic of sMRI and DTI imaging QTs in PPMI dataset. 

 sMRI DTI 

 NC SWEDD PD NC SWEDD PD 

Num (n) 145 50 317 54 31 138 

Gender (M/F) 95/50 32/18 205/112 34/20 20/11 82/56 

Age at Baseline (mean±SD) 60.2±11.9 60.8±10.0 61.5±10.0 61.3±11.5 56.8±12.6 63.4±10.8 

 

All MRI data were processed under the following steps to extract region of interest 

(ROI) based features: a) using MIPAV software for anterior commissure and posterior 

commissure correction; b) image intensity inhomogeneity correction by applying N3 

algorithm (Sled et al., 1998); c) skull stripping (HD-BET, 

https://github.com/MIC-DKFZ/HD-BET); d) registering all images to Montreal 

Neurological Institute (MNI) space by using advanced normalization tools (Avants et al., 

2011; Tustison et al., 2014); e) tissue segmentation by using Atropos algorithm to obtain 

                  



 

four tissues: GM, WM, ventricle, and CSF; f) using the automated anatomical label (AAL) 

atlas of MNI space to label 90 ROIs; g) computing the gray matter tissue volume of each 

ROI in the MNI space. Besides, for each subject, we first aligned PET images to their 

corresponding T1-weighted MRI by using affine registration, and then computed the 

average PET intensity value of each ROI as PET feature. Thus, we had a 90-dimensional 

ROI-based feature from both the MRI and PET data, respectively. 

For DTI data, each subject contains 65 original format images where the b0 image does 

not activate the diffusion gradient, whereas the other 64 images have different gradient 

directions. The DTI data were preprocessed by the following steps: a) dcm2niix tool 

(https://www.nitrc.org/frs/?group_id=152) was applied to convert images into a 4-D image 

and generate a b-vector file and a b-value file indicating each gradient direction and its 

scalar value, respectively; b) eddy correct command of FMRIB Software Library (FSL) 

(Jenkinson et al., 2012) was used to correct the eddy current distortion on the 4-D image; c) 

BET algorithm of FSL was used to preform skull-stripping on b0 image; d) the difiti 

command of FSL tool and files that have been generated to calculate fractional anisotropy 

(FA); e) b0 image was aligned to MNI space by using affine registration, and the 

transformation matrix was applied in FA; f) the AAL atlas was used to calculate the mean 

tissue density of each region of FA and then the corresponding 90 dimensional ROI-based 

features could be obtained. 

For SNP data provided by ADNI (Saykin et al., 2010) and PPMI datasets (Marek et al., 

2018), our quality control procedures include (i) call rate check per subject and SNP 

marker, (ii) gender check, (iii) sibling pair identification, (iv) the Hardy–Weinberg 

equilibrium test, (v) marker removal by the minor allele frequency, and (vi) population 

stratification. The second line preprocessing steps include removal of SNPs with (i) more 

than 5% missing values, (ii) minor allele frequencies of below 5%, and (iii) Hardy–

Weinberg equilibrium P < 10
–6

. The remaining missing genotype variables were imputed 

as the modal value. After implementing these procedures, 708 subjects in ADNI datasets 

and 512 subjects in PPMI datasets remained for the subsequent analysis. Finally, a global 

sure independence screening procedure presented in our previous study (Huang et al., 

2015) was applied to select the candidate SNPs, and led to 3000 SNPs for ADNI and PPMI 

datasets, respectively. After that, the ANNOVAR (Wang et al., 2010) was used to annotate 

                  



 

gene corresponding to candidate SNPs. Therefore, gene information was used to group 

SNPs on the real data. 

3.2.2. Biomarker detection 

In this section, our goal was to detect the potential biomarkers associated with NDs. In 

real data, our parameter selection strategy was consistent with that in the simulation data. 

We averaged the obtained sparse weights across fivefold to ensure stable selection. The top 

20 imaging QTs with the highest absolute average 
m

Ζ  of each modality for AD and PD are 

shown in Figs. 3 (a) and (b), respectively. The full and short names of 90 QTs were 

displayed in Table A.1. Top 20 imaging QTs for each modality were selected first, and then 

the union set of the selected QTs from two modality were listed in Fig. 3. Moreover, we 

visualize the top 10 important brain regions of each modality from AD and PD datasets in 

Fig. 4. From Figs 3 and 4, the following QT biomarkers are exploited among the top 20 

QTs in each modality for PD: the pallidus, putamen, and thalamus are related to early PD 

(Garg et al., 2015); precentral is related to PD with diphasic dyskinesia (Zhi et al., 2019); 

supplementary motor area, precuneus, and hippocampus are associated with PD (Foo et al., 

2017; Owens-Walton et al., 2019; Shin et al., 2017).  

 
(a) 

                  



 

 
(b) 

Fig. 3. Heatmaps of weights of the top 20 imaging QTs selected from each modality for (a) AD and (b) PD, 

respectively, by using the proposed method. Two rows corresponding to two modalities of imaging QTs.  

For AD, the following QT biomarkers are exploited among the top 20 QTs in each 

modality: the hippocampal is associated with cognitive impairment in AD (De Leon et al., 

1997; Poulin et al., 2011); insula is related to MCI (Firbank et al., 2021); the anterior 

cingulate and paracingulate gyri reduces glucose metabolism rate in AD (Jiang et al., 

2018); the volume atrophy of thalamus appeared in AD (Low et al., 2019); the cuneus, 

pallidum, superior temporal gyrus, and middle temporal gyrus are also confirmed to be 

associated with AD. In Figs. 3 and 4, modality-shared and modality-specific QTs can be 

identified for each modality of PD/AD. For instance, the bilateral hippocampus and 

anterior cingulate and paracingulate gyri can be identified, indicating that these QTs 

extracted from sMRI and PET are potentially AD-related biomarkers. We can also observe 

that several QTs can be identified by specific imaging technology, for example, the volume 

atrophy of the hippocampus is observed in the MCI stage by using sMRI scan (Poulin et al., 

2011). 

                  



 

 
Fig. 4. Top 10 important brain regions and overall distribution from the sMRI (first row) and FDG-PET 

imaging data of AD (second row), and sMRI (third row) and DTI imaging data of PD (fourth row). 

We also identified the relevant top SNPs by using the proposed method. Figs. 5 (a) and 

(b) show the weights of the selected top 20 SNPs of each modality for AD and PD, 

respectively. Top 20 SNPs for each modality were selected first, and then the union set of 

the selected SNPs from two modality were listed in Fig. 5. For PD, the following genes are 

detected: variants in SNCA gene is related to PD (Campêlo et al., 2017); HMMR, 

TMPRSS2, and HLA-DRA genes are associated with PD (Salles-Gándara et al., 2020; 

Zhang et al., 2017); CDKAL1 is linked to bipolar disorder (Haljas et al., 2018); and SNCA 

gene is connected with the thalamus (Kim et al., 2017), which is related to early PD. For 

AD, the following genes are detected: CDH13 variants may increase AD risk (Liu et al., 

2018); NRXN3 gene variants is associated with schizophrenia, and might increase neuron 

inflammation in AD (Hishimoto et al., 2019); polymorphisms within ASTN2 gene are 

connected with age at onset of AD (Wang et al., 2015); ANK3 gene is linked to late-onset 

AD (Morgan et al., 2007); LRP1B and SLC1A3 genes are associated with AD (Bi et al., 

                  



 

2019; Zhao et al., 2021); and MACROD2 gene is related to autism (Jahanshad et al., 2013). 

 
(a) 

 
(b) 

Fig. 5. Heatmaps of weights of the top 20 SNPs selected from each modality for (a) AD and (b) PD, 

respectively, by using the proposed method. Two rows corresponding to two modalities of imaging QTs. 

3.2.3. Comparison with previous studies  

We compared the performance of ScCNAA on real data with that of three other 

state-of-art methods to evaluate the effectiveness of the proposed method. Given that the 

biomarkers associated with AD/PD in QTs and SNPs for real data have no ground truth, 

RMSE was used for the performance evaluation, and the results are shown in Table 11. We 

observe that the proposed method obtained the lowest RMSE values, which indicates that 

our proposed method outperforms other state-of-art methods. Moreover, the RMSE values 

of SCCA-based methods (i.e., MTSCCA and JCB-SCCA) are lower than those of 

G-SMuRFS, which may be because SCCA-based methods consider the structure 

information among QTs, thereby improving the detection performance. 

                  



 

Table 11. RMSE of different methods on ADNI and PPMI datasets. “--” in the table denotes that a non-p 

value is obtained. 

 Method G-SMuFS MTSCCA JCB-SCCA ScCNAA 

ADNI datasets 
RMSE 4.3±0.25 0.13±0.002 0.05±0.015 0.025±0.003 

p-value 2.8×10
-10 

4.1×10
-11 

6.4×10
-9 

-- 

PPMI datasets 
RMSE 5.2±0.21 0.16±0.017 0.08±0.012 0.045±0.018 
p-value 1×10

-11 5×10
-6 0.004 -- 

4. Discussion 

In this article, a novel ScCNAA method is introduced to analyze the associations 

between SNPs and multimodal QTs and uncover the genetic basis of the brain structure, 

function, and disorder associated with NDs. A parallel concatenated projection method is 

applied without imputing missing data to handle missing data, where modality-shared and 

modality-specific information can be well captured to obtain latent imaging 

representations. Connectivity analysis is suitable for exploring complex interconnected 

network, such as brain connectivity can be used to represent the degree of neuronal fiber 

connection between two brain regions. Therefore, the structure constraints are applied in 

the proposed method to explore the structure correlation among SNPs and QTs, and select 

interconnected QTs or SNPs that are consistent with biological prior knowledge. An l21 

norm is used in our ScCNAA model to exploit individual information among SNPs and 

QTs. We also assume that the effects of SNPs on QTs are regarded as a nonlinear function 

to deal with the complex associations between SNPs and QTs. Moreover, the proposed 

ScCNAA method is validated on the simulation and real ND datasets, and high 

performance of biomarker detection is achieved by using the proposed method. Therefore, 

the proposed method can help to understand the underlying pathological mechanism of 

NDs. 

4.1. Comparison with different missing data handling methods 

We compared our proposed method with three imputation methods and a projection 

method on data simulated by using Case 1. In the QT and SNP detection, the detection 

AUC value of the proposed ScCNAA was higher than the projection method, thereby 

indicating that much information on modality-shared and modality-specific QT and SNP 

biomarkers can be exploited by using the projection approach for handling missing data 

proposed by our method than that proposed by the Zhou’s work. Meanwhile, the detection 

                  



 

AUC values of the projection-based methods were higher than those of the three 

imputation methods. Consequently, some noise information is introduced by using the 

imputation method, which may result in decreased detection performance. Moreover, all 

available data can be used in the projection-based method to train a reliable model thus 

improving the detection performance. 

4.2. Comparison with the previous methods 

We compare the proposed method with three state-of-the-art methods using simulation 

data and two real ND datasets. In the simulation data, the three comparison methods can 

only be conducted on complete multimodal data, so we first performed three comparison 

methods on the complete multimodal data discarding missing data (i.e., n = 400). To 

further evaluate the effectiveness of our method, we then performed the three comparison 

methods on the complete multimodal data with n = 500, and conducted the proposed 

method on the multimodal data with missing data. Table 8 shows that the detection AUC 

value of our proposed method is still higher than those of the other methods, suggesting 

that the effectiveness of the proposed ScCNAA in dealing with missing data and fully 

leveraging both multimodal data by using a parallel concatenated projection method with 

multiple constraints. In Tables 7 and 8, the detection AUC of QTs and SNPs of our method 

shows the best results on simulation data generated by using Cases 1 and 2, followed by 

JCB-SCCA, MTSCCA, and G-SMuRFS. Compared with G-SMuRFS, improved detection 

performance is achieved by using MTSCCA, which may be because individual level 

information on QTs is included in MTSCCA. Improvements in the JCB-SCCA may 

contribute to structure correlation in the QTs is captured by using the connectivity penalty. 

Further improvement of detection performance is observed in ScCNAA, which benefit to 

inherent correlations among inter- and intra-multimodal QTs as well as correlated data 

structures within SNPs are captured by using the proposed method. 

In the real data, Table 11 shows that the RMSE values of the JCB-SCCA and 

MTSCCA methods are lower than that of G-SMuRFS (the pair t-test p-values < 0.05), 

which indicates that the effectiveness by including structure information among QTs on 

analyzing correlations between SNPs and QTs. Moreover, the RMSE value of JCB-SCCA 

is lower than that of MTSCCA (the pair t-test p-values are 2.2×10
–10

 and 2.3×10
–5

 in the 

ADNI and PPMI datasets, respectively), which suggests that the usefulness of exploiting 

                  



 

the information among inter- and intra-modal data on analyzing correlations between SNPs 

and QTs. In comparison with the JCB-SCCA method, the group-induced graph 

self-expression constraint is introduced in the proposed method to learn strong structure 

correlations among inter- and intra-group of SNPs. Accordingly, the lowest RMSE value is 

obtained by the proposed ScCNAA.  

4.3. biomarker detection of NDs 

The biomarker detection results on real ND data illustrate that a gene including some 

SNPs are detected by using the proposed method, which may be because the strong 

structure correlations among inter- and intra-group of SNPs are considered in the proposed 

method. These genes detected by the proposed method have been demonstrated to be 

related to NDs based on some previous studies (Gustaw-Rothenberg et al., 2010; Rosas et 

al., 2020; Yang et al., 2021). Moreover, brain regions related to NDs are discovered by 

using the proposed method, such as hippocampus and thalamus etc. Figs. 3 and 5 show that 

the modality shared and specific SNPs and QTs can be detected, which contributes to the 

parallel concatenated projection combined with structure constraints used in the proposed 

method.  

4.4. Limitations and future work 

In this research, we compared the proposed method with the multimodal regression 

(G-SMuRFS) and SCCA-based methods (MTSCCA and JCB-SCCA) on the simulation 

data sets and real AD data. Although, competitive results are obtained by using the 

proposed method, several technical issues are still needed to be addressed in our future 

research. First, we only used small samples, which may lead to the overfitting problem for 

various penalized regression methods. Therefore, more samples should be included in our 

experiments in future. Second, QTs are usually changed slowly over time as a disorder 

progress. Complementary information can be provided by using multimodal QTs. 

Therefore, integrating imaging data from different time points and different modality QTs 

into a framework may provide rich information to detect biomarkers and improve detection 

performance. 
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Appendix A. Full and short names of QTs 

Table A.1. Full and short names of 90 QTs in ADNI1 and PPMI datasets.  

QT Short Name Full Name QT Short Name Full Name 

1/2 Precentral L/R  Precentral Left/Right  47/78 Lingual L/R 
Lingual gyrus 

Left/Right 

3/4 Frontal Sup L/R 
Superior frontal gyrus 

Left/Right 
49/50 

Occipital Sup 

L/R 

Superior occipital 

gyrus Left/Right 

5/6 
Frontal Sup Orb 

L/R 

Orbital superior frontal gyrus 

Left/Right 
51/52 

Occipital Mid 

L/R 

Middle occipital 

gyrus Left/Right 

                  



 

7/8 Frontal Mid L/R 
Middle frontal gyrus 

Left/Right 
53/54 

Occipital Inf 

L/R 

Inferior occipital 

gyrus Left/Right 

9/10 
Frontal Mid Orb 

L/R 

Orbital middle frontal gyrus 

Left/Right 
55/56 Fusiform L/R 

Fusiform gyrus 

Left/Right 

11/12 
Frontal Inf Oper 

L/R 

Opercular inferior frontal 

gyrus Left/Right 
57/58 Postcentral L/R 

Postcentral 

Left/Right 

13/14 
Frontal Inf Tri 

L/R 

Triangular inferior frontal 

gyrus Left/Right 
59/60 

Parietal Sup 

L/R 

Superior parietal 

gyrus Left/Right 

15/16 
Frontal Inf Orb 

L/R 

Orbital inferior frontal gyrus 

Left/Right 
61/62 Parietal Inf L/R 

Inferior parietal 

gyri Left/Right 

17/18 
Rolandic Oper 

L/R 

Rolandic operculum 

Left/Right 
63/64 

SupraMarginal 

L/R 

SupraMarginal 

gyrus Left/Right 

19/20 
Supp Motor Area 

L/R 

Supplementary motor area 

Left/Right 
65/66 Angular L/R 

Angular gyrus 

Left/Right 

21/22 Olfactory L/R Olfactory cortex Left/Right 67/68 Precuneus L/R 
Precuneus 

Left/Right 

23/24 
Frontal Sup 

Medial L/R 

Superior frontal medial gyrus 

Left/Right 
69/70 

Paracentral 

Lobule L/R 

Paracentral Lobule 

Left/Right 

25/26 
Frontal Mid Orb 

L/R 

Medial orbital superior 

frontal gyrus Left 
71/72 Caudate L/R 

Caudate nucleus 

Left/Right 

27/28 Rectus L/R Gyrus rectus Left/Right 73/74 Putamen L/R 
Putamen 

Left/Right 

29/30 Insula L/R Insula Left/Right 75/76 Pallidum L/R 
Pallidum 

Left/Right 

31/32 
Cingulum Ant 

L/R 

Anterior cingulate and 

paracingulate gyri Left/Right 
77/78 Thalamus L/R 

Thalamus 

Left/Right 

33/34 
Cingulum Mid 

L/R 

Medican cingulate and 

paracingulate gyri Left/Right 
79/80 Heschl L/R 

Heschl gyrus 

Left/Right 

35/36 
Cingulum Post 

L/R 

Posterior cingulate gyrus 

Left/Right 
81/82 

Temporal Sup 

L/R 

Superior temporal 

gyrus Left/Right 

37/38 
Hippocampus 

L/R 
Hippocampus Left/Right 83/84 

Temporal Pole 

Sup L/R 

Temporal pole: 

Superior temporal 

gyrus Left/Right 

39/40 
ParaHippocampal 

L/R 
ParaHippocampal Left/Right 85/86 

Temporal Mid 

L/R 

Middle temporal 

gyrus Left/Right 

41/42 Amygdala L/R Amygdala Left/Right 87/88 
Temporal Pole 

Mid L/R 

Temporal pole: 

Middle temporal 

gyrus Left/Right 

43/44 Calcarine L/R Calcarine fissure Left/Right 89/90 
Temporal Inf 

L/R 

Inferior temporal 

gyrus Left/Right 

45/46 Cuneus L/R Cuneus Left/Right    
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