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Abstract
Transfer learning has been successfully used in the early diagnosis of Alzheimer’s disease (AD). In these methods, data from 
one single or multiple related source domain(s) are employed to aid the learning task in the target domain. However, most of the 
existing methods utilize data from all source domains, ignoring the fact that unrelated source domains may degrade the learning 
performance. Also, previous studies assume that class labels for all subjects are reliable, without considering the ambiguity of class 
labels caused by slight differences between early AD patients and normal control subjects. To address these issues, we propose to 
transform the original binary class label of a particular subject into a multi-bit label coding vector with the aid of multiple source 
domains. We further develop a robust multi-label transfer feature learning (rMLTFL) model to simultaneously capture a common 
set of features from different domains (including the target domain and all source domains) and to identify the unrelated source 
domains. We evaluate our method on 406 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with 
baseline magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data. The experimental results show that the proposed 
rMLTFL method can effectively improve the performance of AD diagnosis, compared with several state-of-the-art methods.

Keywords Transfer learning · Multi-label learning · Feature learning · Alzheimer’s disease (AD)

Introduction

Alzheimer’s disease (AD) is the most common cause of 
dementia, which is a degenerative brain disease and charac-
terized by a decline in memory, language, problem-solving 

and other cognitive skills that affects a person’s ability to 
perform everyday activities (Association 2015). This decline 
occurs because neurons and their connections in parts of the 
brain have been appeared progressive impairment. Accord-
ing to a recent report by Alzheimer’s Association, about 
5.3 million Americans have AD, 5.1 million are age ≥ 65 
years, and approximately 200,000 are age < 65 years and 
have Mild Cognitive Impairment (MCI), known as a pro-
dromal stage of AD (Association 2015).

In recent years, much effort has been made to design com-
puter-aided diagnosis systems, to allow early interventions 
that may prevent or delay the onset of AD/MCI. Especially, 
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the prediction of whether an MCI subject will progress to 
AD (i.e., Progressive MCI, PMCI) or not (i.e., Stable MCI, 
SMCI) within a period is particularly important in practice. 
In the last decades, neuroimaging has been successfully 
used to investigate the characteristics of neurodegenerative 
progression in the spectrum from normal controls (NCs) 
to AD. For example, Magnetic Resonance Imaging (MRI) 
scans (Chao et al. 2010; Chetelat et al. 2005; deToledo-Mor-
rell et al. 2004; Misra et al. 2009; Risacher et al. 2009) can 
measure the structural brain atrophy, and have been widely 
applied to the early diagnosis of MCI (Liu et al. 2016b). Cer-
ebrospinal fluid (CSF) levels of Aβ42, total-tau (t-tau), and 
phosphor-tau (p-tau) have also been considered as effective 
biomarkers in tracking MCI progression (Bouwman et al. 
2007; Davatzikos et al. 2011; Lehmann et al. 2012; Vemuri 
et al. 2009a, b). Recently, many machine learning methods 
have been proposed to fuse multi-modal biomarkers for the 
diagnosis of MCI, which generally achieve better learning 
performances than the conventional methods using single-
modal biomarkers (Cheng et al. 2015a; Davatzikos et al. 
2011; Dukart et al. 2016; Hao et al. 2016; Jie et al. 2015; 
Liu et al. 2014, 2017; Suk et al. 2014; Westman et al. 2012; 
Zhang and Shen 2012a, b; Zhang et al. 2011).

However, a major challenge in multi-modal biomarker 
based methods is that there are often limited samples and a 
large number of features, called the small-sample-size prob-
lem. To address this problem, many studies focus on feature 
learning for reducing the feature dimensionality (Cheng 
et al. 2015b; Eskildsen et al. 2013; Jie et al. 2015; Liu et al. 
2014; Ota et al. 2015; Ye et al. 2012; Zhang and Shen 2012a; 
Zhou et al. 2013; Zhu et al. 2014, 2015). For instance, in 
Zhang and Shen 2012a, a multi-task learning method is pro-
posed for fusing MRI, fluorodeoxyglucose positron emis-
sion tomography (FDG-PET), and CSF biomarkers. Then, a 
multi-task feature learning strategy is used for multi-modal 
feature selection in AD/MCI diagnosis (Jie et al. 2015; Liu 
et al. 2014; Zhu et al. 2014). However, in these studies, the 
training samples are often obtained from one particular 
learning domain, ignoring data in the other related learning 
domains. To enhance the generalization capability of mod-
els, several studies (Cheng et al. 2017, 2015a, b; Filipovych 
and Davatzikos 2011; Schwartz et al. 2012; Young et al. 
2013) have utilized data from related learning domains for 
the model training in a target domain in a transfer learning 
manner. The basic idea is utilizing the knowledge learned 
from one or more source domains to aid the learning task in 
a target domain (Duan et al. 2012; Pan and Yang 2010; Yang 
et al. 2007), with the assumption that these source domains 
are related to the target domain. These studies suggested that 
the transfer learning methods using multi-modal biomarkers 
can improve AD/MCI classification performance. However, 
previous transfer learning based studies (Cheng et al. 2017, 
2015a, b) directly used data from all source domains to aid 

the learning task in the target domain, without considering 
the negative effects of unrelated source domains. To address 
this issue, in this paper, we develop a robust multi-label 
transfer feature learning (rMLTFL) model to simultaneously 
capture a common set of features among multiple relevant 
domains and identify the unrelated source domains.

On the other hand, since AD is the progressive impair-
ment of neurons, there are small differences between early 
AD patients and NC in neuroimaging. This phenomenon 
is more pronounced in patients with PMCI and SMCI, and 
thus the true class labels for subjects could be ambiguous. 
However, in practice, physicians often label one subject in 
a binary manner (i.e., belonging to the category of patients 
or not), and hence we assume that there could be errors in 
the human annotated class labels for subjects. Inspired by 
the recent error-correcting output coding strategy (Liu et al. 
2016a; Pujol et al. 2006), we propose to transform the origi-
nal binary class label of a particular subject into a multi-bit 
label coding vector to avoid the negative effects caused by 
ambiguous class labels.

In this paper, we consider four classification tasks for the 
early diagnosis of AD/MCI, including the classification of (1) 
AD vs. NC, (2) MCI vs. NC, (3) AD vs. MCI, and (4) PMCI 
vs. SMCI. We also illustrate the relationship between the 
target domain and the corresponding multi-source domains 
in Fig. 1. For instance, in AD vs. NC classification, we regard 
data in the other three tasks (i.e., MCI vs. NC, AD vs. MCI, 
and PMCI vs. SMCI) as source domains. We then develop 
a multi-label prediction approach for subjects in the target 
domain with the aid of multi-source domains, via a transfer 
learning technique (Pan and Yang 2010). Finally, we pro-
pose a robust multi-label transfer feature learning (rMLTFL) 
model to select a common set of features among multiple 
relevant domains, by using the multi-bit coding vector as the 
label for each training subject. The proposed method is evalu-
ated on 406 subjects from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) with both MRI and CSF data. The 
experimental results demonstrate that the proposed method 
can further improve the performance of early diagnosis of the 
AD, compared to several state-of-the-art methods.

Materials

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
unites researchers with study data as they work to define 
the progression of Alzheimer’s disease. ADNI research-
ers collect, validate and utilize data such as MRI and PET 
images, genetics, cognitive tests, CSF and blood bio-
markers as predictors of the disease. Data from the North 
American ADNI’s study participants, including Alzhei-
mer’s disease patients, mild cognitive impairment subjects 
and elderly controls, are available from this site (http://

http://adni.loni.usc.edu/
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adni.loni.usc.edu/). In addition, ADNI researchers collect 
several types of data from study volunteers throughout 
their participation in the study. Data collection is per-
formed using a standard set of protocols and procedures 
to eliminate inconsistencies. This information is available 
for free to authorized investigators through the Image Data 
Archive (IDA).

Alzheimer’s Disease (AD) is an irreversible neurodegen-
erative disease that results in a loss of mental function due to 
the deterioration of brain tissue. It is the most common cause 
of dementia among people over the age of 65, affecting an 
estimated 5.3 million Americans, yet no prevention methods 
or cures have been discovered. For more information about 
Alzheimer’s disease, visit the Alzheimer’s Association. The 
goal of the ADNI study is to track the progression of the 
disease using biomarkers to assess the brain’s structure and 
function over the course of four disease states. The ADNI 
study will assess participants in the following stages:

• CN (i.e., Normal Aging/Cognitively Normal), from 
ADNI1 and ADNI2, CN participants are the control sub-
jects in the ADNI study. They show no signs of depres-
sion, mild cognitive impairment or dementia.

• SMC (i.e., Significant Memory Concern), from ADNI2, 
SMC participants score within the normal range for cog-
nition (or Clinical Dementia Rating, i.e., CDR = 0) but 
indicate that they have a concern, and exhibit slight for-
getfulness. The informant does not equate this as progres-
sive memory impairment nor considers this as consistent 
forgetfulness.

• MCI (i.e., Mild Cognitive Impairment), from ADNI1 
and ADNI2, MCI participants have reported a subjective 
memory concern either autonomously or via an inform-
ant or clinician. However, there are no significant levels 

of impairment in other cognitive domains, essentially 
preserved activities of daily living and there are no signs 
of dementia. MCI is a prodromal stage of the AD, where 
some MCI patients will convert to AD, i.e., progressive 
MCI (PMCI), and other MCI patients remain stable, i.e., 
stable MCI (SMCI). Levels of MCI (early or late) are 
determined using the Wechsler Memory Scale Logical 
Memory II.

• AD (i.e., Alzheimer’s disease), from ADNI1 and ADNI2, 
AD participants have been evaluated and meet the 
National Institute of Neurological and Communicative 
Disorders and Stroke and the Alzheimer’s Disease and 
Related Disorders Association (NINCDS/ADRDA) cri-
teria for the probable AD.

Here, ADNI2 has added a new cohort, the Significant 
Memory Concern (SMC). Subjective memory concerns 
have been shown to be correlated with a higher likelihood 
of progression, thereby minimizing the stratification of risk 
among normal controls and addressing the gap between 
healthy elderly controls and MCI. The key inclusion criteria 
that distinguish the Significant Memory Concern cohort are 
a self-report significant memory concern from the partici-
pant, quantified by using the Cognitive Change Index and 
the Clinical Dementia Rating (CDR) of zero.

In this work, we focus on using the ADNI1 database 
with baseline MRI and CSF data. Specifically, the structural 
MR scans were acquired that participants were previously 
scanned using either a 1.5T or 3T scanner. Imaging for ongo-
ing participants occurs annually, within two weeks before or 
two weeks after the in-clinic assessments. We downloaded 
the baseline CSF Aβ42, t-tau and p-tau data from the ADNI 
web site (http://adni.loni.usc.edu/) in December 2009. The 
CSF collection and transportation protocols are provided in 

AD vs. NC MCI vs. NC AD vs. MCI PMCI vs. SMCI

Multi-source domains

Early Diagnosis of Alzheimer's disease (including 4 target domains)

MCI vs. NC

AD vs. MCI

PMCI vs. SMCI

AD vs. NC

PMCI vs. SMCI PMCI vs. SMCI

AD vs. MCIAD vs. MCI

AD vs. NC AD vs. NC

MCI vs. NC

MCI vs. NC

Multi-source domainsMulti-source domainsMulti-source domains

Fig. 1  Illustration of relationships between target domain and multiple source domains in four classification tasks

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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the ADNI procedural manual on http://www.adni-info.org. 
The more detailed description can be found in (Zhang et al. 
2011). In this study, CSF Aβ42, CSF t-tau and CSF p-tau are 
used as the features.

Method

In this section, we first briefly introduce our proposed feature 
learning method, and then present the image pre-processing 
and feature extraction methods from MR images. Finally, 
we present our proposed robust multi-label transfer feature 
learning (rMLTFL) model, as well as an optimization algo-
rithm for solving the proposed objective function.

Overview

In Fig. 2, we illustrate the proposed feature learning frame-
work for the early diagnosis of AD/MCI. Specifically, our 
framework consists of three main components, i.e., (1) 
image pre-processing and feature extraction, (2) robust 
multi-label transfer feature learning (rMLTFL), and (3) brain 
disease classification using SVM. As shown in Fig. 2, we 
first pre-process all MR images, and extract features from 
MR images. Then, we select informative features via the 
proposed rMLTFL method. We finally train an SVM classi-
fier using the dimension-reduced data in the target domain 
for the diagnosis of AD and MCI.

Image preprocessing and feature extraction

All MR images were pre-processed by following the pipeline 
in (Zhang et al. 2011), then extracted the regions-of-interest 
(ROIs)-based features. Specifically, the pre-processing flow 
is showed in Fig. 3. After registration, each subject image 
was labeled and gets the 93 manually-labeled ROIs. Then, 
for each of 93 ROIs, we computed its GM tissue volume as 
a feature. As a result, for each subject, we have a 93-dimen-
sional feature vector for representing it. For multi-modal 
data fusion, we simply concatenated the features of MRI and 
CSF into a long feature vector.

Robust multi‑label transfer feature learning 
(rMLTFL)

To reasonably utilize more data from multiple related 
source domains (multi-source domains for short), we 
propose a robust Multi-Label Transfer Feature Learning 
(rMLTFL) model which simultaneously captures a com-
mon set of features among multiple relevant domains and 
identifies the unrelated domains. Specifically, the pro-
posed rMLTFL model consists of two key components: 
(1) multi-bit label coding matrix construction via the 
technique of transfer learning, and (2) the proposed robust 
multi-label transfer feature learning (rMLTFL) model 
and an optimization algorithm for solving the objective 
function.
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Fig. 2  Illustration of our proposed robust multi-label transfer feature learning (rMLTFL) framework for early diagnosis of AD. Here, X is the 
feature matrix, and Y denotes the multi-bit label coding matrix with each row denoting the label for a particular subject
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Multi-bit label coding

As a progressive disease, there may be slight differences 
between early AD patients and NC on neuroimaging. Hence, 
the class label for one subject could be ambiguous. Unlike 
previous studies that label one subject in a binary manner 
(i.e., patient or not), we propose to transform the original 
binary class label of a particular subject into a multi-bit 
label coding vector with the aid of data from multi-source 
domains, inspired by the recent error-correcting output cod-
ing strategy (Liu et al. 2016a; Pujol et al. 2006). Also, pre-
vious studies have suggested that the learning task of AD 
diagnosis is related to the learning task of MCI diagnosis 

(Cheng et al. 2015b; Coupé et al. 2012; Da et al. 2014; Fil-
ipovych and Davatzikos 2011; Westman et al. 2013; Young 
et al. 2013), and transfer learning methods improve the clas-
sification accuracy of AD and MCI (Cheng et al. 2015a, 
b; Filipovych and Davatzikos 2011; Schwartz et al. 2012; 
Young et al. 2013). Hence, in this work, we adopt data in 
multi-source domains for generating the multi-bit label cod-
ing vector for each subject in a transfer learning manner.

Specifically, the multi-bit label coding matrix for subjects 
is generated via the technique of transductive transfer learning 
(Pan and Yang 2010). Throughout the whole paper, we denote 
the target domain as X with true label yt and those k source 
domains as S = {S1, S2,… , Sk} . For clarity, we illustrate in 
Fig. 4 the process of using multi-source domain data for the 
generation of multi-bit label matrix. As can be seen from Fig. 4, 
there are three steps for achieving the multi-bit label matrix. In 
the first step, we treat each of multi-source domain data as the 
training set, and data in the target domain as the testing set. In 
the second step, we train a support vector machine (SVM) clas-
sifier using data from each source domain, and achieve k SVM 
classifiers. Finally, we feed a subject xp in the target domain to 
each of k SVMs, and obtain the estimated label vector {yp

i
}k
i=1

 . 
Given xp in the target domain and its estimated labels, we con-
struct its estimated multi-bit label matrix Yp = [y

p

1
, y

p

2
,… , y

p

k
] . 

In this way, for a particular subject in the target domain, we 
have a k-bit vector as its new label. Considering the true label 
vector yt, we denote Y = [yt, Yp] ∈ ℝn×(k+1) as the multi-bit 
label coding matrix for all subjects in the target domain, where 
n is the number of subjects in the target domain.

Robust multi-label transfer feature learning model (rMLTFL)

Inspired by the robust multi-task feature learning (Gong 
et al. 2012), we propose a robust multi-label transfer fea-
ture learning model (rMLTFL), which can simultaneously 

The anterior commissure-posterior commissure (AC-PC) 
correction using the MIPAV software (CIT, 2012)

The intensity inhomogeneity correction using 
the N3 algorithm (Sled et al., 1998)

The registration for the segmented images using the 
method of HAMMER (Shen and Davatzikos, 2002)

The brain image segmentation using 
the method of FSL (Zhang et al., 2001)

Resampling the AC-PC corrected 
images to 256×256×256

The skull stripping using the method of 
Wang et al., 2011

The manually-labeled regions-of-interest (ROIs) using 
the Jacob template (Kabani et al., 1998)

Fig. 3  The pre-processing flow of MR images
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…
 

Training samples Test samples

Target domain
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SVM
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Fig. 4  Illustration of the generation process for multi-bit label coding 
matrix with the aid of data from multi-source domains. We first treat 
each of multi-source domain data as the training set, and data in the 
target domain as the testing set. We then train k SVMs based on data 

in k source domains, and apply the learned SVMs to each testing sub-
ject (e.g., xp) to get the estimated class labels (i.e., {yp

i
}k
i=1

 ). For each 
subject in the target domain, we finally combine k predicted labels as 
a multi-bit label matrix Yp = [y

p

1
, y

p

2
,… , y

p

k
]
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capture a common set of features among multiple learning 
domains and identify the unrelated domains. In the following 
subsections, we first introduce the formulation of rMLTFL 
model and then employ the accelerated gradient descent 
(AGD) method (Gong et al. 2012; Nesterov 2004, 2007) to 
solve the optimization problem of rMLTFL model. In the 
end of this section, we present a two-stage procedure on the 
feature selection step of using rMLTFL model and call this 
two-stage procedure as 2S-rMLTFL.

Formulation Assume that we have a training set from the 
target domainX = [x1,… , xi,… xn]

T ∈ ℝn×d , with the i-th 
element xi ∈ ℝd×1 and its human-annotated class 
labelyt

i
∈ {+1,−1} , where n denotes the number of training 

samples and d is the number of training sample feature. 
Different from the conventional feature learning models 
using only a single response variable, our proposed 
rMLTFL mode l  can  l ea r n  a  we igh t  ma t r ix 
W = [wt,w

p

1
,… ,w

p

k
] ∈ ℝd×(k+1) from the target-domain 

training set X and its multi-bit label coding matrix Y. In 
order to identify the unrelated domains and select the com-
mon set of features among multiple learning domains simul-
taneously, the weight matrix W is decomposed into the sum 
of two components P and Q. We make use of two L2,1-
norm based regularization terms on P and Q to exploit 
relationships among multiple domains. Also, in order to 
simultaneously learn the weight vector learning of wt and 
each wp

i
 ,  we introduce an L2-norm regular izer 

(i.e.,
∑k

i=1

���
�
Xwt − Xw

p

i

�
−
�
yt − y

p

i

����
2

2
 ) in the proposed 

objective function, which is used for capturing the correla-
tion information between the true label vector yt and each 
estimated multi-bit label vector yp

i
 via square distance mini-

mization. Formally, our rMLTFL model is formulated as:

(1)min
�,�,�

1

k+1
‖Y − XW‖2

F
+ �1

k∑
i=1

���
�
Xwt − Xw

p

i

�
−
�
yt − y

p

i

����
2

2
+ �2‖P‖2,1 + �3

���Q
T���2,1

s.t.W = P + Q

where the first term is the empirical loss of the training data, 
the term ‖⋅‖F denotes the Frobenius norm for a matrix and 
the term QT denotes the transpose of a matrix Q. The second 
term 

∑k

i=1

���
�
Xwt − Xw

p

i

�
−
�
yt − y

p

i

����
2

2
 is used to encourage 

the similarity between the distance from the predicted target-
domain label Xwt to each predicted multi-bit label Xwp

i
 (i.e., 

∑k

i=1

���Xw
t − Xw

p

i

���
2

2
 ) and the distance from the true target-

domain label yt to each estimated multi-bit label yp
i
 (i.e., 

∑k

i=1

���y
t − y

p

i

���
2

2
 ). For clarity, we illustrate the meaning of the 

second term in Eq. (1) in Fig. 5. The third term ‖P‖2,1 is used 
to capture the shared features among multiple domains; the 
last term ‖‖‖Q

T‖‖‖2,1 is utilized to discover the unrelated 

domains, and then the weight matrix W is the sum of two 
components P and Q that is illustrated in Fig. 6. In addition, 
parameters of �1 , �2 and �3 are nonnegative and be used to 
control these three regularization terms. It is worth noting 
that the third term in Eq. (1) is the well-known group Lasso 
penalty which restricts the rows of the optimal solution P* to 
have all zero or nonzero elements (Argyriou et al. 2008). In 
this way, all related domains would select a common set of 
features. Similarly, we introduce the fourth regularization 
term based on the group Lasso penalty on columns of Q to 
discover these unrelated source domains. In this way, we can 
select features corresponding to non-zero rows in P for fea-
ture selection, and identify those unrelated or less informative 
source domains corresponding to non-zero columns in Q.

The proposed rMLTFL model is different from the robust 
multi-task feature learning (rMTFL) model in (Gong et al. 
2012). Specifically, we propose a new regularization term to 
capture the correlation of inter-multi-bit label coding term 
(i.e., 

∑k

i=1

���
�
Xwt − Xw

p

i

�
−
�
yt − y

p

i

����
2

2
 ) in the model of 

Fig. 5  Illustration of measuring 
the similarity among residual 
vectors in Eq. (1). Each node 
represents a column vector of 
the target-domain label or the 
multi-bit label that estimated by 
multi-source domain data, edges 
represent the distance between 
nodes. Here, ŷt = Xwt and 
ŷp
t
= Xw

p

i
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rMLTFL. In addition, these two models (i.e., rMTFL and 
rMLTFL) have different sources of training data. That is, 
training data from multiple learning tasks are used the input 
for rMTFL, while only the single learning task data is used 
for the model training of rMLTFL. In brief, our proposed 
rMLTFL model can utilize the correlation information 
between inter-multi-bit label coding and inter-samples, but 
rMTFL does not considered the correlation between training 
samples from multiple learning tasks.

Optimization algorithm To solve the optimization prob-
lem of Eq. (1), we employ the accelerated gradient descent 
algorithm (Gong et al. 2012; Nesterov 2004, 2007). To be 
specific, the proposed objective function in Eq. (1) can be 
transformed as follows:

where H ∈ ℝ(k+1)×k is a (k + 1) × k sparse matrix and defined 
as follows: Hi,j = 1 if i = 1 , Hi,j = −1 if i = j + 1 , and Hi,j = 0 
otherwise.

To solve the formulation in Eq. (2) efficiently, we decom-
pose the objective function in Eq. (2) into two parts, i.e., a 
differential term L(P,Q) and a non-differential term R(P,Q), 
as follows:

where L(P,Q) is the loss function and R(P,Q) is the regulari-
zation term. Since the loss function L(P,Q) is differentiable, 
we can compute its gradient function. However, the term 
of R(P,Q) is non-differential function, it cannot compute 
the gradient function of R(P,Q). Some studies employ the 
accelerated gradient descent method to solve the kind of 

(2)

min
W,P,Q

1

k+1
‖Y − XW‖2

F
+ �1‖XWH − YH‖2

F
+ �2‖P‖2,1 + �3

���Q
T���2,1

s.t.W = P + Q

(3)

L(P,Q) =
1

k+1
‖Y − X(P + Q)‖2

F
+ �1‖X(P + Q)H − YH‖2

F

R(P,Q) = �2‖P‖2,1 + �3
���Q

T���2,1

optimization problem (Chen et al. 2009; Liu et al. 2009a, 
b). Specifically, we can obtain the first order Taylor expan-
sion of L(P,Q) at

(
P̃, Q̃

)
 , with the squared Euclidean distance 

between (P,Q) and 
(
P̃, Q̃

)
 being treated as the regularization 

term as follows:

The accelerated gradient descent method is used in this work, 
which generates the solution at the t-th iteration (t ≥ 1) by com-
puting the following proximal operator (Liu et al. 2009b, c):

where P̃1
= P0 , Q̃1

= Q1 and P̃t+1
= Pt + 𝛽t(P

t − Pt−1) , 
Q̃

t+1
= Qt + 𝛽t(Q

t − Qt−1) for t ≥ 1. The coefficient �t is with 
respect to the convergence of the algorithm, and then we set 
�t =

(
bt−1 − 1

)
∕bt , where b0 = 1 , bt = (1 +

√
b2
t−1

+ 1)∕2 for 

t ≥ 1 (Gong et al. 2012). In addition, the coefficient �t (t ⩾ 1) 
is set as �t = 2�t−1 , and �0 is set as the lower bound of L. 
According to the research work of Gong et al. 2012, we set the 

lower bound of L as L ⩾ min

�
‖X‖2

2,1

n
,
‖XT‖2

2,1

d

�
 in this paper.

Due to the decomposable property of Eq. (5), we can cast 
Eq. (5) into the following two separate proximal operator problems:

(4)

TP̃, Q̃, 𝛾 (P,Q) =L
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+
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Fig. 6  Illustration of weight 
matrix decomposition for 
rMLTFL, where squares with 
white background denote zero 
entries. Here, W ∈ ℝd×(k+1) is a 
weight matrix, and the weight 
matrix of W is decomposed 
into the matrix sum of two 
components P and Q. Each 
column is corresponding to a 
specific domain. There are four 
domains, where the second 
domain is an unrelated domain
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where ∇P̃L
(
P̃
t
, Q̃

t
)
 and ∇Q̃L

(
P̃
t
, Q̃

t
)
 are the partial deriva-

tives of L
(
P̃, Q̃

)
 with respect to P̃ and Q̃ at 

(
P̃
t
, Q̃

t
)
 . The 

above proximal operator problems admit closed form solu-
tions as follows:

where 
(
u(t)

)i denote the i-th row of Ut , v(t)
j

 denote the j-th 

c o l u m n  o f  Vt  ,  a n d  Ut = P̃
t
−

1

𝛾t
∇P̃L

(
P̃
t
, Q̃

t
)

 , 

Vt = Q̃
t
−

1

𝛾t
∇Q̃L

(
P̃
t
, Q̃

t
)

 . Finally, these initialization of 

variables (i.e., P̃0
, Q̃

0 ) can be obtained from the study of 
Gong et al. 2012.

Two-stage procedure for rMLTFL (2S-rMLTFL) Our proposed 
rMLTFL model can be directly used for feature selection. 
Specifically, for the procedure of feature selection, we select 
those features corresponding to non-zero rows in the opti-
mal solution P* that is learned by rMLTFL model with the 
AGD algorithm. In this way, all multi-bit label vectors are 
included in model training of rMLTFL so that those unre-
lated domains should make negative effects for classification.

To avoid negative effects of those unrelated domains and 
inspired by the work of 2S-rMTFL (Gong et al. 2012), we 
also present a two-stage procedure for rMLTFL and illustrate 
this process in Fig. 7. Specifically, we first run the rMLTFL 
on the target domain training set X with its multi-bit label 
coding matrix Y and then observe that certain multi-bit label 
vectors can be selected and identified as unrelated label vec-
tors. Then, we remove these unrelated label vectors, obtain-
ing a new multi-bit label coding matrix Ŷ . Finally, we run 
rMLTFL on this ‘clean’ multi-label feature learning prob-
lem. We call this two-stage procedure as 2S-rMLTFL. In 
this paper, we use the procedure of 2S-rMLTFL for feature 
selection.

(7)
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Results

In this section, we first describe experimental settings in our 
experiments. Then, we show the classification results on the 
ADNI database by comparing our proposed method with 
several state-of-the-art methods. In addition, we illustrate 
the most discriminative features identified by our proposed 
method.

Experimental settings

We use 406 subjects (102 AD, 192 MCI, and 112 NC) with 
baseline MRI and CSF data from the ADNI database. It 
is worth noting that, for all 192 MCI subjects, during the 
24-month follow-up period, 86 MCI subjects converted to 
AD (PMCI for short) and 106 MCI subjects remained sta-
ble (SMCI for short). In addition, we consider four binary 
classification tasks, i.e., AD (+ 1) vs. NC (-1) classifica-
tion, MCI (+ 1) vs. NC (-1) classification, AD (+ 1) vs. 
MCI (-1) classification, and PMCI (+ 1) vs. SMCI (-1) 
classification.

In all experiments, we adopt a 10-fold cross-validation 
strategy to partition the target domain data into training 
and testing subsets. To avoid the possible bias occurred 
during sample partitioning, we repeat this 10-fold cross-
validation 10 times, and report the average performances 
in terms of area under the receiver operating characteris-
tic curve (AUC), accuracy (ACC), sensitivity (SEN), and 
specificity (SPE).

We first compare the proposed rMLTFL method with a 
baseline method using the standard SVM (denoted as Base-
line). Then, we compare rMLTFL with four state-of-the-art 
methods, including (1) Lasso (Tibshirani 1996), (2) MTFS 
(Liu et al. 2009b; Obozinski et al. 2006), (3) MLFS (Liu 
et al. 2009c), and (4) rMTFL (Gong et al. 2012). These 
methods are listed as follows.

• Baseline: is diagramed in Fig. 8a, training data are only 
from the target domain, without any feature selection 
stage. The linear SVM with C = 1 is used as the classifier.

• Lasso: (Tibshirani 1996) is diagramed in Fig. 8b, train-
ing data are only from the target domain, and the L1-

rMLTFL

The optimal 
solution 
for removing 
unrelated label 
vectors

rMLTFL

The optimal 
solution 
for feature 
selection

Fig. 7  Illustration of our proposed two-stage feature selection procedure using rMLTFL (called 2S-rMLTFL). X represents the target domain 
training data and its multi-bit label coding matrix Y, Ŷ is a new multi-bit label coding matrix that is learned by rMLTFL model
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norm based feature selection is performed before classi-
fication. Finally, a linear SVM is used for classification.

• MLFS: Multi-Label Lasso feature selection (Liu et al. 
2009c) is diagramed in Fig. 8c, training data are only 
from the target domain, and the target multi-label 
response matrix is computed by our proposed method 
of multi-bit label coding matrix construction. Then, the 
MLFS algorithm is used for feature selection, followed 
by a linear SVM classifier.

• MTFS: Multi-Task Lasso feature selection (Liu et al. 2009b; 
Obozinski et al. 2006) is diagramed in Fig. 8d, training data 
are from both the target domain and multi-source domains, 
and the MTFS algorithm is conducted for feature selection 
before using linear SVM for classification.

• rMTFL: robust Multi-Task Feature Learning (Gong 
et al. 2012) is diagramed in Fig. 8e. The rMTFL method 
is proposed in Gong et al. 2012. Besides the original 
rMTFL method, we further compare our method with 
its two-stage version, called 2S-rMTFL. Specifically, 
training data are from both the target domain and multi-
source domains, we first run the rMTFL algorithm on 
the training set and observe that certain domains can be 
selected and identified as an unrelated domain. Then, we 
remove these unrelated domains, and only keep those 
related source domains. Finally, we run the rMTFL algo-
rithm on this ‘clean’ multi-domain data for feature selec-
tion. The linear SVM is used for classification.

The SVM is implemented using the LIBSVM toolbox 
(Chang and Lin 2001) with a linear kernel and a default 
value for the parameter C = 1. For the Lasso and MLFS 
methods, we adopt the SLEP toolbox (Liu et al. 2009c) to 

solve the optimization problem. There are multiple regulari-
zation parameters of these methods (including Lasso, MTFS, 
MLFS, rMTFL, and our proposed rMLTFL) to be optimized. 
All regularization parameters of these methods are chosen 
from the range of Z1 by a nested 10-fold cross-validation 
on the training data. Before training models, we normalized 
features by following (Zhang et al. 2011).

Comparison between rMLTFL and other methods

Table 1 shows the classification results achieved by six 
methods, including Baseline, Lasso, MTFS, MLFS, rMTFL, 
and the proposed rMLTFL method. Note that each value in 
Table 1 is the averaged result of the 10-fold cross validation. 
We also use DeLong’s method (DeLong et al. 1988) on the 
AUC between the proposed method and each of other five 
competing methods, and list the corresponding P-values in 
Table 1. In addition, we plot the ROC curves achieved by six 
methods in four classification tasks in Fig. 9.

As can be seen from Table 1 and Fig. 9, we can have the fol-
lowing observations. First, for four binary classification problems, 
the proposed rMLTFL method consistently outperforms those five 
competing methods regarding all measures. Second, our proposed 
rMLTFL method and the rMTFL method outperform the other 
methods, which implies that removing unrelated domains can 
achieve better classification performance. Also, these results show 
our proposed assumption (that several unrelated domains often 
exist in multi-domain learning) is reasonable. Third, rMLTFL 

Fig. 8  Illustration of five com-
peting methods, X represents 
the target domain training 
data and its multi-bit label 
coding matrix Y, yt is the true 
label vector of target domain 
training data, S1,…,S1,…,Sk 
denote k source domains and 
their true label vectors yS1

1
,..,ySi

i

,…,ySk
k

 , and X*,X′, X#,X′′ denote 
dimension-reduced training data 
of target domain via procedures 
of Lasso, MLFS, MTFS and 
2S-rMTFL respectively

1 Z ∈ {0.000001, 0.00001, 0.0001, 0.0003, 0.0007, 0.001, 0.003, 
0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
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consistently achieves better classification performance than 
rMTFL, which suggests that our proposed regularization term on 
‖XWH − YH‖2

F
 is useful in promoting classification performance. 

In addition, Lasso method slightly outperforms MLFS and MTFS 
methods in four binary classification problems, which implies that 
one or more unrelated domains will cause negative effects and 
restrict the improvement of classification performance. This fur-
ther proves that the motivation of our approach (i.e., eliminating the 
negative effects of these irrelevant domains to further improve the 
diagnostic performance of AD and MCI) is reasonable.

Discussion

In this paper, we propose a robust multi-label transfer 
feature learning (rMLTFL) method for early diagnosis of 
AD, which can simultaneously capture a common set of 

features from the multi-source domain and target domain 
data and identify the unrelated domains. We evaluate the 
performance of our method on 406 subjects from the pub-
licly available ADNI database and compare our method 
with state-of-the-art methods. The experimental results 
show that the proposed method can consistently and sub-
stantially improve the performance of early diagnosis of 
AD.

Robust multi‑label transfer feature learning

In the field of neuroimaging-based early diagnosis of AD, 
multi-task multi-model learning methods have been widely 
used for feature selection and classification (Cheng et al. 
2015a, b; Dukart et al. 2016; Hao et al. 2016; Hinrichs 
et al. 2011; Jie et al. 2015; Liu et al. 2014; Suk et al. 2014; 
Wang et al. 2016; Ye et al. 2012; Zhang and Shen 2012a; 
Zhang et al. 2011; Zhu et al. 2014), showing improved per-
formance in AD diagnosis. The multi-task learning is based 
on the assumption that all these learning tasks should ena-
ble correlation. However, one or several unrelated learning 
tasks often exist in multiple learning tasks, and most of 
the existing studies haven’t considered this case. On the 
other hand, there are small differences between early AD 
patients and NC on neuroimaging, especially slight differ-
ences between PMCI and SMCI patients, so we consider 
that some errors often exist in the true labels while labe-
ling neuroimages. To avoid negative effects from unreliable 
class labels, we develop a multi-bit label coding method 
using the technique of transductive transfer learning. Also, 
we consider that one or several unrelated label vectors exist 
in the multi-label matrix. In this paper, we propose a robust 
multi-label transfer feature learning (rMLTFL) method 
that can simultaneously capture a common set of features 
among multi-label matrix and identify the unrelated label 
vectors. Different from multi-task learning, the rMLTFL 
method requires that data from multi-source domains are 
not used directly in model training. In Table 1 and Fig. 6, 
MTFS and rMTFL using multi-task learning are inferior 
to rMLTFL using multi-label learning for the classification 
performance, which implies that our proposed robust multi-
label transfer learning is more suitable for early diagnosis 
of AD based on multi-source domain data.

There are three regularization parameters (i.e., �1, �2, �3 ) 
in the proposed rMLTFL model. We further investigate the 
contribution of each regularization term by setting the respec-
tive parameters to be zero, and show the results in Table 2. 
For example, we set the regularization parameter �1 as zero 
(i.e., �1 = 0 ), which is used for evaluating the contribution 
of the first regularization term. As can be seen from Table 2, 
combining three regularization terms (i.e., 𝜆1, 𝜆2, 𝜆3 > 0 ) can 
achieve better performance for early diagnosis of AD. These 

Table 1  Comparison of our proposed method (rMLTFL) and five 
state-of-the-art methods (Baseline, Lasso, MTFS, MLFS, and 
rMTFL) for four classification tasks

ACC  ACCuracy, SEN SENsitivity, SPE SPEcificity, AUC  Area Under 
the receiver operating characteristic Curve

Method ACC SEN SPE AUC P-value

AD vs. NC
 Baseline 0.887 0.881 0.892 0.960 < 0.0001
 Lasso 0.916 0.912 0.920 0.976 < 0.0005
 MTFS 0.916 0.912 0.919 0.972 < 0.0005
 MLFS 0.912 0.908 0.916 0.970 < 0.0001
 rMTFL 0.927 0.926 0.928 0.978 < 0.005
 rMLTFL (Ours) 0.952 0.952 0.953 0.983 –

MCI vs. NC
 Baseline 0.731 0.787 0.635 0.809 < 0.0001
 Lasso 0.765 0.814 0.681 0.832 < 0.0001
 MTFS 0.768 0.816 0.685 0.833 < 0.0005
 MLFS 0.761 0.810 0.675 0.830 < 0.0001
 rMTFL 0.783 0.836 0.677 0.840 < 0.001
 rMLTFL (Ours) 0.824 0.867 0.738 0.865 –

PMCI vs. SMCI
 Baseline 0.664 0.624 0.697 0.716 < 0.0001
 Lasso 0.711 0.676 0.739 0.790 < 0.0005
 MTFS 0.687 0.649 0.717 0.749 < 0.0001
 MLFS 0.707 0.672 0.735 0.757 < 0.0001
 rMTFL 0.731 0.725 0.734 0.794 < 0.001
 rMLTFL (Ours) 0.763 0.734 0.786 0.810 –

AD vs. MCI
 Baseline 0.657 0.506 0.738 0.696 < 0.0001
 Lasso 0.704 0.574 0.774 0.753 < 0.0005
 MTFS 0.712 0.585 0.780 0.742 < 0.0001
 MLFS 0.709 0.580 0.777 0.743 < 0.0005
 rMTFL 0.728 0.545 0.792 0.782 < 0.001
 rMLTFL (Ours) 0.767 0.614 0.818 0.820 –
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results suggest the importance of selecting unrelated domains 
and capturing structured information between the true label 
vector and the predicted multi-label vectors.

In this work, we use a square loss function in the 
rMLTFL model that is suitable for both regression and 
classification learning tasks. To evaluate the influence 
of different loss functions, we further compare rMLTFL 
with its variant (called rMLTFL_log). Different from 
rMLTFL that is a linear regression model, rMLTFL_log 
is a logistic regression model using a logistic loss func-
tion. The experimental results achieved by two com-
peting methods (i.e., rMLTFL, and rMLTFL_log) are 
reported in Table 3. From Table 3, we can observe that 
the performance of rMLTFL_log with a logistic loss 
function is slightly superior to rMLTFL having a square 

loss function. We have further employed DeLong’s 
method (DeLong et  al. 1988) on the AUC values 
achieved by rMLTFL and rMLTFL_log, and obtained 
p-values that are greater than 0.05 in four classification 
tasks (AD vs. NC, MCI vs. NC, PMCI vs. SMCI, and 
AD vs. MCI). This demonstrates that there is no statis-
tically significant difference between the AUC values 
obtained by rMLTFL and rMLTFL_log between our pro-
posed rMLTFL model (with a square loss function) and 
its variant rMLTFL_log with a logistic loss function.

Discriminative features detection

The proposed rMLTFL model can be used for identifying 
the most discriminative features (corresponding to ROIs), 

Fig. 9  ROC curves of six differ-
ent methods in four classifica-
tion tasks

Table 2  Comparison of our 
proposed rMLTFL method 
using different settings of 
regularization parameters

Regularization parameter AD vs. NC MCI vs. NC PMCI vs. SMCI AD vs. MCI

ACC AUC ACC AUC ACC AUC ACC AUC 

�1 = 0 0.928 0.974 0.792 0.851 0.737 0.795 0.727 0.768
�2 = 0 0.948 0.981 0.813 0.867 0.762 0.809 0.759 0.808
�3 = 0 0.920 0.971 0.784 0.834 0.729 0.786 0.719 0.764
𝜆1, 𝜆2, 𝜆3 > 0 0.952 0.983 0.824 0.865 0.763 0.810 0.767 0.820
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which are helpful for early diagnosis of AD in clinical prac-
tice. Since we adopt a 10-fold cross-validation strategy to 
evaluate the efficacy of rMLTFL model and the feature selec-
tion in each fold was performed only based on the current 
training set, the selected features could vary across different 
cross-validations. We thus define the most discriminative fea-
tures based on the selected frequency of each feature among 
10-fold cross-validation. In Tables 4 and 5, we list all selected 
features with the highest frequency of occurrence (i.e., each 
feature selected across all folds and all runs) by rMLTFL on 
concatenated multi-modal biomarkers (i.e., MRI + CSF) in 
four classification tasks. From Tables 4 and 5, we can observe 
that our proposed rMLTFL model successfully selects the 
most discriminative features, since the corresponding ROIs 
are known to be related to Alzheimer’s disease (Davatzikos 
et al. 2011; Eskildsen et al. 2013; Jie et al. 2015; Ye et al. 
2012; Zhang and Shen 2012a; Zhang et al. 2011; Zhu et al. 
2014). The features (i.e., t-tau and p-tau) that are from CSF 
biomarker are selected for four classification tasks, and 
brain regions that are related to early diagnosis of AD (e.g., 
amygdala, hippocampal formation, entorhinal cortex, uncus, 
peripheral cortex, and cuneus) are also selected from MRI 
biomarker, which imply that combining MRI and CSF bio-
markers are able to provide complementary and discrimina-
tive information in the early diagnosis of AD.

In Table  4, there are nine features that are selected 
together for the classification tasks of AD vs. NC and AD 
vs. MCI, such as lateral front-orbital gyrus right, angular 
gyrus right, fornix left, middle frontal gyrus left, precentral 
gyrus left, amygdala right, inferior temporal gyrus right of 
MRI biomarker, and t-tau, p-tau of CSF biomarker, which 
indicate that those brain regions have been onset of the 
lesions in the stage of MCI (Davatzikos et al. 2011; Zhang 
et al. 2011). Also, there are four brain regions (i.e., lateral 
front-orbital gyrus right, fornix left, middle frontal gyrus 
right and precentral gyrus left) that are selected together 
for the classification tasks of AD vs. NC, and MCI vs. NC, 
which imply that the three brain regions are to shrink in 
early stage of AD (Davatzikos et al. 2011; Eskildsen et al. 
2013; Zhang et al. 2011). In addition, those features (i.e., 
precentral gyrus left, perirhinal cortex left, inferior tempo-
ral gyrus right, Aβ42, t-tau, and p-tau) are selected together 
for the classification tasks of AD vs. NC and PMCI vs. 
SMCI, which show that CSF and brain atrophy are effec-
tive for early diagnosis of AD and also tracking of MCI 
progression. In a word, these conclusions suggest that brain 

structure and function have changed with the progression of 
AD. The common most discriminative features are existed 
in all four classification tasks, which validate that the four 
classification tasks are related to each other.

Unrelated source domains detection

Identifying one or several unrelated label vectors from all 
multi-bit label coding vectors is useful and novel work for 
our proposed rMLTFL model. Since multi-source domain 
data are used for the training of rMLTFL model, we consider 
that one or several unrelated source domains possible exist 

Table 3  Comparison between 
our proposed rMLTFL model 
(with a square loss function) 
and its variant rMLTFL_log 
with a logistic loss function

Model AD vs. NC MCI vs. NC PMCI vs. SMCI AD vs. MCI

ACC AUC ACC AUC ACC AUC ACC AUC 

rMLTFL_log 0.955 0.986 0.833 0.876 0.772 0.824 0.771 0.832
rMLTFL 0.952 0.983 0.824 0.865 0.763 0.810 0.767 0.820

Table 4  The most discriminative features identified by the rMLTFL 
model for the classification tasks of AD vs. NC and AD vs. MCI

AD vs. NC AD vs. MCI

Middle frontal gyrus right Precentral gyrus right
Lateral front-orbital gyrus right Lateral front-orbital gyrus right
Angular gyrus right Superior frontal gyrus right
Fornix left Angular gyrus right
Middle frontal gyrus left Fornix left
Uncus left Posterior limb of internal capsule 

inc. Cerebral peduncle left
Occipital lobe WM left Posterior limb of internal capsule 

inc. Cerebral peduncle right
Precentral gyrus left Superior occipital gyrus right
Perirhinal cortex left Middle frontal gyrus left
Amygdala right Middle occipital gyrus right
Inferior temporal gyrus right Middle temporal gyrus left
Lateral occipitotemporal gyrus 

left
Precentral gyrus left

Aβ42 Lateral front-orbital gyrus left
t-tau Inferior temporal gyrus left
p-tau Lateral occipitotemporal gyrus right

Entorhinal cortex right
Insula left
Medial frontal gyrus right
Middle temporal gyrus right
Corpus callosum
Amygdala right
Inferior temporal gyrus right
Superior temporal gyrus right
Occipital pole left
t-tau
p-tau
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in multi-source domains. For identifying unrelated source 
domains, we use the rMLTFL model to select unrelated 
label vectors, and then those selected label vectors are cor-
responding to unrelated domains.

Specifically, we adopt the group Lasso penalty on the col-
umns of Q to discover these unrelated label vectors, and then 
affirm corresponding unrelated domains via these zero col-
umns in Q. Since we adopt a 10-fold cross-validation strategy 
to evaluate the efficacy of rMLTFL model and also the unre-
lated domain selection in each fold is performed only based on 
the current training set, the selected domains could vary across 
different cross-validations. Also, we repeat the 10-fold cross-
validation with 10 times, in order to avoid the possible bias 
occurred during sample partitioning. Therefore, we record the 
ratio of each domain that is identified as the unrelated domain 
among ten folds in each classification task, with results shown 
in Table 6. Because the true label is rarely selected as unrelated 
domain (all selected ratios are under the 5%), we only list the 
selected ratios of unrelated source domains in Table 6.

As can be seen from Table 6, for the target domain of 
AD vs. NC, the source domain of MCI vs. NC is selected as 
unrelated domain in most cases (the selected ratio is 75%). 
For the target domain of MCI vs. NC, the source domain of 
AD vs. MCI is selected as unrelated domain in most cases 
(the selected ratio is 73%). For the target domain of PMCI 

vs. SMCI, the source domain of MCI vs. NC is selected as 
unrelated domain in most cases (the selected ratio is 75%). 
For the target domain of AD vs. MCI, the source domain of 
AD vs. NC is selected as unrelated domain in most cases (the 
selected ratio is 74%). Also, we provide results produced 
by rMLTFL and 2S-rMLTFL approaches in Table 7. These 
results suggest that one or several unrelated domains exist in 
the multi-source domains, and removing unrelated domains 
can improve the classification performance.

Extension for classifying SMCI and NC

In the early diagnosis of Alzheimer’s disease, recognition of 
MCI subject will progress to AD (i.e., PMCI) is becoming 
increasingly important. Therefore, we report classification 
results of classifying SMCI and PMCI in Table 1. In order 
to get a more accurate diagnosis of MCI, we would report 
classification results of classifying SMCI and NC with our 
proposed rMLTFL model that uses the 2S-rMLTFL strategy. 
Specifically, the target domain is the learning task of clas-
sifying SMCI (+ 1) and NC (-1), multi-source domains are 
four binary classification tasks, i.e., AD (+ 1) vs. NC (-1), 
MCI (+ 1) vs. NC (-1), AD (+ 1) vs. MCI (-1), and PMCI 
(+ 1) vs. SMCI (-1). First, we compute a multi-bit label 
coding matrix via the approach of multi-bit label coding 
matrix construction and then learn a common set of fea-
tures by the rMLTFL model with 2S-rMLTFL strategy; 
the linear SVM is used for classification in the last step. 
In Table 8, we provide four performance measurements 
(i.e., ACC, SEN, SPE and AUC) and the P-value that is 
computed by DeLong’s method (DeLong et al. 1988) on 
the AUC between the proposed method and each of other 
five competing methods.

As can be seen from Table 8, the rMLTFL method con-
sistently outperforms those five competing methods regard-
ing all measurements. Moreover, there are several interesting 
observations as following: (1) classification results of MTFS 
and MLFS methods are slightly better than Lasso method, 
which indicates that multi-source domains are related to 

Table 5  The most discriminative features identified by the rMLTFL 
model for the classification tasks of MCI vs. NC and PMCI vs. SMCI

MCI vs. NC PMCI vs. SMCI

Medial front-orbital gyrus right Nucleus accumbens right
Middle frontal gyrus right Anterior limb of internal 

capsule left
Lateral front-orbital gyrus right Caudate nucleus right
Medial frontal gyrus left Precuneus left
Uncus right Postcentral gyrus left
Fornix left Precentral gyrus left
Hippocampal formation right Perirhinal cortex right
Cuneus left Perirhinal cortex left
Lingual gyrus left Inferior temporal gyrus right
Postcentral gyrus left Aβ42

Precentral gyrus left t-tau
Superior occipital gyrus left p-tau
Lateral occipitotemporal gyrus right
Hippocampal formation left
Medial occipitotemporal gyrus left
Medial occipitotemporal gyrus right
Thalamus right
Occipital pole left
Aβ42

t-tau
p-tau

Table 6  The unrelated source domains identified by the rMLTFL 
model for four classification tasks

Target Domain Multi-source Domains

AD vs. NC MCI vs. NC PMCI vs. SMCI AD vs. MCI
75% 43% 22%

MCI vs. NC AD vs. NC PMCI vs. SMCI AD vs. MCI
20% 46% 73%

PMCI vs. SMCI AD vs. NC MCI vs. NC AD vs. MCI
17% 75% 48%

AD vs. MCI AD vs. NC MCI vs. NC PMCI vs. SMCI
74% 50% 15%
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the target domain, and classification performance on target 
domain can be improved by the aid of multi-source domains; 
(2) classification results of rMTFL method are slightly infe-
rior to MTFS method, which indicates that it is not able to 
select unrelated domains using the rMTFL method; (3) clas-
sification results of rMLTFL method are better than MTFS, 
MLFS, and rMTFL methods, which indicates that one or 
more unrelated domains are existed in multi-source domains, 
and extraction of correlation information among multi-bit 
label coding vectors is able to improve performance of clas-
sifying SMCI and NC.

Limitations

The current study is limited by several factors. First, 
our proposed method is based on the two modal (i.e., 
MRI + CSF) biomarkers from the ADNI database. In the 
ADNI database, many subjects also have more modal bio-
markers, such as FDG-PET. Also, many status-unlabeled 
subjects can be used to extend our current method. In the 
future work, we will investigate whether adding more multi-
modal and status-unlabeled data can further improve the 
performance. Second, for the preprocessing of MR images, 
our current study only uses ROI features, while previous 
studies have shown the effectiveness of cortical thickness 
in early diagnosis of AD (Cho et al. 2012; Cuingnet et al. 
2011; Eskildsen et al. 2013; Querbes et al. 2009; Wee et al. 
2013; Wolz et al. 2011). In the future work, we will consider 
extracting cortical thickness features from MR images and 
combine them with ROI based features for early diagnosis 
of AD.

Conclusion

In this paper, we propose a novel robust multi-label transfer 
feature learning (rMLTFL) framework for early diagnosis 
of AD, which simultaneously captures a common set of 
features among multiple relevant domains and identifies 
the unrelated domains. The main idea of our method is to 
exploit the multi-source domain data to improve classifica-
tion performance in the target domain. Specifically, we first 
develop a method for multi-bit label coding using the tech-
nique of transductive transfer learning. Then, we propose 
a robust multi-label transfer feature learning (rMLTFL) 
model that can simultaneously utilize the multi-bit label 
coding vectors and the original class labels for subjects to 
capture a common set of features among multiple relevant 
domains and identify the unrelated domains. We evaluate 
our method on the baseline ADNI database with MRI and 
CSF data, and the experimental results demonstrate the effi-
cacy of our method.
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