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Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as signifi-
cant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients
and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of
structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremen-
tal method for AD classification using cortical thickness data. We represent the cortical thickness data of a
subject in terms of their spatial frequency components, employing the manifold harmonic transform. The
basis functions for this transform are obtained from the eigenfunctions of the Laplace–Beltrami operator,
which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined
on it. This facilitates individual subject classification based on incremental learning. In general, methods
based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those
based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representa-
tion, our method can still achieve robustness to noise by filtering out high frequency components of the cor-
tical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD
classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to
validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC)
subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) pa-
tients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and
76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for clas-
sification, which is consistent with previous pathological findings. In comparison with other classification
methods, our method demonstrated high classification performance in both categories, which supports the
discriminative power of our method in both AD diagnosis and AD prediction.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Objectives

Alzheimer's disease (AD) is themost common formof dementia. The
incidence of AD doubles every five years after age of 65 (Bain et al.,
2008). As life expectancy increases, the number of ADpatients increases
accordingly, which causes a heavy socioeconomic burden. Currently
g).
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f this report. ADNI investigators
a.edu/wp-content/uploads/how
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used treatments offer a small symptomatic benefit in mild to moderate
AD but cannot delay or halt the progression of AD. Recently, Jack et al.
(2010) reported that a structural changewas observed in human brains
a few years before any symptomatic awareness. Thus, the structural
change could provide a clue for early detection of AD.

Amnestic mild cognitive impairment (MCI) is known as a prodro-
mal state of AD and has received much attention for early detection of
AD. While only 2% of the healthy elders were converted to AD every
year, 10–15% of amnestic MCI patients were converted to AD annually
(Petersen et al., 1999). However, AD cannot be predicted with only
MCI diagnosis, because other forms of dementia can also be preceded
by the MCI state (Dubois and Albert, 2004). Some MCI patients were
converted to AD and others remained stable or even reversed to a
normal status. The former is called MCI converters (MCIc) and the lat-
ter is MCI non-converters (MCInc). The classification between MCInc
and MCIc was dealt with for early detection of AD (Misra et al., 2009;
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Querbes et al., 2009). Since AD is known to reduce brain volumes
prior to clinical symptoms of dementia, brain atrophy has also been
utilized for this purpose.

However, the classification between MCInc andMCIc is challenging.
According to the benchmark results in Cuingnet et al. (2011), classifica-
tion methods in this category showed low accuracies. Cuingnet et al.
(2011) stated that low accuracies can be caused certainly by heteroge-
neity of cortical thinning patterns over MCInc subjects. One can over-
come the difficulty in two ways: increasing training data so as to
cover all complex patterns, and choosing good features so as to reflect
the difference between two groups.

A large volume of data is necessary in order to handle complex
patterns of data. Moreover, simultaneous acquisition of such a data
set is practically difficult. Because new data are obtained usually
from physical examination or during disease diagnosis, the volume
of data is increasing steadily. The continuing data acquisition makes
conventional classification methods ineffective. Whenever a new
data set is obtained, a classification method should train its classifier
with an entire data set including the new data set in order to addi-
tively reflect the latter of which the volume is small in general. In
this study, we employed an incremental learning approach in order
to address this issue effectively.

For accurate classification, it is essential to choose eligible features
which clearly represent group differences. Subcortical structures such
as hippocampi and certain regions of gray matter were substantially
more vulnerable in AD; especially, they showed atrophy in an early
stage of AD. Accordingly, most of AD classification methods based
on brain morphometry utilized one of the following three neuroana-
tomical features: hippocampal features, tissue probability maps, and
cortical thickness data. Among these features, we used cortical thick-
ness data rather than hippocampal features and probability maps.
Hippocampal features were known to be difficult to capture exactly
(Khan et al., 2008; Qiu and Miller, 2008). The previous study by
Cuingnet et al. (2011) also showed that classification methods using
hippocampal features were less accurate compared to other methods.
The methods based on tissue probability maps are dependent on vol-
ume registration, while the methods based on cortical thickness data
are dependent on surface registration. In general, surface registration
provided better correspondences than volume registration (Anticevic
et al., 2008; Desai et al., 2005). Therefore, we adopt cortical thickness
data for AD classification.

Recently, several classification methods based on cortical thick-
ness data have been proposed. Desikan et al. (2009) and Querbes et
al. (2009) classified HC, MCI, and AD using the mean values of cortical
thickness for neuroanatomically segmented regions as a feature vec-
tor. However, the region-wise data cannot reflect local characteristics
of smaller regions than the segmented ones. Cuingnet et al. (2011)
constructed a classifier using the cortical thickness at every vertex
as a feature vector. Although the vertex-wise data can reflect local de-
formity of a small region, they are sensitive to noise and registration
errors. In this study, we overcome the difficulties with both types of
features by adopting the noise-filtered vertex-wise cortical thickness
data based on spatial frequency analysis

We present an individual subject classification method based on
incremental learning for AD diagnosis and AD prediction using the
cortical thickness data. These data are mapped onto a spatial frequen-
cy domain from the surface of a cortex by using the manifold harmon-
ic transform. The basis functions for this transformation are smooth
and periodic with different frequencies. Since high frequency compo-
nents are sensitive to noise and registration errors rather than group
differences, we cut off these components to filter out noise, which
also effectively reduces the dimension of data as observed in lossy
data compression. We construct our classifier based on principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA) (Zhao
et al., 2003), which enables incremental learning for AD diagnosis
and AD prediction. The efficacy of the proposed classification method
was demonstrated using several experiments, including comparison
with ten other well-known classification methods and also validation
of incremental classification.

Previous work

Numerous studies on brain morphometry in AD have been con-
ducted in the past two decades. It turns out that AD tends to deform
brain regions. For example, volume reduction of temporal lobes was
observed in brains of AD patients, according to studies based on
voxel-based morphometry (Chételat et al., 2005; Good et al., 2002;
Karas et al., 2003). Reduction of cortical thickness was also observed
on cortical surfaces, in particular, medial temporal lobes and entorhi-
nal cortices (Dickerson et al., 2009; Lerch et al., 2005; Thompson et
al., 2003). In (Wang et al., 2006), volume reduction and shape defor-
mity of hippocampi were shown in mild AD. Although these studies
reported new findings on AD, they did not provide automatic tools
for AD diagnosis and AD prediction. However, these findings were
significant in studies on AD classification since vulnerable structures
to AD can be excellent features for these tasks.

Based on the results of such morphometry studies, many classifi-
cation methods have been proposed for AD diagnosis and AD predic-
tion recently. Colliot et al. (2008) and Gerardin et al. (2009) utilized
hippocampal volumes and hippocampal shapes for AD classification,
respectively. Colliot et al. (2008) normalized hippocampal volumes
with respect to the total intracranial volume, and the average of the
two normalized hippocampal volumes for both hemispheres was
used to classify HC, MCI and AD. In Gerardin et al. (2009), hippocam-
pal shapes were modeled via the spherical harmonics transform, and
then the support vector machine (SVM) was employed to find a hy-
perplane to maximally separate HC and AD. A technical limitation of
these methods was that extracted subcortical structures from MR im-
ages were often unacceptable due to their small shapes and ill-
defined boundaries (Chupin et al., 2007). Klöppel et al. (2008) applied
the SVM to voxels of a tissue probability map which indicates the
probability of different tissue classes (gray matter, white matter,
and cerebrospinal fluid). The approach can be adapted easily to
other anatomical features due to its methodological simplicity. Spe-
cifically, Cuingnet et al. (2011) applied it to cortical thickness data
for AD classification. However, the approach was sensitive to noise
and registration errors because the spatial coherence of features
was not considered. Unlike the method in Klöppel et al. (2008),
other methods parcellated MR volumes or cortical surfaces, and
extracted a representative value such as the average cortical thick-
ness from each region. Ye et al. (2008) and Magnin et al. (2009) clas-
sified AD and HC by using the tissue probability of each parcellated
region. In Desikan et al. (2009); Querbes et al. (2009), the cortical
thickness value of each segmented region was extracted to build a
feature vector. Ye et al. (2008), Desikan et al. (2009), Magnin et al.
(2009), and Querbes et al. (2009) parcellated MR volumes based on
neuroanatomical knowledge, and Fan et al. (2007) adaptively parcel-
lated MR volumes to define discriminative regions. However, based
on region segmentations, such methods poorly reflected detailed spa-
tial variation of features. Furthermore, none of the above methods
addressed the incremental learning issue in classification.

To the best of our knowledge, incremental learning has not been
attempted in neuroimaging. However, since most of training data
for classification are sequentially obtained, studies on incremental
learning have received steady attentions in artificial intelligence and
computer vision. Incremental learning-based versions of statistical
techniques such as PCA and LDA have been reported. Hall et al.
(1998) proposed an incremental PCA method which updates the
PCA transformation matrix sequentially with each of the additional
training data. Hall et al. (2002) extended it to deal with a set of new
training data simultaneously. Levy and Lindenbaum (2000) and Lim
et al. (2004) later enhanced the computational efficiency and reduced
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the computational error during the update. The method of Lim et al.
(2004) was used in a visual tracking method (Ross et al., 2008) in
order to adapt to changes in the appearance of the target. Pang et al.
(2005) proposed an incremental LDA (ILDA) scheme which can han-
dle large training data. They showed that the classification accuracy
increased incrementally with additional data.

Materials

Data used in this paper were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
The ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), non-profit organiza-
tions and private pharmaceutical companies. The primary goal of ADNI
has been to testwhether serialmagnetic resonance imaging (MRI), pos-
itron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression ofMCI and early AD. Determination of sensitive and specific
markers in an early stage of AD progression is intended to aid re-
searchers and clinicians to develop new treatments and monitor their
effectiveness, as well as to reduce the time and cost of clinical trials.
For more details, we refer the readers to www.adni-info.org.

In this paper, MRIs of 491 subjects who belong to one of HC, MCI,
and AD groups were analyzed. The eligibility criteria of subjects ap-
plied in ADNI are described at http://www.adni-info.org/Scientists/
ADNIGrant/ProtocolSummary.aspx. Briefly, enrolled subjects in ADNI
were between the ages of 55 and 90 (inclusive) and spoke either En-
glish or Spanish. All subjects must be willing and able to undergo all
test procedures including neuroimaging and agree to longitudinal
follow-up. Specific psychoactive medications were excluded. General
inclusion/exclusion criteria are as follows:

1. HC subjects: Mini-Mental State Examination (MMSE) (Folstein et al.,
1975) scores between 24 and 30 (inclusive), a Clinical Dementia
Rating (CDR) of 0, non-depressed, non-MCI, and nondemented. The
age range of normal subjects was roughly matched to that of MCI
and AD subjects. Therefore, there should be minimal enrollment of
normals under the age of 70.

2. MCI subjects: MMSE scores between 24 and 30 (inclusive), a mem-
ory complaint, objective memory loss measured by education-
adjusted scores on Wechsler Memory Scale Logical Memory II, a
CDR of 0.5, absence of significant levels of impairment in other
cognitive domains, essentially preserved activities of daily living,
and an absence of dementia.

3. Mild AD subjects: MMSE scores between 20 and 26 (inclusive), CDR
of 0.5 or 1.0, and meeting NINCDS/ADRDA criteria for probable AD.

In the ADNI procedure, all subjects received the baseline clinical/
cognitive examinations including 1.5 T structural MRI, and were re-
evaluated at specified intervals (6 or 12 months) for 2–3 years. The
Table 1
Demographic characteristics of HC, MCInc, MCIc, and AD.

Age, years Sex, M/F MMSE score

HC
(n=160)

76.2±5.4
(60–90)

74/86 29.2±1.0
(25–30)

MCInc
(n=131)

74.1±7.2
(58–88)

81/50 27.2±1.7
(24–30)

MCIc
(n=72)

74.8±7.6
(55–88)

41/31 26.5±1.8
(23–30)

AD
(n=128)

76.0±7.1
(55–91)

60/68 23.3±2.0
(20–27)

n: the number of subjects in a group.
Data for age, years of education and MMSE score: mean±SD (range).
Data for sex: the number of subjects.
M:male, F:female.
baseline MRI scans were downloaded from the ADNI database,
which were used as the input data in our experiments. We also uti-
lized the follow-up examination results in order to separate MCI
into MCIc and MCInc. The separation was performed by following
the same policy as that in Cuingnet et al. (2011). MCI subjects who
were converted to AD within 18 months were classified into MCIc,
and those not converted into AD within the same period were classi-
fied into MCInc. Further, we excluded MCI subjects who did not fol-
low up the examinations more than 18 months. Table 1 shows the
demographic characteristics of the participants.

Incremental classification method

Overview

In this section, we present an incremental classification method
for AD diagnosis and AD prediction using cortical thickness data.
Given an MR volume of a subject, AD diagnosis determines whether
she/he is in HC or AD. On the other hand, AD prediction discriminates
MCIc fromMCInc, provided with an MR volume of an MCI subject. We
also deal with classification between HC and MCIc for comparison
with the benchmark results in Cuingnet et al. (2011). Our classifica-
tion method consists of two steps: group classifier training and indi-
vidual subject classification. Fig. 1 shows an overall structure of the
method. The former step trains a group classifier with labeledMR vol-
umes. This step first filters out high frequency components from the
cortical thickness data at vertices, which has been extracted from
the MR volumes, in order to remove noise, and then trains the
group classifier with resulting data. The latter step classifies unla-
beled subjects by using an individual subject classifier. This classifier
is initialized with the group classifier trained in the previous step
and incrementally updated. Given the MR volume of a subject, its fea-
ture vector representing the noise-filtered cortical thickness data is
acquired as in group classifier training. The classifier performs AD di-
agnosis or AD prediction using the feature vector. Unlike existing
methods for AD classification, our individual subject classifier not
only classifies an unlabeled subject but also enhances the classifier it-
self based on incremental learning after labeling the subject.

The contributions of our approach are two-fold: first, we represent
the cortical thickness data of a subject in terms of their frequency com-
ponents, employing the manifold harmonic transform (Levy, 2006; Qiu
et al., 2006; Vallet and Lévy, 2008). The basis functions for this trans-
form are obtained from the eigenvectors of the Laplace–Beltrami (LB)
operator, which is dependent only on the geometry of a cortical surface
but not on the cortical thickness function defined on it. This facilitates
individual subject classification based on incremental learning. Second,
our classifier showedhigh accuracy in both ADdiagnosis andADpredic-
tion. According to the benchmark data in Cuingnet et al. (2011), no AD
classifiers produced good results in the both categories. Intuitively,
methods based on region-wise features poorly reflect the detailed spa-
tial variation of cortical thickness, and those based on vertex-wise fea-
tures are sensitive to noise. Adopting a vertex-wise cortical thickness
representation scheme, we can still achieve robust classification to
noise by filtering out high frequency components of cortical thickness
data while reflecting their spatial variation. We believe that this com-
promise enabled both AD diagnosis and AD prediction with high
accuracy.

Group classifier training

Feature vector construction
We describe how to construct a feature vector from an MR vol-

ume. A feature vector should reflect group differences as much as
possible so as to achieve high classification performance. It should
also be compact so as to achieve computational efficiency. We use
the cortical thickness data at the vertices of the cortical surface to
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Fig. 1. Overview of the proposed classification method.
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construct a feature vector based on the observation that the cortex of
an AD subject becomes thinner in specific regions at an early stage of
AD progression (Querbes et al., 2009). Our feature vector construction
scheme consists of two steps: cortical thickness data extraction and
noise removal. Although the two-step scheme is separately applied
to both hemispheres, we describe the construction scheme for only
one hemisphere for explanation simplicity.

Given an MR volume for a subject, we extract cortical thickness
data from it by using version 4.4.0 of the FreeSurfer software package
(Athinoula A. Martinos Center at the Massachusetts General Hospital,
Harvard Medical School; http://www.surfer.nmr.mgh.harvard.edu/),
which is a popular free software for cortical surface analysis. We
first construct the outer and inner cortical surface meshes from the
MR volume. As the outer mesh is generated by deforming the inner
mesh, the two meshes are isomorphic, that is, have the same number
of vertices and the same connectivity. Therefore, their vertices with
the same index correspond to each other. The cortical thickness at
each vertex is defined as the distance between the two surfaces at
the vertex (Singh et al., 2008). However, in order to establish the cor-
respondences between the vertices of different subjects, the cortical
thickness data of each subject needs to be represented in a common
space. We use the atlas surface provided by the FreeSurfer software
as the common space, and register each cortical surface to the atlas
surface using this software. In general, the FreeSurfer software does
not enforce isomorphic meshes for all subjects. However, we can
make the meshes isomorphic by remeshing them after registration
using an executable file, mri_surf2surf in the software. The atlas sur-
face is represented with a mesh M={V,E}, where V={vi|i=1,…,n}
and E={eij=(vi,vj)|ib j and j≤n} are the vertex set and the edge
set, respectively. We approximate the cortical thickness function C
(s) on the atlas surface S with the cortical thickness vector c=(c1,
…,cn)T, where ci=C(vi), 1≤ i≤n is the cortical thickness at vertex vi.

Given a cortical thickness vector c of a subject, we now describe
how to remove noise. Our noise removal scheme maps C(s) from
the surface S onto a frequency domain, and then discards high fre-
quency components. Accordingly, the dimension of the cortical thick-
ness data is reduced. Chung et al. (2007) and Shen et al. (2007) used
the spherical harmonic transform (SHT) to map the cortical thickness
and hippocampal shape of a subject onto frequency domains, respec-
tively. However, their methods require mappings from 3D surfaces to
a sphere as preprocessing which causes an inherent distortion be-
cause of shape differences. Recently, a scheme called the manifold
harmonic transform (MHT) has been introduced for spectral analysis
of scalar functions defined on a surface (Levy, 2006; Qiu et al., 2006;
Vallet and Lévy, 2008). The MHT represents such a scalar function
in terms of its frequency components by using a set of basis functions.
Specifically, the eigenfunctions of the Laplace–Beltrami (LB) operator
are adopted as the basis functions of the MHT. Levy (2006) intro-
duced the MHT into computer graphics and discussed its possible ap-
plications, and Vallet and Lévy (2008) used the MHT to edit 3D
models in the frequency domain. In neuroimaging, the MHT has
been employed for smoothing neuroanatomical features defined on
cortical surfaces (Qiu et al., 2006; Seo et al., 2010; Kim et al., accepted
for publication; Seo and Chung, 2011). Seo et al. (2011) also proposed
to extract the centerline of the segmented human mandible based on
the second LB eigenfunction. Unlike the SHT, the MHT maps a scalar
function from a 3D surface onto a frequency domain without employ-
ing an extra mapping to a sphere (Levy, 2006; Qiu et al., 2006; Vallet
and Lévy, 2008). Recently, Seo and Chung (2011) showed that the
MHT is superior to the SHT in representing neuroanatomical func-
tions defined on cortical surfaces: The MHT can achieve a more pre-
cise representation with a less number of basis functions. For our
purpose, we need an additional mapping from cortical surfaces to
an atlas surface. A spherical mapping results in surface flattening
which is rarely observed in a non-spherical mapping. We adopt the
MHT rather than the SHT to avoid the distortion due to surface
flattening.

Provided with C(s), the MHT represents it with its frequency com-
ponents (f1,…, fn)T where fi,1≤ i≤n are defined as follows:

fk ¼ C;Hk ¼ ∫SC sð ÞHk sð Þds ð1Þ

≈ c;hk ¼
Xn
i¼1

Aicih
k
i ; k ¼ 1;…;n: ð2Þ

Here Hk(s),k=1,…,n is the eigenfunction of the continuous LB
operator of which the corresponding eigenvalue is the kth smallest
one among all eigenvalues, and is approximated by the kth eigenvec-
tor hk=(h1k,…,hnk)T of the discrete LB operator on the mesh M, where
Ai is one third of the area sum of triangles sharing vertex vi. Given the
frequency components (f1,…, fn)T, the cortical thickness data c=(c1,
…,cn)T can be reconstructed as follows:

c ¼
Xn
k¼1

fkh
k
: ð3Þ

We adopt the method proposed by Vallet and Lévy (2008) to com-
pute the eigenfunctions. For details in eigenfunction computation, we
refer the readers to Vallet and Lévy (2008).

Each eigenfunction corresponds to a specific frequency which is
equal to the square root of its corresponding eigenvalue (Vallet and
Lévy, 2008). Fig. 2 visualizes eigenvectors on the left cortical
surface where hk denotes the kth eigenvector. The value of the kth
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eigenvector for large k changes periodically with a short cycle. There-
fore, such an eigenfunction corresponds to a high frequency compo-
nent of C(s).

Since high frequency components of cortical thickness data mainly
represent noise and individual variabilities irrelevant to the charac-
teristics of a group, classification performance is less sensitive to
high frequency components than low frequency ones. Chung et al.
(2007) showed that the power of statistical analysis increases by re-
ducing the intensities of high frequency components. Inspired by
this result, we remove noise and thus reduce the dimension of corti-
cal thickness data by filtering out the high frequency components fi,
i>F, where F is the cut-off dimension for the cortical thickness data.
The noise-filtered data of a subject is represented by a reduced vector
(f1,…, fF)T. Employing the scheme in Qiu et al. (2008), the cut-off di-
mension F is determined by goodness of fit G, that is,

G ¼ ∑N
j¼1

������cj−∑F
k¼1f

j
kh

k
������2

∑N
j¼1

������cj������2;
ð4Þ

where cj is the original cortical thickness data of subject j in a training
set, fk

j is the kth frequency component of subject j, and N is the number
of subjects. In the numerator, ∑F

k¼1f
j
kh

k represents the noise-filtered
cortical thickness data of subject j for the cut-off dimension F. Qiu et
al. (2008) set G=0.05 to determine the cut-off dimension F. For our ex-
periments, we conservatively set G=0.025, which is one half of the
value used by them. With this value of G, the cut-off dimension F was
fixed to 2400. Given the cut-off dimension F for the (reduced) vectors
for both hemispheres of a brain, we define a feature vector x=( f1l,…,
fF
l, f1r,…, fFr)T, where fi

l and fi
r, i=1,2,…,F denote the ith frequency com-

ponents for the left and right hemispheres, respectively.
In PCA, the principal components are recomputed whenever a

training data set changes. However, the LB eigenfunctions are depen-
dent only on the shape of a surface (Levy, 2006; Qiu et al., 2006),
which is common to all scalar functions defined on it under the as-
sumption that the template surface is fixed over all subjects. There-
fore, the cortical thickness should be measured with the same
template; specifically, we used the one available in the FreeSurfer
software. Unlike PCA, the LB operator requires no retraining even if
different scalar functions on the same surface are used.
Fig. 2. Visualization of eigenvectors for the LB operator on the left cortical surface mesh: hk

riodically with a short cycle on the mesh.
Group classifier training
In this section, we explain how to train the group classifier with

the feature vectors obtained from a set of labeled subjects. Our
group classifier is based on PCA and LDA (Belhumeur et al., 1997;
Liu and Wechsler, 2000; Yu and Yang, 2001). We could improve clas-
sification performance with more sophisticated statistical techniques
such as PLS (Partial Least Squares) (Liu and Rayens, 2007) and OPLS
(Oriented Partial Least Squares) (Bylesjø et al., 2006). However, we
employed the most basic classification scheme, the PCA–LDA method
(Belhumeur et al., 1997) for clarity of presentation and easy extension
to incremental learning. LDA is a statistical technique that finds coor-
dinate axes which maximally separate different groups of data. This
technique has been widely used for applications such as face recogni-
tion and speech recognition. Although LDA showed high classification
accuracy in many applications (Pang et al., 2005), it suffered from the
singularity of scatter matrices when dealing with a small number of
training samples and a high dimensional feature space. The combina-
tion of PCA and LDA resolves this problem by reducing the dimension
of feature vectors with PCA.

Given feature vectors xi, 1≤ i≤N which belong to one of g groups
{G1,…,Gg}, our group classifier is trained by performing PCA and LDA
in sequence. In order to perform PCA, we first derive the covariance
matrix V of the training data set X={x1,…,xN}:

V ¼ 1
N
∑N

i¼1 xi−�xð Þ xi−�xð ÞT ð5Þ

where �x is the mean of all feature vectors. Since each xi is represented
as a feature vector ( f1l,…, fFl, f1r,…, fFr)T, V is an 2F×2F matrix. In our
classification problem, the covariance matrix V is singular in general,
which results in the singularity problem in performing LDA. To pre-
vent this problem, we choose the eigenvectors of V corresponding
to the largest k non-zero eigenvalues to construct a PCA transforma-
tion matrix WP. The number of chosen eigenvectors determines the
dimension of the reduced space (PCA space). A popular heuristic for
deciding the dimension k is based on the percentage of the total var-
iance achieved with the largest k eigenvalues. In Jolliffe (2002), it is
suggested that the percentage between 70% and 90% preserves most
of information needed for representing a data set with a Gaussian-
like distribution. We empirically decided the dimension k by setting
the percentage to 70%, which worked well for our experiments.
denotes the kth eigenfunction. The value of the kth eigenvector for large k changes pe-
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More sophisticated schemes for deciding k are available in Zhu
(2006). Given the PCA transformation matrix WP, a feature vector x
in the feature space is converted to a vector y in a PCA space spanned
by the column vectors of WP as follows:

y ¼ WT
P x: ð6Þ

By applying PCA to all feature vectors in X, we obtain a new train-
ing set Y={yi|yi=WP

Txi, i=1,…,N} in the PCA space.
We then conduct LDA with the training data set Y. LDA finds the co-

ordinate axes which maximally separate the groups of the data set. In
Fig. 3, the axis w1 for a data set better separates two groups than the
axis w2. The mean difference between the groups is larger on w1 than
on w2. On the other hand, the variance within each group is smaller
on w1 than on w2. LDA maximizes the between-classes variance of Y
across the groups and minimizes the within-class variance for each
group. Therefore, LDA finds an axisw that maximizes the following en-
ergy function (Balakrishnama and Ganapathiraju, 1998):

J wð Þ ¼ σbetween wð Þ
σwithin wð Þ ¼ wTSBw

wTSWw
; ð7Þ

where σbetween(w) and σwithin(w) are the between-classes variance and
the within-class variance projected onto the axis w, respectively. The
between-classes scatter matrix SB and the within-class scatter matrix
SW are defined as follows:

SB ¼ ∑g
i¼1Ni �yi−�yð Þ �yi−�yð ÞT ; and ð8Þ

SW ¼ ∑g
i¼1∑

Ni
k¼1 yik−�yið Þ yik−�yið ÞT ¼ ∑g

i¼1NiVi; ð9Þ

where �yi, Vi and Ni are the mean, the covariance matrix and the size of
group i, respectively, and yik is the kth feature vector in the group Gi. No-
tice that the within-class scatter matrix SW can be invertible by choosing
the PCA space dimension as described previously. The problemoffinding
the axis maximizing J is reduced to an eigenvalue problem SW

−1SBw=λw
by differentiating Eq. (7) with respect tow (Fisher, 1936). Therefore, the
optimal axis is the eigenvector of the matrix SW

−1SB with the largest ei-
genvalue (see Appendix A for detailed derivation). The LDA coordinate
system has the axes specified by the eigenvectors with a small number
of the largest eigenvalues. Therefore, an input data y from the PCA sub-
space is mapped onto the LDA space as follows:

z ¼ WT
L y; ð10Þ

where the matrix WL is the LDA transformation matrix consisting of the
chosen eigenvectors. Since SW

−1SB has at most g−1 eigenvectors with
Fig. 3. 2D illustration of LDA classification for two groups: LDA finds the coordinate
axes which maximally separate the groups of a data set. In this figure, the axis w1 for
the data set better separates two groups than the axis w2. Specifically, the mean differ-
ence between the groups is larger on w1 than on w2, while the variance within each
group is smaller on w1 than on w2. LDA maximizes the between-classes variance
across the groups and minimizes the within-class variance for each group.
non-zero eigenvalues, the dimension of the LDA space is always less
than g.

Individual subject classification

In this section, we describe how to classify individual subjects
using the group classifier trained in the previous section. We also dis-
cuss how to enhance the performance of the classifier incrementally
with new training data. Given an MR volume of an unlabeled subject,
its feature vector is first acquired as described in Feature vector con-
struction section. This process performs PCA and LDA in sequence to
transform the feature vector x of the subject to a point z in the LDA
space:

z ¼ WT
L W

T
P x; ð11Þ

where WP and WL are the PCA and LDA transformation matrices de-
fined in Group classifier training section, respectively. Given z in the
LDA space, our classifier maps the subject onto one of the groups
{G1,G2,…,Gg}. That is, the subject is classified to group Gi if z is closer
to the projection of the mean �xi of Gi onto the LDA space than those of
the others. After the unlabeled subject is classified, its label is validat-
ed by a clinician to be used for training. It is time-consuming to train
the classifier with the entire training data whenever new training
data are added. Therefore, the group classifier training scheme is
slightly modified for training an individual subject classifier. In
other words, the individual subject classifier is trained incrementally
without using the previously used training data so that the time effi-
ciency is dependent only on the size of new data.

Suppose that the group classifier has been built with a training
data set, X1={x1,…,xN}. The classifier can be modeled with a set of
parameters, Ω ¼ WP ;WL; �x1;…; �xg

� �
, where �xi, 1≤ i≤g is the mean

of feature vectors xik, 1≤k≤Ni belonging to group Gi. Given anaddi-
tional data set, X2={xN+1,…,xN+M} for small M≥1, our objective
is to update Ω incrementally with X2 in order to obtain a new model
Ω′ ¼ WP ;WL; �x1;…; �xg

� �
.

In order to update WP, we first modify the mean vector �x and the
covariance matrix V with X2, and then derive the new PCA matrixW ′

P
from these, by employing an incremental PCA method (Lim et al.,
2004). For clarity of explanation, suppose that M=1, that is, X2=
{xN+1} is a singleton set. The new mean �x is computed from the old
mean �x as follows:

�x ¼ N�x þ xNþ1
� �

N þ 1ð Þ : ð12Þ

The new covariance matrix V′ is

V ′ ¼ N
N þ 1

V þ N
N þ 1ð Þ2 xNþ1−�x

� �
xNþ1−�x
� �T

: ð13Þ

For details in deriving the transformation matrix WP, we refer the
readers to Hall et al. (1998). Hall et al. (2002) proposed an incremen-
tal PCA method which updates a classifier with a set of feature vectors
rather than a single feature vector, and Lim et al. (2004) enhanced the
computational efficiency for incremental PCA. We adopt the method
in Lim et al. (2004), the source code of which is available at http://
www.cs.toronto.edu/ dross/code/.

With Wp, �x, �x1;…; �xg computed, we employ an incremental LDA
method (Pang et al., 2005) to compute the LDA transformation matrix
WL. Unlike the group classifier described in Group classifier training
section, this method incrementally computes the between- and
within-class scatter matrices in the feature space (rather than in the
PCA subspace) and then maps the results onto the PCA subspace to fi-
nally compute WL. Let SBX and SW

X be the between- and within-class
scatter matrices in the feature space, respectively. These matrices

http://www.cs.toronto.edu/
http://www.cs.toronto.edu/
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can be computed with a small number of parameters including group
means �x; �x1;…; �xg and group covariance matrices V1,…,Vg in the fea-
ture space, which can efficiently be updated in an incremental man-
ner. We describe how to convert SW

X in the feature space to SW in
the PCA subspace using the PCA transformation matrix WP:

SW ¼ ∑g
i¼1∑

Ni
k¼1 yik−�yið Þ yik−�yið ÞT

¼ ∑g
i¼1∑

Ni
k¼1 WT

P xik−WT
P �xi

� �
WT

P xik−WT
P �xi

� �T

¼ ∑g
i¼1∑

Ni
k¼1W

T
P xik−�xið Þ xik−�xið ÞTWP

¼ WT
P ∑g

i¼1∑
Ni
k¼1 xik−�xið Þ xik−�xið ÞT

� �
WP

¼ WT
P S

X
WWP ;

where xik is the kth feature vector in the group Gi. Similarly, SBX can be
converted to SB, that is, SB=WP

TSB
XWP. Finally,WL are constructed with

eigenvectors of SB−1SW.

Results

The proposed method was validated through three experiments:
noise removal, group classification performance, and incremental clas-
sification performance.We describe these experiments in the following
three sections, respectively. For all experiments, we used the entire data
summarized in Table 1. These data were divided into two sets: a train-
ing data set and a test data set. For comparison purpose, we used the
same training and test data sets as those in Cuingnet et al. (2011). The
training data set consists of 80 HC, 65 MCInc, 37 MCIc, and 62 AD, and
the test data set has 80 HC, 66 MCInc, 35 MCIc, and 66 AD. For assess-
ment of classification performance,we also prepared three data subsets,
Datasets 1, 2, and 3 for HC vs. AD classification, MCInc vs. MCIc classifi-
cation, and HC vs. MCIc classification, respectively. The training data of
each data subset were used for obtaining its corresponding classifier,
and the test data of the subset was for validating the classifier. The com-
position of the two data sets and three data subsets are summarized in
Table 2.

In all experiments, we used the cortical thickness data defined on
the atlas meshes for the left and right hemispheres each of which
consists of 40,962 vertices, that is, the cortical thickness data on
each mesh were represented with a 40,962-dimensional vector. The
dimension of these data was reduced by noise removal, that is, by cut-
ting off their high frequency components. Except for cortical thick-
ness extraction, the experiments were performed on a PC equipped
with an Intel® Core™2 Duo Processor E8500 (3.16 GHz CPU and
12 GB memory). Cortical thickness extraction was done on a cluster
computer with sixteen nodes (two Intel Xeon 2.5 GHz CPUs and
32 GB memory for each node). It took about a week to extract cortical
thickness data from all MR volumes with the FreeSurfer software. In
the remainder of this section, we discuss each experiment in detail.

Noise removal

The first experiment was intended to validate our noise removal
scheme described in Feature vector construction section. This scheme
removes noise from cortical thickness data by filtering out their high
frequency components after determining the cut-off frequency F. We
first performed noise removal using the scheme and then performed
Table 2
Compositions of the two data sets and three data subsets.

HC MCInc MCIc AD

Training data set n=80 n=65 n=37 n=62
Test data set n=80 n=66 n=35 n=66
Dataset 1 ✓ ✓

Dataset 2 ✓ ✓

Dataset 3 ✓ ✓
statistical analysis to compare the cortical thickness data before and
after noise removal.

To perform noise filtering, we determined the cut-off dimension F
using the training data set consisting of 80 HC, 65 MCInc, 37MCIc, and
62 AD subjects as given in Table 2. Therefore, the resulting dimension
F is unbiased to any specific test data for validation. The cut-off di-
mension F was chosen by setting the goodness of fit G=0.025. With
G=0.025, the cut-off frequency F was set to 2400. Fig. 4 plots accura-
cy of each of group classifiers with respect to the cut-off dimension F.
Notice that we did not try to choose the optimal value of the dimen-
sion F in a classification-specific manner as observed in the figure.
Rather, we chose a cut-off dimension F for all classifications by con-
servatively setting G=0.025. This cut-off frequency F was used for
all experiments described in Noise removal, Group classification per-
formance and Incremental classification performance sections.

In order to compare cortical thickness data before and after noise
removal, we separately performed group analysis for the original cor-
tical thickness and its noise-filtered one using the test data of each
data subset in Table 2. Since the group analysis results for all three
data subsets were similar to each other, we only present the results
for Dataset 1 (HC vs. AD) for conciseness of explanation. We first per-
formed noise removal for the cortical thickness data of each test sub-
ject by cutting off their high frequency components using the
previously-determined F=2400. We then measured the mean differ-
ence between AD and HC groups for the corresponding noise-filtered
data subset as well as the original one. The first row in Fig. 5 shows
the mean difference in the original data subset, and the second row
shows the mean difference in the noise-filtered data subset. One
can visually verify that the mean differences are similar to each
other. The third row visualizes the difference between the first and
second rows: For more than 90% of the whole surface region, the orig-
inal and noise-filtered cortical thickness data are the same within
0.15 mm error. We also performed a t-test at each vertex in order to
validate the hypothesis that the cortical thickness can discriminate
AD subjects from HC subjects. The first and the second rows in
Fig. 6 show the resulting t-statistics maps for the original and noise-
filtered data subsets, respectively. Statistically significant regions in
the noise-filtered data subset were similar to those in the original
one. The third row shows the difference of absolute t-statistics values
at every vertex between the original and noise-filtered data subsets. A
warm color represents that the noise-filtered data subset is statisti-
cally more significant than the original one, while a cold color repre-
sents the opposite case. For more than 63% of the whole surface
region, the noise-filtered data subset has greater absolute t-statistics
values, which verifies that our noise removal scheme improves the
statistical analysis results similarly to the work in Chung et al. (2007).

Group classification performance

The next experiment was to show the group classification perfor-
mance of our method against other classification methods. Many
high-dimensional classificationmethods for automatic AD classification
have recently been presented. Fan et al. (2007) and Querbes et al.
(2009) used different data sets from the ADNI database. In order to
compare different methods in their classification performances, one
would have to implement all these methods. Fortunately, Cuingnet
et al. (2011) presented benchmark results for AD classificationmethods
using the ADNI database. The same data from the ADNI database were
used to compare the performances of ten classification methods. Since
the subject identifications for the data were provided as a supplement,
wewere able to repeat an identical experiment in Cuingnet et al. (2011)
with our method in order to exploit their benchmark results for perfor-
mance comparison. Now,we briefly explain how the benchmark results
were generated.

Cuingnet et al. (2011) performed three classification experiments:
HC vs. AD, HC vs. MCIc, and MCIc vs. MCInc. They compared ten



Fig. 4. Accuracies of individual subject classifiers with respect to cut-off dimension F.
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classification methods: Voxel-Direct, Voxel-Direct_VOI, Voxel-Atlas,
Voxel-STAND, Voxel-COMPARE, Thickness-Direct, Thickness-Atlas,
Thickness-ROI, Hippo-Volume and Hippo-Shape. The first five
methods employed voxel-based segmented tissue probability maps.
The next three methods used cortical thickness data. The last two
methods were based on hippocampal features. For details of the clas-
sification methods, we refer the readers to Cuingnet et al. (2011). For
assessment of classification performances, we used data subsets,
Fig. 5. Visualization of the mean difference of cortical thickness between AD and HC: The fir
filtered data set, respectively. The third row visualizes the difference between the first and
Datasets 1, 2, and 3 (see Table 2 for composition of each data subset),
which are the same data sets as those in Cuingnet et al. (2011).

We trained three group classifiers for HC vs. AD classification,
MCInc vs. MCIc classification, and HC vs. MCIc classification with the
training data in their respective data subsets. Specifically, for training
a group classifier, we first performed noise removal for the training
data in the corresponding data subset using the cut-off frequency
F=2400 determined in the previous section. We then employed
st and the second rows show the mean difference in the original data set and the noise-
the second rows.
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Fig. 6. Comparison of t-statistics maps between the original and noise-filtered cortical thickness data: statistically significant regions for the noise-filtered data subset (Dataset 1)
were similar to those for the original one. The third row shows the difference of absolute t-statistics values at every vertex between the original and noise-filtered data sets. A warm
color represents that the noise-filtered data subset is statistically more significant than the original one, while a cold color represents the opposite case. For more than 65% of the
whole surface region, the noise-filtered data set has greater t-statistics values, which verifies that our noise removal scheme improves the results of statistical analysis.

2225Y. Cho et al. / NeuroImage 59 (2012) 2217–2230
PCA to reduce the dimension of the feature space, which prevents the
singularity problem in performing LDA. As shown in Group classifier
training section, we empirically decided this dimension k by setting
the percentage of the total variance to 70%. Finally, the group classifi-
er was obtained by performing LDA with the transformed training
data in the PCA space.

After training the classifiers, we assessed the sensitivity and the
specificity of each classification with the test data in the respective
data subset as follows:

sensitivity ¼ number of true positives
number of true positivesþ number of false negatives

specificity ¼ number of true negatives
number of true negativesþ number of false positives

:

Table 3
The classification accuracy comparison between the eleven methods.

Methods HC vs. AD HC vs. MCIc

Sensitivity Specificity Sensitivity

Ours 82% 93% 66%
Voxel-Direct 81% 95% 57%
Voxel-Direct-VOI 71% 95% 54%
Voxel-STAND 75% 91% 73%
Voxel-Atlas 81% 90% 68%
Voxel-COMPARE 82% 89% 59%
Thickness-Direct 73% 90% 54%
Thickness-Atlas 79% 90% 57%
Thickness-ROI 69% 94% 65%
Hippo-Volume 71% 77% 73%
Hippo-Shape 69% 84% 57%
The sensitivity and the specificity were 82% and 93% for HC vs. AD
classification, 63% and 76% for MCIc classification, and 66% and 89%
for MCIc vs. HC classification, respectively. We compared the classifi-
cation performance of our method with those of the other ten
methods used in Cuingnet et al. (2011). Table 3 summarizes the clas-
sification performances of the ten classification methods together
with that of ours. The sum of the sensitivity and specificity for each
method was used as the measure of classification performance.
Fig. 7 depicts the performances of the methods in their descending
order. Our method received good evaluations in all classifications: It
showed the highest performance in MCInc vs. MCIc classification
and the second highest performance in HC vs. AD classification. In
HC vs. MCIc classification, it was ranked in the fourth position. In
HC vs. AD classification, the performance of ours was similar to that
of Voxel-Direct showing the highest performance. In HC vs. MCIc
MCInc vs. MCIc Total
performance

Specificity Sensitivity Specificity

89% 63% 76% 469
96% 0% 100% 429
95% 43% 70% 428
85% 57% 78% 459
95% 0% 100% 434
78% 54% 78% 440
96% 62% 67% 442
93% 54% 78% 451
94% 24% 82% 428
74% 62% 69% 426
88% 0% 100% 398
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Fig. 7. Benchmark results for eleven classification methods, in which their performances were shown in the descending order. Our method received good evaluations in all classi-
fications: it showed the highest performance in MCInc vs. MCIc classification and the second highest in HC vs. AD classification. In HC vs. MCIc classification, it was ranked in the
fourth position. The benchmark results demonstrated that our classification exhibited high performance compared to other classification methods.
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classification, three methods, Voxel-Atlas, Thickness-ROI, and Voxel-
STAND showed higher performances than ours. However, these four
methods showed inferior performances to ours in MCInc and MCIc
classifications. Voxel-STAND showed a similar performance to ours
in both HC vs. MCIc classification and MCInc and MCIc classifications,
but our method is superior to Voxel-STAND in HC vs. AD classifica-
tion. The benchmark results show that our classification method ex-
hibits its high performance compared to the other methods.

We compared the discriminative regions for our method with
those in Thickness-Direct and Thickness-Atlas which used, as feature
data, the cortical thickness at every vertex and the mean cortical
thickness over every parcellated region, respectively. Both of the
methods adopted the support vector machine (SVM) which finds a
hyperplane that maximally separates groups. In the case of the linear
SVM, the value of the ith component of the vector v that is orthogonal
to the separating hyperplane represents the contribution of the com-
ponent to classification. That is, if the value of the ith component of v
is zero, the ith element of every feature vector does not affect the clas-
sification result. Conversely, if the value is larger than the others, the
classification result is more sensitive to the ith element than the other
elements. This vector plays the same role as the separating axis w in
LDA since the value of the ith component in w also represents the
contribution of the ith element of each feature vector in the PCA
space to classification. Therefore, the analysis of both v and w gives
the discriminative region for classification. In Cuingnet et al. (2011),
the orthogonal vectors v to the hyperplanes of Thickness-Direct and
Thickness-Atlas have been visualized. We also visualized the axis
w of LDA by converting it to a pair of vectors on the left and right
atlas meshes: w in the PCA space was first transformed to a vector
x=WPw in the feature space. The vector is then divided into two
parts: frequency components { f1L,…, fFL} for the left atlas mesh and
frequency components { f1R,…, f FR} for the right atlas mesh. These fre-
quency components are finally transformed to two cortical thickness
vectors on the left and right atlas meshes using Eq. (3), respectively.
We divided these vectors by their magnitudes to obtain two unit vec-
tors for visualization. Fig. 8 depicts these vectors on the atlas meshes
for HC vs. AD classification, MCInc vs. MCIc classification, and HC vs.
MCIc classification. The entorhinal cortex was the most discriminative
for AD classification, and the lateral temporal lobe and the prefrontal
cortex were also discriminative, which is consistent with discrimina-
tive regions of Thickness-Direct and Thickness-Atlas.

In general, near-by regions in a cortex have correlated brain func-
tions, and are similarly deformed by brain diseases. By representing
the noise-filtered cortical thickness data of a subject in terms of the
spatial frequency components, our method reflects spatial coherency
of the data, which resulted in the spatial coherency of discriminative
regions. Our discriminative regions were therefore smoother than
those of Thickness-Direct: The vertex-wise cortical thickness repre-
sentation adopted by Thickness-Direct poorly reflects spatial relation-
ship of the feature data. On the other hand, Thickness-Atlas is based
on a region-wise representation of the thickness data, which poorly
reflects detailed spatial variation of the thickness data. Due to this
property of Thickness-Atlas, the cortical thickness data at all vertices
in the same parcellated region contributed equally to the classifica-
tion (see Fig. 6 in Cuingnet et al. (2011)).

Incremental classification performance

In this section, we demonstrated the effectiveness of incremental
classification in both accuracy and efficiency. We initialized three in-
dividual subject classifiers, an HC vs. AD classifier, an MCInc vs. MCIc
classifier, an HC vs. MCIc classifier using the training data of data
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Fig. 8. The discriminative regions in HC vs. AD classification, MCInc vs. MCIc classification, and HC vs. MCIc classification: Each figure visualizes the LDA axes on the atlas meshes.
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subsets, Datasets 1, 2, and 3, respectively. The resulting classifiers
were validated with the test data in their respective data subsets.

We began with demonstrating the accuracy of incremental classi-
fication. As the training data to each of three individual subject classi-
fiers, we generated one hundred random permutations of the entire
training subjects in the corresponding data subset in order to keep
the experiment unbiased to a specific ordering of the subjects in the
data subset. For each permutation, the accuracy of the classifier was
measured as follows: we applied the classifier to the test data in the
data subset while updating the classifier incrementally with the train-
ing data. Specifically, we iteratively supplied the training data of ten
subjects at a time for incremental learning until all the training data
Fig. 9. Average accuracies of individual subject classifiers with respect to the number of us
number of used training subjects.
were used up. Whenever the classifier was updated with these data,
the entire test data were used to estimate the accuracy of the classifi-
er. By averaging the results over all permutations, we measured the
accuracy of the classifier with respect to the number of used training
subjects. As plotted in Fig. 9, the accuracy of every individual subject
classifier tended to converge to that of the respective group classifier
trained with the entire training data in the corresponding data subset
as the number of used training subjects approached to that of the
training subjects in the data subset.

We next validated the time efficiency of incremental classification
by employing the group and individual subject classifiers for HC vs.
AD classification. Similarly results would be obtained for MCInc vs.
ed training subjects: The average accuracy of each classifier tended to increase in the
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MCIc classification and HC vs. MCIc classification. The group classifier
was initially trained with the training data of Dataset 1, and the indi-
vidual subject classifier was initialized with this group classifier. We
increased the size of our data set up to (including) 13,000 by cloning
the test data of Dataset 1.

We separately measured the computation times for the group and
incremental subject classifiers by incrementally supplying test sub-
jects to the both classifiers in the unit of 100 subjects. Both classifiers
were updated whenever new training data were added. Fig. 10 shows
the computation time of each classifier excluding that for the feature
vector construction. The computation time for incremental learning
was constantly 1.4 s regardless of the cumulative size of training
data since it is dependent on the size of new training data (or new la-
beled test data). On the other hand, the computation time of batch
learning is rapidly growing in the cumulative size of the training
data. The experiment of batch learning with more than 13,000 sub-
jects was unable to be performed due to lack of memory space.
Discussion

In this paper, we presented an individual subject classification
method based on incremental learning for AD diagnosis and AD pre-
diction using cortical thickness data. We represented cortical thick-
ness data in a frequency domain by employing the MHT. The basis
functions for the MHT were from the eigenfunctions of the LB opera-
tor which is dependent only on the geometry of a cortical surface but
not on the cortical thickness defined on it. Even with vertex-wise fea-
tures, our method was robust to noise by filtering out high frequency
components of cortical thickness data while reflecting their spatial
variation. The method not only classified individual subjects with
high accuracy, but also enhanced performance of the classifier incre-
mentally. Through experiments, the method demonstrated high per-
formance in both AD diagnosis and AD prediction.

Our classification method provides a general framework to classify
individual subjects using arbitrary features defined on a 3D cortical sur-
face. The method can be employed to diagnose and predict other brain
diseases using different neuroanatomical or geometrical features such
Fig. 10. The computation times for training the HC vs. AD classifier in batch learning and incr
the test data of Dataset 1. We separately measured the computation times for the incremen
The computation time for incremental learning was constantly 1.4 s regardless of the cumu
other hand, the computation time of batch learning rapidly growing in the cumulative size
as local surface deformity and curvature. In the future, we would like
to apply the framework to subcortical structures for diagnosis of various
neurological and psychiatric diseases such as schizophrenia or autism.
However, both of PCA and LDA work effectively under the assumption
of Gaussian data distributions. Moreover, the mean is assumed to be
the discriminating factor rather than the variance in LDA. Therefore,
our method is not guaranteed to work effectively for data sets with
non-Gaussian distributions or with their variances more discriminative
than their means.

Our incremental classification scheme is based on the assumption
that the atlas surface (or template surface) is fixed over all subjects. In
order to satisfy this assumption, the cortical thickness should be mea-
sured using the same template surface, for example, the one available
in the FreeSurfer software. A more natural solution is to allow
population-specific templates, which we leave as a future research
topic. We used the goodness of fit G as the criterion to determine
the cut-off dimension F. We conservatively set G=0.025 to obtain
F=2400. However, Fig. 4 shows lower cut-off dimensions with better
accuracies for different classifiers. Therefore, the accuracy of a classi-
fier could be improved by optimally choosing the goodness of fit in a
classifier-specific manner. A similar argument can be applied to di-
mension reduction of the PCA space. Finally, our classification scheme
is based on LDA and PCA for clarity of presentation and easy extension
to incremental learning. As mentioned in Group classifier training
section, the classification performance could be improved by employ-
ing more sophisticated statistical techniques such as PLS and OPLS.
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Appendix A

We explain how to find an axis maximizing Eq. (7):

J wð Þ ¼ σinter wð Þ
σintra wð Þ ¼

wTSBw
wTSWw

:

In order to find the axis w that maximizes J(w), we take the deriv-
ative with respect to w and set the results to zero:

d
dw

J wð Þ ¼
d
dw

wtSBw
	 


wtSWw− d
dw

wtSWw
	 


wtSBw

wtSWw
� �2

¼ 2SBwð ÞwtSWw− 2SWwð ÞwtSBw

wtSWw
� �2 ¼ 0:

This equation can be simplified as follows:

wtSWw SBwð Þ−wtSBw SWwð Þ ¼ 0
wtSWw SBwð Þ

wtSWw
−wtSBw SWwð Þ

wtSWw
¼ 0

SBw− wtSBw
wtSWw

SWw ¼ 0

SBw ¼ λSWw
S−1
W SBw ¼ λw:

Since λ ¼ wtSBw
wtSWw is the energy function J(w), the axis maximizing

J(w) is the eigenvector of SW−1SB with the largest eigenvalue.
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