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Abstract

Alzheimer disease (AD) is an increasingly prevalent neurodegenerative condition
and a looming socioeconomic threat. A biomarker for the disease could make the
process of diagnosis easier and more accurate, and accelerate drug discovery. The
current work describes a method for scoring brain images that is inspired by funda-
mental principles from information retrieval (IR), a branch of computer science that
includes the development of Internet search engines. For this research, a dataset of
254 baseline 18-F fluorodeoxyglucose positron emission tomography (FDG-PET)
scans was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
For a given contrast, a subset of scans (nine of every 10) was used to compute a
residual vector that typified the difference, at each voxel, between the two groups
being contrasted. Scans that were not used for computing the residual vector (the
remaining one of 10 scans) were then compared to the residual vector using a co-
sine similarity metric. This process was repeated sequentially, each time generating
cosine similarity scores on 10% of the FDG-PET scans for each contrast. Statistical
analysis revealed that the scores were significant predictors of functional decline
as measured by the Functional Activities Questionnaire (FAQ). When logistic re-
gression models that incorporated these scores were evaluated with leave-one-out
cross-validation, cognitively normal controls were discerned from AD with sensi-
tivity and specificity of 94.4% and 84.8%, respectively. Patients who converted from
mild cognitive impairment (MCI) to AD were discerned from MCI nonconverters
with sensitivity and specificity of 89.7% and 62.9%, respectively, when FAQ scores
were brought into the model. Residual vectors are easy to compute and provide
a simple method for scoring the similarity between an FDG-PET scan and sets
of examples from a given diagnostic group. The method is readily generalizable
to any imaging modality. Further interdisciplinary work between IR and clinical
neuroscience is warranted.

Introduction

Alzheimer disease (AD) is the most common cause of neu-
rodegenerative dementia among elderly patients. It is now
well recognized as a public health emergency for the 21st
century. By an estimate based on data from the 2000 census,
there will be 13.5 million cases by the year 2050 unless treat-
ments are developed to prevent or slow progression of the
disease (Hebert et al. 2003).

The absence of biomarkers for detecting AD and track-
ing its progression renders discovery of new treatments more
difficult. At this time, the diagnosis cannot be made with
confidence in the absence of detailed cognitive testing. These
cognitive tests are time consuming and can be difficult to
interpret if the participant is not adequately engaged. Some
clinical trials in recent years have enrolled patients with mild
cognitive impairment (MCI—a condition characterized by
memory impairment without dementia) and evaluated rates
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of conversion from MCI to AD as an outcome measure (Sal-
loway et al. 2004; Petersen et al. 2005; Thal et al. 2005; Feldman
et al. 2007). While it is true that drugs for preventing conver-
sion are highly desirable, conversion has some undesirable
properties for an outcome measure. Conversion does not
take place suddenly and can be difficult to identify with cer-
tainty. Rates of conversion are low and variable, with 6–15%
of amnestic MCI patients converting to Alzheimer’s disease
each year. This means that large numbers of MCI patients
must be recruited and followed for a long period of time be-
fore it is possible to discern a difference in conversion rates
between two randomized groups of participants in a clinical
trial. Biomarkers offer the hope of rapid and unambiguous
diagnosis, precise tracking of disease severity, and improve-
ments over existing methods for evaluating the efficacy of
interventions.

Positron emission tomography (PET) scans for the current
study were acquired using 18-fluorodeoxyglucose (FDG), and
will be referred to hereafter as FDG-PET or PET scans. FDG
is synthesized by replacing one of the hydroxyl groups in glu-
cose with a fluorine atom. Despite this change, the molecule
bears sufficient similarity to glucose to be taken up by living
cells in proportion to their metabolic demands. The radiation
emitted by the tracer after it has been absorbed by the cells
can therefore be used to construct a map depicting the glu-
cose demands of the different tissues. FDG-PET scans have a
characteristic appearance that can facilitate the diagnosis of
AD (Silverman et al. 2001; Drzezga et al. 2005). In addition,
PET scans have clinical utility for discerning between AD
and dementia caused by frontotemporal lobar degeneration
(FTLD) (Foster et al. 2007). Several research studies have eval-
uated the utility of PET scans for diagnosing AD (Minoshima
et al. 1995; Silverman et al. 2001) or for predicting the pro-
gression of MCI or AD (Chetelat et al. 2003; Drzezga et
al. 2005; Landau et al. 2010, 2011; Walhovd et al., 2010).
PET scans for studies such as these are often subjected to
complex post-processing, such as segmentation into volumes
of interest, or surface projection. The current work focuses
on automatic detection of AD or elevated MCI conversion
risk, making use of elementary information retrieval (IR)
techniques.

IR is a broad field that is concerned chiefly with the rapid
selection of relevant documents from vast databases. The doc-
uments in question are traditionally text, and this has shaped
many IR techniques. The simplest approach is to formulate
a query as a list of key words and to retrieve only documents
that contain all of the key words. This approach does not
perform well in practice, however. Another approach that is
almost as simple is to arrange word counts from numerous
documents in a matrix and then to treat the rows and columns
of the matrix as vectors. This permits comparison of docu-
ments and queries using simple mathematical measurements
on vectors, such as Euclidean distance (a generalization of the
Pythagorean theorem) and cosine similarity (a measure of the

Figure 1. Geometric interpretation of ordinary least squares regression.
A vector N (representing the PET scan of an MCI nonconverter) is pro-
jected onto a space, C, which is composed of PET scans from MCI pa-
tients who converted to AD within 2 years of being scanned. Although
C is depicted as being planar, in actuality it has as many dimensions as
the number of PET scan vectors that compose it. The projection vector, P,
can be computed by means of multiplying a “hat” matrix by the original
vector, N. The hat matrix is derived from the matrix C by the equation
C(CTC)−1CT, where the −1 superscript represents the matrix inverse and
the T superscript represents the matrix transpose. The residual vector, R,
is then calculated by subtracting the projection P from N. The residual
is orthogonal to all vectors in the column space of C, but retains some
similarity to the original vector, N.

angle between two vectors that is maximal when the vectors
are parallel). More typically, the term-document matrix is
subjected to further mathematical processing for extracting
the most salient features of the data, such as singular value
decomposition or latent semantic analysis (Widdows 2004).
This vector-space model of information has proven to be very
useful, and the possibility of extending it to retrieval of im-
ages and music is an area of active research (Casey et al. 2008;
Datta et al. 2008).

The diagnosis of AD (or identification of patients who
meet other clinical criteria) may be approached from an IR
perspective. In this case, we wish to search a database of brain
images and retrieve those images that belong to patients with
AD or elderly controls. Somewhat more compelling (and
more difficult) is the retrieval of scans from patients with
memory impairment who are destined to develop AD. The
immediate problem that arises is the formulation of the query.
In text-based IR, the query is simply a list of words (such as a
document) that can be converted to a vector and compared to
documents in the database. The current research focuses on
a relatively simple method for formulating “query” vectors
from groups of PET scans and then evaluating the utility of
these vectors for retrieving relevant scans (i.e., for making
diagnoses or predictions on the subjects who contributed the
scans).

Fig. 1 summarizes the residual vector analysis method, the
first step of which is mathematically identical to comput-
ing the ordinary least squares approximation of the solution
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to a system of linear equations. Geometrically, the ordinary
least squares approximation is the projection of one vector
(composed of the values of the dependent variable) onto
a space defined by other vectors (the matrix of independent
variables). This projection is the linear combination of vectors
from the matrix column space that is closest to the original
vector. Subtraction of this projection vector from the original
vector yields a residual vector that is orthogonal to all of the
vectors in the matrix column space. Thus, when similarity is
quantified in terms of the cosine of the angle between two
vectors (i.e., zero for perpendicular vectors, one for parallel
vectors), the residual vector will have zero similarity with all
of the column vectors in the matrix. Because the residual
vector is a component of the original vector, it will maintain
some cosine similarity with it (except in the unlikely event
that a perfect solution is found, in which case the residual
will be the zero vector).

The goal of this project was to determine whether residual
vectors computed in this manner have any utility as query
vectors when used to search a database of PET scans that
were not used in computation of the residual vector itself.
The specific questions being posed were: (1) Do cosine simi-
larity scores derived from the residual vectors make a signif-
icant contribution to variance in logistic regression models
using AD diagnostic status or MCI conversion status as the
dependent variable? (2) Can cosine similarity scores predict
functional decline? (3) How do these logistic regression mod-
els fare when used as classifiers of cases not used in the model
computation?

Methods

Alzheimer’s disease neuroimaging initiative
(ADNI) participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharma-
ceutical companies, and nonprofit organizations, as a $60
million, 5-year public–private partnership. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), PET, and other biological markers are useful
for tracking the progression of MCI and early AD. Deter-
mination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials. The princi-
pal investigator of this initiative is Michael W. Weiner, MD,
VA Medical Center and University of California, San Fran-
cisco. ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private cor-
porations, and subjects have been recruited from over 50

Table 1. Demographics of ADNI subjects (n = 242).

Category Sex (M:F)ns Age (SD)ns MMSE (SD)∗ FAQ (SD)∗

Control (n = 79) 48:31 76.0 (4.8) 29.1 (0.9) 0.2 (0.7)
MCI-n (n = 70) 52:18 76.7 (7.1) 27.1 (2.6) 3.3 (4.4)
MCI-c (n = 39) 27:12 76.3 (6.9) 26.1 (2.5) 5.6 (5.1)
Alzheimer disease 32:22 76.1 (7.0) 22.2 (3.7) 16.0 (7.1)

(n = 54)

∗All pairwise comparisons P < 0.05; ns = no significant difference among
groups.

sites across the United States and Canada. The initial goal of
ADNI was to recruit 800 adults, aged 55–90, to participate
in the research—approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI
to be followed for 3 years, and 200 people with early AD
to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

Participants in ADNI are assigned to a diagnostic category
(cognitively normal control or NC, MCI, or AD) based on
clinical evaluation. NC participants must have mini-mental
state exam (MMSE) score >23, Clinical Dementia Rating
(CDR) score of 0, and no exclusions or conflicting diagnoses
(depression, MCI, or dementia). MCI participants must have
MMSE >23, CDR = 0.5, subjective memory complaints, ab-
sence of significant impairment in nonmemory cognition or
activities of daily living, and objective memory loss based
on education-adjusted scores on the Wechsler Memory Scale
Logical Memory II. AD participants must have MMSE score
>19 and <27, CDR score of 0.5 or 1.0, and must meet
NINCDS/ADRDA criteria for probable AD (McKhann et al.
1984). Of note, these criteria do not make use of MRI or PET
brain imaging. The data collection procedures were approved
by the institutional review board at each of the ADNI sites
and all participants provided informed consent.

Anonymized data from 254 ADNI participants were ac-
quired for this study and were classified as follows: NC
(n = 79), MCI (n = 121), AD (n = 59) (see Table 1). Using
subsequent determinations of conversion to AD, members
of the MCI group were divided into a group of participants
who converted during 2 years of follow-up (MCI-c, n = 39)
and a group of participants who were followed for at least 2
years without converting (MCI-n, n = 70). The remaining
12 PET scans were excluded from further analysis due to lack
of sufficient follow-up data. The final dataset comprised 242
PET scans.

ADNI PET scans

Preprocessed baseline PET scans acquired with GE (Fair-
field, CT), Siemens (Munich, Germany), and Philips (Ams-
terdam, The Netherlands) PET scanners were downloaded in
ANALYZE format from the ADNI website. Preprocessing
consisted of the following steps. First, six 5-min frames were
identified and the last five of these frames were coregistered
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with the first, reducing effects of movement during the 30-
min acquisition. These six coregistered frames were then av-
eraged together and reoriented into a standard 160 × 160 ×
96 voxel image grid with 1.5-mm cubic voxels. This image
grid was oriented such that the anterior–posterior axis of the
subject was parallel to a line connecting the anterior and pos-
terior commissures (the AC–PC line). Scans were then inten-
sity normalized and smoothed with a scanner-specific filter
function that was determined from phantom scans acquired
during the certification process. This smoothing step cor-
rected for differences between PET scanners and produced
images with a uniform isotropic resolution of 8-mm full
width at half maximum (FWHM).

The downloaded scans were then spatially normalized to
the SPM5 PET template (http://www.fil.ion.ucl.ac.uk/spm/).
An average PET scan was generated from all of the spatially
normalized scans with Automated Image Registration (AIR,
Woods et al. 1998). All further PET scan processing and
analysis was performed using custom software written in
MATLAB R© (R2007b, The MathWorks, Natick, MA). The av-
erage PET scan was used to create a mask for extraction of
brain voxels. The mask was defined as all voxels with in-
tensity >25,000. A single command in MATLAB R© returns a
vector containing all points at which a given comparison (e.g.,
>25,000) is true, ordered as if all the columns in the volume
were “unwound” into a single column. This vector of points
can then be used as a list of indices for a new volume, thereby
selecting only the points in the new volume that correspond
to the points in the mask. All mathematical procedures were
then undertaken on vectors created by selecting only the vox-
els within the mask. Statistical analyses were performed in
R (R Development Core Team, 2008), using core routines
and the lme4 module for linear mixed models. Significance
testing for linear mixed models made use of Markov Chain
Monte Carlo permutation analysis included in the languageR
module.

Projection and residual vectors

In order to create a “query” vector for the identification of
similarities between any given PET scan and those of pa-
tients with AD or MCI, it was necessary to isolate those
aspects of AD PET scans that differ from normal PET scans.
This distinction has traditionally been made using statisti-
cal comparisons of voxels or regions of interest (ROIs). One
disadvantage of the traditional approach is that it is often
necessary to perform numerous comparisons, which must
be statistically corrected to avoid or minimize Type I errors.
The number of comparisons can be reduced by focusing the
analysis on a small set of ROIs, but this approach assumes
that the areas of abnormal brain tissue will correspond to
the (usually) anatomically defined ROIs and that areas out-
side the selected ROIs are not useful for discerning among

the groups. The approach described here was to locate a vec-
tor that would have low or zero cosine similarity with PET
scans of members of one diagnostic group, while maintain-
ing a relatively higher cosine similarity with the PET scans of
members of another group.

The following is a description of the application of the
method for discerning between subjects with AD and cogni-
tively normal controls. Analogous methods were used for the
MCI-c versus MCI-n comparisons. First, a set of AD PET scan
vectors were arranged in a matrix. The projections of a group
of NC scan vectors onto the column space of this matrix were
then computed. As mentioned above, this process is mathe-
matically identical to finding the least squares approximation
of the solution to a system of linear equations. Each of these
projections was then subtracted from the corresponding NC
scan vector, yielding a set of residual vectors—one for each
NC subject (Fig. 1). These residual vectors were averaged
to generate a single “prototypical” residual vector. Because
the average residual was a linear combination of vectors or-
thogonal to the AD space, the average was also certain to
be orthogonal to this space. As an orthogonal vector, it had
zero cosine similarity with all of the AD scan vectors. This
approach is similar to using subtraction of projections to ac-
complish a logical NOT for search engines (Widdows and
Peters 2003; Widdows 2004).

Measurements of similarity on the entire dataset were gen-
erated using the following method. The scans were first “strat-
ified” by assigning each one to one of 10 different groups, with
each group containing comparable proportions of each type
of scan (i.e., because the entire sample comprised 33% NC
scans, 22% AD, 16% MCI-c, 29% MCI-n, each of the 10
groups was made to approximate these proportions). Resid-
ual vectors were then computed using nine of the 10 groups
and averaged together. For example, the NC scan vectors from
these nine groups were projected onto the space defined by
the AD scan vectors and residual vectors were obtained. The
average of these residual vectors was then compared with co-
sine similarity to all scans in the group that was originally
left out, regardless of type (i.e., diagnostic group). Thus, each
scan in the left-out group received a cosine score reflecting
its similarity to the residual vector obtained when AD scans
were regressed out of NC scans. The process was repeated 10
times, each time leaving out one group of scans and using
the remaining nine groups to create a residual vector. This
method is known as stratified 10-fold cross validation.

Two sets of residual vectors were derived in this man-
ner. The first set was derived using PET scans of cognitively
normal controls and AD patients. This set consisted of two
types of vectors: one created by projecting NC PET scan vec-
tors onto a space defined by AD PET scans and one created
by performing the opposite projection. The second set was
derived by projecting MCI-n scan vectors onto a space de-
fined by MCI-c PET scan vectors and then performing the
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opposite projection. Thus, four cosine-similarity scores were
computed for each PET scan using a residual vector of each
type (i.e., two from the AD/NC projections and two from the
MCI-n/MCI-c projections).

Statistical analysis of measurements

Cosine similarity scores were entered individually into lo-
gistic regression models with category membership (AD vs.
NC or MCI-c vs. MCI-n) as the dependent variable. Age
and sex were considered as potential covariates but were re-
moved if they failed to improve the overall fit of the model.
Scores on the MMSE and Functional Activities Questionnaire
(FAQ) and interactions of these scores with cosine similar-
ity scores were considered as covariates only for the MCI-c
versus MCI-n logistic regression models. MMSE and FAQ
scores were not included in the AD versus NC logistic regres-
sion model due to concern of circularity, because these diag-
nostic classifications were assigned when subjects originally
entered the study, and these scores might have influenced the
classification itself. Thus, the maximal possible logistic equa-
tions were represented by Equation (1), where cosim repre-
sents the appropriate cosine similarity scores and the terms
in parentheses were considered only for the MCI-c/MCI-n
contrast.

logit(p) = β0 + β1 × cosim + β2 × age

+β3 × sex + (β4 × MMSE + β5 × FAQ) (1)

Scores on the FAQ were obtained for each subject at base-
line and at each follow-up visit. A linear mixed model was
fitted using FAQ follow-up scores as the dependent variable,
beginning with a null model and refining it by the addition of
subjects as a random effect. Fixed effects were then added and
those that improved the model’s fit were left in. Candidate
fixed effects included diagnostic group (NC, AD, MCI), base-
line FAQ score, cosine similarity scores and their interactions,
baseline MMSE score, and the interactions of each of these
variables with time to follow-up (measured in months).

Training classifiers

The quality of the logistic regression models as classifiers was
then evaluated by the following method. A logistic regression
model (with the same variables that were chosen from the
statistical analysis) was computed using all but one subject.
Scores from the left-out subject were then entered into the
logistic model to compute an output between zero and one.
This output was thresholded at 11 different levels on the in-
terval between zero and one (with increments of 0.1) to derive
predictions of the subject’s diagnostic or conversion status.
The process was repeated for each subject, and prediction
data were accumulated across all subjects. Sensitivity, speci-
ficity, and predictive value scores were calculated from the
accumulated prediction data at each threshold level. Receiver

operating characteristic (ROC) curves were constructed us-
ing the 11 different thresholds. The quality of the classifier at
each threshold was determined by comparing it to a random
classifier using McNemar’s chi-square and the best classifier
was selected.

Results

Statistical analysis

NC versus AD

Residual vectors derived from AD and NC PET scans were
used to derive cosine similarity scores for each subject. Lo-
gistic regression was used to determine the contribution of
these scores to variance in odds of having AD. MCI subjects
were not included in this model. Residual vectors derived by
projecting AD PET scans onto NC PET scans led to the best
classifier. A grand average of these residual vectors was trans-
formed back into three-dimensional space and displayed as
Fig. 2. This grand average shows that the areas of lowest resid-
ual are located in the lateral parietal and temporal regions and
medial parietal/posterior cingulate regions. These areas ap-
pear grossly to correspond to the “default mode network”
(Raichle et al. 2001; Greicius et al. 2004, 2008). Many of the
clusters of voxels with lower residual do arise in regions con-
sidered to be within the default mode network, as can be seen
in Table 2. However, some regions of high absolute residual
do not clearly fit into the default mode network (e.g., the left
mesial inferior occipital cluster). In addition, none of these
clusters show high absolute residual in the mesial frontal re-
gions, which figure prominently in the default mode network.
Cosine similarity scores computed from these vectors made
a significant contribution to the model (b = 731.9, standard
error [SE] = 122.6, z = 5.97, P < 0.00001). The positive co-
efficient and z-score show that higher scores were associated
with higher odds of having AD. Neither age nor sex improved
the fit of the model and both were excluded.

MCI-n versus MCI-c

Residual vectors derived from MCI-n PET scans and MCI-c
PET scans were used to derive cosine similarity scores for each
subject. Logistic regression was used to determine the contri-
bution of each of these scores to variance in odds of converting
to dementia during a 2-year follow-up period. Only MCI sub-
jects were included in this model. Residual vectors derived by
projecting MCI-n PET scans onto a space defined by MCI-c
PET scans resulted in cosine similarity scores with slightly
better predictive power and only data related to these scores
are presented here. A grand average of these residual vectors
was transformed into three-dimensional space and displayed
as Fig. 3. Note that these residual vectors reflect greater “nor-
mality” while those depicted in Fig. 2 reflect greater similarity
to AD. Thus, in Fig. 3 it is the highest residual voxels that are
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Figure 2. Grand average residual vector
created by (1) projecting each AD PET scan
onto a space defined by 90% of the NC PET
scans, (2) subtracting the projection from
the original AD PET scan to obtain a residual
vector, and (3) averaging together all of the
residuals. Voxels with the lowest residual
values are located in the lateral temporal
lobes, lateral parietal lobes, precuneus, and
posterior cingulate, corresponding to the
default mode network.

Table 2. Locations of peaks in top ten areas of high residual for each contrast.

Cluster size Peak
(voxels) residual Coordinates of peak Anatomical description

AD versus EC 951 −3027 −62 −33 −25 Left posterior inferior temporal
631 −2919 6 −70 44 Right precuneus
251 −2813 −5 −102 −15 Left inferior mesial occipital

1076 −2609 −31 −51 43 Left parietal centrum semiovale
877 −2572 14 −51 34 Right posterior cingulate
699 −2567 41 −54 46 Right superior parietal
418 −2415 63 −29 −22 Right inferior temporal
126 −2159 11 −19 13 Right thalamus
51 −2092 −25 22 39 Left dorsolateral frontal

109 −2067 23 71 28 Right frontal operculum

MCI-c versus MCI-n 195 2392 −16 1 72 High left dorsolateral frontal
202 2064 −40 −62 16 Left parietal
197 2009 −10 −70 68 High left parietal
212 2002 26 −46 52 Right parietal centrum semiovale
425 1756 −14 22 −28 Left orbitofrontal
110 1668 16 −78 62 High right parietal
48 1641 30 −16 64 Right posterior frontal

120 1614 72 −18 −14 Right middle temporal
112 1612 10 −78 −14 Mesial inferior occipital
195 1609 28 −80 24 Right parietal

located in regions that appear grossly to correspond to the
default mode network. Once again, however, the top 10 clus-
ters of high residual show only a loose correspondence with
the default mode network (Table 2). The cosine similarity
score made a significant contribution to the model (b =
−400.1, SE = 115.8, z = −3.46, P < 0.001). The negative co-
efficient and z-score show that higher scores were associated

with lower risk of conversion to dementia. Covariates of age
and sex did not improve the fit of the model.

This model was enhanced somewhat by the addition of
baseline FAQ score and the interaction of FAQ score with the
cosine similarity score. Cosine similarity continued to make a
significant contribution (b = −581.8, SE = 167.5, z = −3.48,
P <0.001). There was no main effect of FAQ score (b=−0.02,
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Figure 3. Grand average residual vector
created by the same general method as in
Fig. 2, but projecting MCI-n PET scans onto
a space defined by MCI-c PET scans. Voxels
with the highest residual values are
topographically similar to those with the low
residual values in Fig. 2.

SE = 0.07, z = −0.32, P > 0.05), but the interaction of FAQ
and cosine similarity was significant (b = 40.2, SE = 19.7,
z = 2.04, P < 0.05).

Prediction of functional decline

All but three of the 242 subjects were entered into a linear
mixed model with at least one follow-up data entry per sub-
ject (676 total observations) and the dependent variable of
FAQ score at follow-up. The three excluded subjects did not
have follow-up FAQ scores for the analysis. A random inter-
cept for subject was added to an initial null model and was
shown to improve the fit. Fixed effects were then added to
this model. Diagnostic group and its interaction with time
failed to improve the fit of the model and were not included.
The strongest predictor of FAQ score at follow-up was FAQ
score at baseline (b = 0.875, SE 0.03, t = 28.9, P = 0.0001).
The positive t-statistic reflected a tendency for FAQ scores
to trend upward with time in this population (Higher FAQ
scores reflect worsening functional status). However, the in-
teraction of FAQ score with time did not improve the model
and was removed. There was a main effect of time (b = 0.074,
SE 0.015, t = 4.80, P = 0.0002). There was no main effect of
baseline MMSE score (b =−0.05, SE 0.1, t =−0.5, P > 0.05),
but the MMSE × time interaction was negatively associated
with FAQ score at follow-up (b = −0.02, SE 0.005, t = −4.68,
P = 0.0002), suggesting that having a higher MMSE score at

baseline was protective against functional decline. There was
a main effect of cosine similarity score derived from the MCI
residual vector (b = −251.2, SE 137.0, t = −1.83, P = 0.048),
but no two-way interaction of this variable with time (b =
−1.33, SE 6.90, t = −0.19, P > 0.05). These residual vectors
were derived by projecting MCI-n PET scans onto MCI-c
PET scans and would be expected to generate higher cosine
similarity scores with more “normal” PET scans. The neg-
ative coefficient and t-score suggest that higher scores were
associated with a lower risk of functional decline. There was
no main effect of cosine similarity score derived from the AD
residual vector (b = −38.7, SE 94.3, t = −0.41, P > 0.05), but
this score did interact with time (b = 18.2, SE 5.2, t = 3.51,
P = 0.0012). These residual vectors were derived by project-
ing AD PET scans onto NC PET scans and would be expected
to generate higher cosine similarity scores with more abnor-
mal PET scans. Therefore, the positive coefficient and t-score
for the interaction with time suggests that higher scores are
associated with greater risk of functional decline with the on-
going passage of time. The two cosine similarity scores did not
interact with one another (b = 20040, SE 19420, t = 1.03,
P > 0.05), but there was a three-way interaction between
these scores and time (b = −2783.0, SE 1133.0, t =
−2.46, P < 0.05). This finding suggests that subjects with
higher AD/NC cosine similarity scores and lower MCI co-
sine similarity scores exhibited greater increases in FAQ over
time.
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Figure 4. ROC curves showing performance of a simple logistic re-
gression model for classification of subjects into elderly control and AD
groups. The independent variable was a cosine similarity score computed
from vectors corresponding to each subject’s PET scan and residual vec-
tors like the one depicted in Fig. 2.

Table 3. Performance of logistic regression classifiers (“leave-one-out”
cross-validation).

MCI-c MCI-c versus
AD versus versus MCI-n

Comparison controls∗∗ MCI-n∗ (including FAQ)∗

Sensitivity 94.4 84.6 89.7
Specificity 84.8 55.7 62.9
Positive predictive value 81.0 51.6 57.4
Negative predictive value 95.7 86.7 91.7
Area under ROC curve 93.6 72.8 76.5

∗McNemar’s chi-square test versus random classifier, P < 0.05; ∗∗P <

0.0001

Classifier accuracy

NC versus AD

The logistic regression model for discriminating between NC
and AD subjects was evaluated as a classifier, using leave-one-
out cross-validation. A separate model was computed with
each subject left out and the ability of the model to predict the
status of the subject was evaluated at 11 thresholds. Maximal
sensitivity and specificity were 94.4% and 84.8%, respectively.
The area under the ROC curve was 93.6% (see Fig. 4 and
Table 3). The classifier performed significantly better than a
random classifier (McNemar χ2 = 31.3, P < 0.00001).

MCI-n versus MCI-c

The logistic regression model predicting conversion status
using only the cosine similarity score was evaluated using

leave-one-out cross-validation. A separate model was com-
puted with each subject left out and the ability of the model to
predict the status of the subject was evaluated at 11 thresholds.
Maximal sensitivity and specificity were 84.6% and 55.7%,
respectively. The area under the ROC curve was 72.8% (see
Fig. 5 and Table 3). The classifier performed significantly
better than a random classifier (McNemar χ2 = 5.34, P <

0.05).
A second classifier was evaluated, using the logistic regres-

sion model that included FAQ score and the interaction of this
score with cosine similarity, again using leave-one-out cross-
validation. This classifier achieved a maximal sensitivity and
specificity of 89.7% and 62.9%, respectively. The area under
the ROC curve was 76.5% (Fig. 5B). This classifier performed
significantly better than a random classifier (McNemar χ2 =
6.54, P < 0.05).

Discussion

The findings presented here constitute an initial attempt to
apply fundamental concepts from IR to the AD problem set.
Techniques borrowed from IR include (1) arrangement of
PET scans in a vector space, with one dimension for each
PET scan voxel, (2) refinement of queries by subtraction of
orthogonal vectors (a technique used to implement a logi-
cal NOT operation for search engines—see Widdows 2004;
Widdows and Peters 2003), and (3) scoring of PET scan “rel-
evance” to a diagnostic query by means of cosine similarity
between vectors. Cosine similarity scores derived in this man-
ner are useful for constructing classifiers that differentiate NC
subjects from AD subjects, as well as MCI patients who are
destined to convert to AD within 2 years from those who
are not. Furthermore, both types of cosine similarity scores
derived here make independent contributions to variance
in follow-up FAQ scores that supersede the contribution of
diagnostic group, suggesting that this method may be use-
ful for making more precise prognostications regarding the
functional status of individuals. The validity of the method
is given further support by the fact that the residual vectors
bear a topographic resemblance to maps of the default mode
network.

The method is computationally simple, at least relative
to many techniques commonly run on modern computers.
Ordinary least squares regression (the first step for comput-
ing the residual vectors) is a common approach to finding
approximate solutions to many problems in statistics and
engineering. Accordingly, algorithms for regression are fast
and implementations are convenient. In MATLAB R©, the re-
gression step takes only one line of code and usually runs
in less than 1 sec, even with large matrices. Classifiers built
from structural MRI data that discern between controls and
AD patients have similar accuracy to the ones presented here,
but are much more computationally intensive, sometimes
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requiring more than 1 week to build the classifier and hours
to test it (Cuingnet et al. 2010).

The method presented here compares favorably with other
methods. Classifiers built from structural MRI data alone per-
form well when differentiating between patients with AD and
subjects with normal cognition (up to 81% sensitivity with
95% specificity for voxel-based methods) (Cuingnet et al.
2010). Some studies have reported comparable accuracy with
MRI methods for predicting conversion from MCI to AD,
but sample sizes have been small and lack of cross-validation
may mean that the results will not generalize to other sam-
ples (Convit et al. 2000). An ambitious study that compared
the performance of 10 methods for building classifiers from
MRI data, using cross-validation and a large sample from the
ADNI database, failed to identify any method that performs
better than a random classifier for discerning between MCI
converters and nonconverters (Cuingnet et al. 2010). Clas-
sifiers built from FDG-PET data might perform somewhat
better. For example, in a study evaluating biomarkers from
the ADNI study for predicting worsening among MCI pa-
tients, glucose metabolism of the entorhinal or retrosplenial
cortices were significantly correlated with change in MMSE
over a 2-year period. Of the MRI measures, only retrosplenial
gray matter reductions were useful for predicting change, but
did so for both MMSE and CDR sum of boxes score (Wal-
hovd et al. 2010). As a clinical tool, PET scans are useful for
predicting progressive dementia, and may have sensitivity of
93% and specificity up to 76% when interpreted by an expert
nuclear medicine physician (Silverman et al. 2001). However,

it might be difficult to replicate these results in the absence
of such an expert reader.

This work has several limitations. First, classifiers could
incorporate other types of data, such as genetic testing or
neuropsychological measures. Other investigators have eval-
uated a combination of PET and neuropsychological data
for predicting changes in cognition and daily functioning,
with the results suggesting that FDG-PET makes an indepen-
dent contribution to such a model and might be superior
to cognitive testing alone (Landau et al. 2010, 2011). One
of the classifiers presented here was enhanced by the addi-
tion of FAQ score, a brief informant-based measure of daily
functioning. It remains to be seen, however, whether co-
sine similarity scores as derived here can make an additive
contribution to cognitive testing for diagnosing AD or pre-
dicting cognitive and functional decline. Future work will
look to combinations of imaging measures, apolipoprotein
E genotyping, and neuropsychological test scores for per-
forming prognostications. Second, although classifiers us-
ing logistic regression have the advantage of being familiar
to most clinicians, advances in machine learning (e.g., sup-
port vector machines) could add substantially to the qual-
ity of diagnoses and prognostications generated using the
methods outlined here. Third, these data were acquired on a
highly specific subset of patients with AD and nondementia
memory impairment. Classifiers trained with these methods
might not perform as well on a more heterogeneous patient
population, such as the general population of patients pre-
senting to a given memory disorders clinic, because other

Figure 5. ROC curves showing performance of logistic regression models for separation of MCI subjects into a group that converted to AD within 2
years and a group that went 2 years without converting. (A) ROC curve using only cosine similarity scores for classification. These scores were derived
by computing cosine similarity between each subject’s PET scan and a residual vector like the one depicted in Fig. 3. (B) ROC curve using both cosine
similarity scores, FAQ score, and their interaction. Addition of FAQ substantially improves the classifier.
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disease entities (vascular dementia, dementia with Lewy bod-
ies) and other forms of nondementia cognitive impairment
(executive dysfunction, progressive aphasia) may render the
cosine similarity scores derived by this method less relevant.
On the other hand, the method introduced here is meant
to have general utility and could theoretically be adapted to
apply to any of these problems.

IR is a vast and rapidly developing field with real and
highly visible advances. Elementary applications of IR-like
techniques like the one presented here may seed further in-
terest in interdisciplinary work between the fields of IR and
clinical neuroscience.
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