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a b s t r a c t 

SimulAD is a computational disease progression model (DPM) originally developed on the ADNI database 

to simulate the evolution of clinical and imaging markers characteristic of AD, and to quantify the dis- 

ease severity (DS) of a subject. In this work, we assessed the validity of this estimated DS, as well as 

the generalization of the DPM., by applying SimulAD on a new cohort from the Geneva Memory Center 

(GMC). The differences between the estimated DS of healthy, mild cognitive impairment and AD demen- 

tia groups were statistically significant (p-values < 0.05; d ≥ 0.8). DS correlated with MMSE ( ρ = -0.55), 

hippocampal atrophy ( ρ = -0.62), glucose hypometabolism ( ρ = -0.67), amyloid burden ( ρ = 0.31) and 

tau deposition ( ρ = 0.62) (p-values < 0.01). Based on the dynamics estimated on the ADNI cohort, we 

simulated a DPM for the subjects of the GMC cohort. The difference between the temporal evolution of 

similar biomarkers simulated on the ADNI and GMC cohorts remained below 10%. This study illustrates 

the robustness and good generalization of SimulAD, highlighting its potential for clinical and pharmaceu- 

tical studies. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder whose

evolution has been hypothesized to follow a cascade of events

Jack et al. (2013) . Deposition of the beta-amyloid protein in the

brain cortex. is believed to initiate this cascade, and to subse-

quently cause the aggregation of hyperphosphorylated tau protein

in neurofibrillary tangles. This is followed by a process of neurode-

generation (i.e., glucose hypometabolism and gray matter atrophy)

ultimately leading to dementia. An inherent difficulty in diagnosing

AD is that patients go through a long asymptomatic phase span-

ning approximately 10 to 20 years ( Sperling et al. 2011 ) before

showing clinical symptoms. To provide a biological assessment of

the disease, AD has been recently defined as a pathology charac-

terized by three main biomarkers categories, namely: amyloid, tau

and neurodegeneration ( Jack et al. 2018 ). These three biomarkers

can be measured thanks to imaging techniques, such as Magnetic
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Resonance Imaging (MRI) and Positron Emission Tomography (PET),

or in the case of amyloid and tau, also by lumbar puncture and

blood collection. Monitoring these biomarkers is paramount in or-

der to track the disease progression, and to potentially facilitate

prevention or assessment of drug efficacy 

In the past years, the proliferation of studies collecting large

amounts of biomarkers, combined with the growth of machine

learning, fostered the development of computational models for

automated AD diagnosis. For instance, many studies focused on

the development of data-driven approaches for automatic assess-

ment of clinical diagnosis ( Arbabshirani et al. 2017; Davatzikos

et al. 2009; Falahati et al. 2014 ). Based on the sole analysis of

imaging-derived data, these methods showed that it is possible to

automatically identify healthy controls, subjects with mild cogni-

tive impairment, and patients suffering from AD dementia, some

of them reporting results comparable to diagnosis rates obtained

by expert physicians ( Klöppel et al. 2008 ). However, most of these

approaches have been exclusively developed to solve a predic-

tive task, and generally don’t allow to understand the mecha-

nisms relating the different biomarkers throughout AD evolution.

As these mechanisms still remain partially unknown, different

https://doi.org/10.1016/j.neurobiolaging.2021.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
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methods known as disease progression models were therefore in-

troduced in order to estimate, in a data-driven fashion, the long-

term progression of biomarkers ( Jedynak et al. 2012 ). Due to the

lack of an absolute time-line describing AD evolution, these mod-

els usually assume that the disease is characterized by monotonic

changes, such that the modelled biomarkers steadily evolve from

normal to pathological values. This assumption allows to recon-

struct a time-line on which we can track the disease progres-

sion ( Lorenzi et al. 2017 ). Moreover, these methods can be ap-

plied to a variety of data types, such as cortical and subcortical

shapes ( Marinescu et al. 2019 ) or volumetric images ( Khanal et al.

2017; 2016 ), thus offering a fine-grained spatial description of the

changes affecting the brain. These models also allow to automati-

cally assess the individual disease severity by comparing the clini-

cal and imaging measurements of a given subject to the estimated

disease progression. This latter capability of disease progression

models is usually referred as disease staging. Ultimately, these ap-

proaches could potentially be used for identifying individuals at

risk of cognitive decline, or for assessing drug efficacy in clinical

trials. 

Since these statistical models have been mostly developed on

publicly available research datasets, such as the one provided by

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), their gen-

eralization to external cohorts from memory clinics still requires

additional testing and validation ( Mendelson et al. 2017 ). As clini-

cal cohorts may fundamentally differ from the ADNI one, whether

it be in terms of data acquisition or study population, automated

diagnosis pipelines usually show a prominent decrease in perfor-

mances. Regarding disease progression models, it is conceivable

that biomarkers’ trajectories estimated solely via the analysis of a

single cohort may not be fully representative of the natural dis-

ease course. This aspect would question the generalization of the

progression model when tested on subjects from independent clin-

ical cohorts. It is therefore essential to assess the generalization

of this kind of models on independent datasets, with respect to

their specific biases which can encompass a broad range of differ-

ences between cohorts such as data acquisition, missing data or

data heterogeneity. These differences need to be addressed to fi-

nally deploy disease progression models in a practical clinical set-

ting ( Castro et al. 2020 ). 

Recently, the event-based-model (EBM) ( Fonteijn et al. 2012 )

and the Discriminative EBM (DEBM) ( Venkatraghavan et al. 2019 )

underwent an extensive evaluation effort. These approaches model

AD progression as a sequence of events representing the transi-

tion of a set of biomarkers from a normal to an abnormal state.

Both EBM and DEBM have been applied on subjects from in-

dependent cohorts, providing accurate patients staging ( Archetti

et al. 2019 ). However, the kind of progression model estimated

by these methods presents important limitations. First, both ap-

proaches are based on the simplistic assumption describing the

pathological progression as a discrete sequence of biomarkers tran-

sitions from normal to abnormal states, which doesn’t reflect the

continuous nature of the changes affecting the brain during the

disease. Second, they allow the analysis of summary measures

only, such as regional brain uptake of grey matter density values,

and thus don’t enable the fine-grained quantification of the spa-

tial patterns of changes associated with the disease. Third, while

these two models inform us about the sequence of events char-

acterizing AD, they don’t provide insights about the dynamical in-

terplay between biomarkers. Investigating such interactions would

allow a deeper understanding of how the pathological processes

at stake during the disease affect each other. Fourth, the EBM and

the DEBM don’t allow to simulate hypothetical scenarios of disease

progression. Yet, such capability could be used to assess the effect

of drug intervention on the disease evolution in silico , which could

help planning and monitoring clinical trials. 
To address these limitations, more refined approaches to dis-

ease progression modeling such as the Subtype and Stage Inference

(SuStaIn) ( Young et al. 2018 ) method have been proposed. This

method reformulates the EBM and DEBM in order to model the

disease progression over a piece-wise linear timeline, thus tackling

the main limitation of the EBM and the DEBM which described

the pathological progression as a sequence of discrete events. In

addition, we note that SuStaIn allows to identify subtypes of dis-

ease progression, thus addressing the problem of AD heterogene-

ity which is one of the major challenges for the development of

personalized disease progression models and their application in

clinical practice for staging patients. Besides SuStaIn, many oth-

ers disease progression models have been proposed to enable the

fine-grained description of the pathological evolution in space and

time ( Bilgel et al. 2016; Koval et al. 2018; Marinescu et al. 2019 ).

Within this context, SimulAD ( Abi Nader et al. 2021 ) is a recent

method allowing the analysis of clinical scores and multivariate

imaging data extracted from MRI and PET scans to estimate a con-

tinuous spatio-temporal model of disease progression. Compared

to the EBM, DEBM and SuStaIn, this approach offers a higher res-

olution for the imaging biomarkers, allowing to track the evolu-

tion of regional changes affecting the brain along a continuous

temporal scale describing the disease course over 30 years. The

trajectories estimated for clinical and imaging markers can sub-

sequently be used as a reference to assess the individual disease

severity, by locating subjects along the temporal scale describing

the disease evolution. Moreover, SimulAD estimates the dynamical

relationships between key biomarkers at stake during AD progres-

sion, namely: amyloid deposition, glucose hypometabolism, cere-

bral atrophy, cognitive and behavioural decline. Based on these re-

lationships, the model can be applied to simulate the personalized

evolution of any patient or group of patients only from the knowl-

edge of their baseline clinical and imaging measurements. Finally,

SimulAD enables to assess the impact of therapeutic intervention,

such as anti-amyloid treatment, on cognitive outcomes depending

on the intervention time ( Abi Nader et al. 2021 ). 

While SimulAD was previously trained on the ADNI cohort, its

generalization to independent datasets has not been evaluated. As

it generally holds for statistical and machine learning models, one

of the main difficulty for the generalization of SimulAD to inde-

pendent cohorts lies in the challenge of accounting for potential

missing data, heterogeneity due to different acquisition protocols

or even data incompatibility between cohorts. Yet, evaluating the

generalization of SimulAD to independent cohorts is essential to

demonstrate the reliability of the dynamics allowing to personal-

ize the models of disease progression, as well as the validity of the

approach for providing accurate disease staging. 

Within this context, we assess in this study the generaliza-

tion capabilities of SimulAD. To this end, we test the robustness

and reliability of this approach when applied to an independent

dataset from a memory clinic, namely the Geneva Memory Cen-

ter (GMC). This cohort includes patients with cognitive complaints,

who underwent a baseline clinical and neuropsychological evalu-

ation, MRI, amyloid-PET, (18)F-fluorodeoxyglucose-PET (FDG-) and

(18)F-flortaucipir-PET (tau-) scans. Our evaluation procedure relies

on three key aspects: (i) Development of a pre-processing pipeline

allowing to apply SimulAD on the GMC cohort; (ii) Assessment of

SimulAD validity for individual disease staging. (iii) Evaluation of

the reliability of the progression of imaging and clinical markers

estimated by SimulAD. 

2. Material and methods 

In this work subjects were divided in five clinical groups: cog-

nitively healthy (NL stable), individuals diagnosed with mild cog-

nitive impairment (MCI stable), patient suffering from Alzheimer’s
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Table 1 

Baseline characteristics of the ADNI and GMC cohorts. Average values, standard deviation in parenthesis. Key: ADNI: Alzheimer’s Disease Neu- 

roimaging Initiative; GMC: Geneva Memory Center; NL: cognitively healthy; MCI: mild cognitive impairment; AD: Alzheimer’s dementia; FDG: (18)F- 

fluorodeoxyglucose Positron Emission Tomography (PET) imaging; SUVR: Standardized Uptake Value Ratio; MMSE: Mini Mental State Examination; Tau: 

(18)F-flortaucipir PET imaging. Converters are NL patients progressing to MCI or AD dementia, or MCI individuals progressing to AD dementia. Hip- 

pocampal volume: extracted with Freesurfer. Amyloid burden: voxel-number weighted average of the amyloid uptake in the frontal, anterior/posterior 

cingulate, lateral parietal, and lateral temporal regions normalized to the cerebellum. Early amyloid: voxel-number weighted average of the uptake ex- 

tracted from the early-phase (6 min) of amyloid-PET in the frontal, anterior/posterior cingulate, lateral parietal, and lateral temporal regions normalized 

to the cerebellum. Glucose metabolism: voxel-number weighted average of the FDG uptake in the angular, temporal, and posterior cingulate cortex 

normalized to the cerebellum. Tau burden: voxel-number weighted average of the tau uptake in the entorhinal, amygdala, parahippocampal, fusiform, 

inferior temporal, and middle temporal regions normalized to the cerebellum. Amyloid-corrected and FDG-corrected indicate the values obtained after 

performing the data adjustment presented in Section 2.6 . Missing data for 36 a and 43 b subjects. 

Group NL stable MCI stable MCI converters AD dementia 

Cohort GMC ADNI GMC ADNI GMC ADNI GMC ADNI 

N 23 71 28 131 25 105 17 102 

Female (%) 61 62 61 37 65 47 53 45 

Age (years) 69.1 (7.5) 73.7(6.0) 74.3 (6.5) 72.0 (7.6) 73.8 (4.6) 72.6 (6.7) 70.4 (11.1) 73.6 (8.2) 

Education (years) 17.3 (3.9) 16.3 (2.5) 14.0 (3.1) 16.3 (2.7) 12.5 (4.7) 16.2 (2.6) 11.6 (3.8) 15.6 (2.5) 

MMSE 28.5 (1.0) 29.2 (1.1) 25.2 (3.1) 28.1 (1.8) 23.7 (4.3) 26.4 (2.7) 18.2 (6.5) 23.0 (2.1) 

Hippocampus (mm 

3 ) 4271 (435) 4047 (455) 3621 (534) 3907 (541) 3634 (448) 3517 (515) 3409 (436) 3401 (472) 

Amyloid (SUVR) 0.67 (0.13) 0.74 (0.17) 0.96 (0.17) 0.79 (0.18) 0.93 (0.14) 0.92 (0.17) 0.89 (0.12) 0.92 (0.16) 

Amyloid-corrected (SUVR) 0.70 (0.12) / 0.93 (0.13) / 0.91 (0.13) / 0.89 (0.11) / 

Early amyloid (SUVR) 0.53 (0.03) / 0.50 (0.03) / 0.47 (0.02) / 0.45 (0.03) / 

FDG a (SUVR) 0.61 (0.05) 0.62 (0.04) 0.52 (0.04) 0.61 (0.06) 0.52 (0.04) 0.56 (0.06) 0.49 (0.06) 0.52 (0.05) 

FDG-corrected SUVR 0.57 (0.03) / 0.54 (0.04) / 0.53 (0.04) / 0.50 (0.05) / 

Tau b (SUVR) 0.60 (0.06) / 0.81 (0.20) / 0.94 (0.27) / 1.21 (0.34) / 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disease dementia (AD dementia), subjects progressing from NL to

MCI or AD dementia (NL converters), and finally subjects progress-

ing from MCI to AD dementia (MCI converters). 

2.1. Experimental cohorts 

The ADNI and GMC cohorts respectively included 442 and 93

subjects. In Table 1 , we provide socio-demographic information

across clinical groups for these datasets. The clinical spectrum of

the cohorts spans a broad range of cognitive severity, from healthy

to moderate and severe dementia. Conversion to AD dementia was

determined using the last available follow-up information. In both

the ADNI and GMC cohorts, MCI converters are subjects who were

diagnosed as MCI at baseline and subsequently progressed to AD.

In the case of the ADNI database, diagnosis was established using

the DX column from the ADNIMERGE file ( https://adni.bitbucket.io/

index.html ), which reflects the standard ADNI clinical assessment

based on Wechsler Memory Scale, Mini-Mental State Examination,

and Clinical Dementia Rating. Concerning the subjects from the

GMC cohort, diagnosis was established after that the patients un-

derwent a follow-up clinical and neuro-psychological assessment

under the supervision of a psychologist. MCI converters from the

ADNI database had a mean follow-up of 9 years with a standard

deviation of 1.5 years, while the ones from the GMC cohort were

followed in average 2.4 years with a standard deviation of 1.7. All

the participants were amyloid positive at baseline. In the case of

the ADNI cohort, “amyloid positive” subjects are patients whose

amyloid level in the CSF was below the nominal cutoff of 192

pg/mL ( Gamberger et al. 2017 ) either at baseline or during any

follow-up visit. Concerning the GMC cohort, “amyloid positivity”

was evaluated using visual assessment performed by an expert nu-

clear medicine physician and following the tracer manufacturers

guidelines. Concerning the ADNI cohort, multi-modal biomarkers

consisting of neuropsychological tests and measures derived from

MRI, FDG-PET, and Amyloid-PET scans were collected at baseline

and during follow-up visits. In the case of the GMC cohort, each

participant underwent the Mini-Mental State Examination (MMSE),

as well as an MRI, FDG-PET and amyloid-PET scan at baseline. In

addition, a tau-PET scan was acquired for 50 subjects from this co-

hort at baseline. During subsequent visits, only the MMSE was as-
sessed. Summary statistics about clinical and imaging-derived in-

formation across clinical groups are reported in Table 1 . 

2.2. Image preprocessing 

We derived volumes of gray matter density in a standard

anatomical space by relying on the longitudinal pipeline of

Freesurfer ( Reuter et al. 2012 ). Regional gray matter den-

sity was extracted from the Desikan-Killiany parcellation

( Desikan et al. 2006 ). amyloid-PET, FDG-PET and tau-PET im-

ages were registered to their corresponding T1-MRI acquisition,

and normalized to the cerebellum uptake. Regional amyloid load,

glucose metabolism and tau burden were computed thanks to the

PetSurfer software ( Greve et al. 2014 ). For every imaging modality

we discarded white-matter, ventricular, and cerebellar regions,

thus obtaining 82 regions that were averaged across hemispheres. 

2.3. Modeling framework 

SimulAD is based on the hypothesis that AD evolution can be

mathematically modelled by a set of key biomarkers following a

dynamical system. These biomarkers are namely clinical scores, gray

matter atrophy, amyloid load and glucose metabolism . This assump-

tion has two consequences: the first one is that, at any given

time, AD severity is uniquely associated with the values of these

biomarkers. The second one is that past and futures states of the

disease can be computed from the current ones thanks to mathe-

matical relationships linking the biomarkers evolutions. 

To estimate the complex relationships between high-

dimensional imaging and clinical measures, the model first

transforms baseline neuropsychological assessments and measures

derived from MRI, amyloid-PET and FDG-PET data in a set of

four corresponding z-scores. The transformation consists in a

weighted average of the measurements derived from each type

of data modality (i.e regional grey matter measurements in the

case of atrophy ). The obtained z-scores are respectively denoted

z cli , z atr , z amy z met , and describe the overall pathological status of

an individual. We hypothesize that these four z-scores are related

by a set of relationships driving the disease progression, which

https://adni.bitbucket.io/index.html
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are mathematically modelled by a system of Ordinary Differen-

tial Equations (ODEs). This system of ODEs provides us with an

interaction rule that describes how the z-scores jointly evolve

over time. The parameters controlling the system of ODEs are

optimized such that the predicted evolution of the z-scores best

matches the available follow-up clinical and imaging measure-

ments of each individual. An overview of the model is provided in

Supplementary Section. Further details about model optimization

and mathematical transformations allowing to map the z-scores

and raw measures are given in Abi Nader et al. (2021) . 

Trajectory modeling. Thanks to this mathematical formulation,

SimulAD can be used to simulate the progression of changes char-

acterizing AD by considering the subjects diagnosed with AD de-

mentia, and for whom we compute corresponding z-scores based

on their baseline measures. Relying on the estimated set of rela-

tionships between z-scores we follow their evolution forward and

backward in time, thus simulating the subjects’ evolution from

their original healthy condition to their current pathological state.

We obtain z-scores trajectories summarizing the overall progres-

sion of AD, and from which we can estimate the long-term evolu-

tion of the corresponding clinical and imaging measurements. 

Disease severity quantification. Relying on the reference tra-

jectory estimated for the four z-scores summarizing AD evolution,

we can subsequently perform individual disease staging. Based on

the multi-modal imaging and clinical data of a given subject col-

lected at any visit, we compute z-scores for each type of marker,

and find the time-point τ jointly minimizing the distance between

the individual z-scores and the reference trajectory. In the rest of

the paper, we will refer to this time-point as the disease severity.

The estimated disease severity τ locates a subject on the reference

trajectory, thus quantifying its pathological state. It is also impor-

tant to note that the disease severity can still be estimated even

in the case of missing data, by only computing the z-scores of the

available measures of the observed subject. We provide mathemat-

ical details on the disease severity estimation in Supplementary

Section. 

2.4. Estimated model 

The parameters of the resulting model, presented in

Abi Nader et al. (2021) , were estimated through the analysis

of multi-modal longitudinal data from the ADNI cohort. The

clinical scores consisted in the Clinical Dementia Rating Scale

Sum of Boxes (CDRSB), Alzheimer’s Disease Assessment Scale

(ADAS11), Functional Assessment Questionaire (FAQ), Rey Auditory

Verbal Learning Test (RAVLT) learning, RAVLT immediate, RAVLT

forgetting, and MMSE. Regional gray matter density, amyloid load

and glucose metabolism were derived following the procedure de-

tailed in Section 2.2 . No tau-PET data was included in the model.

Baseline socio-demographic information and summary statistics

about clinical and imaging data for the subjects from the ADNI

cohort are provided in Table 1 . The disease progression previously

estimated by SimulAD on the ADNI database is illustrated in

Supplementary Figure in which we show the evolution of the

z-scores and their associated imaging and clinical measures. 

2.5. Evaluation strategy 

We considered the model of evolution estimated by SimulAD

on the ADNI cohort as the reference progression for AD. We evalu-

ated SimulAD by conducting a series of experiments on both ADNI

and GMC cohorts which aimed at demonstrating respectively the

known-groups validity, the concurrent validity and the reliability

of the model. 
Known-groups validity. We evaluated how the estimated dis-

ease severity discriminates subjects across clinical groups within

each cohort. It is expected that values of disease severity should

increase along with the severity of the clinical status. We further

assessed the group-wise consistency of the disease severity distri-

bution, by comparing its values for similar clinical groups between

ADNI and GMC cohorts. Differences between groups were assessed

using Student’s t -test and Cohen’s d effect size. 

Concurrent validity. We assessed the extent to which the

estimated disease severity correlates with validated clinical and

imaging assessments. For each subject MMSE score was available

and imaging-biomarkers assessment as follows: hippocampal at-

rophy evaluated with Freesurfer, glucose metabolism and amyloid

burden computed by extracting standardized uptake value ratio

in a composite mask of regions of interest (MetaROI approach

Jagust et al. (2009) ; Landau et al. (2010, 2012) ). In the case of

GMC, we also had 50 subjects who underwent a tau-PET scan. We

compared their estimated disease severity with respect to their

tau burden computed in a composite mask of relevant regions

(MetaROI approach ( Jack et al. 2017 )). Correlation between the es-

timated disease severity and the different variables was assessed

using Spearman rank correlation ( ρ). 

Reliability. The two previous experiments aimed to quantify the

validity of SimulAD in terms of disease staging based on the refer-

ence progression previously simulated on the ADNI database. We

verified the consistency and robustness of the dynamics estimated

by SimulAD by simulating the evolution of clinical and imaging-

derived markers based on the GMC data. To this end, we applied

the procedure described in Section 2.3 on the AD dementia sub-

jects from the GMC cohort, thus providing us with a new model of

progression for clinical and imaging measurements, as well as spe-

cific z-scores trajectories personalized to the GMC cohort. We com-

pared the disease progression models obtained on ADNI and GMC

cohorts by computing the average error between their z-scores tra-

jectories over time. In addition to comparing the disease progres-

sion models obtained on both cohorts, we proposed to demon-

strate the reliability of SimulAD by evaluating its prediction abil-

ities at the individual level. To do so, we simulated the evolution

of the MMSE for the subjects from the GMC cohort and compared

the estimated values with the MMSE assessed by the physicians

during the follow-up clinical visits. 

2.6. Data adjustment 

In order to implement the aforementioned assessment strategy,

a number of additional pre-processing steps had to be carried out.

Missing measures imputation. We recall that SimulAD relies

on 7 neuropsychological tests (CDRSB, MMSE, ADAS11, FAQ, RAVLT

learning, RAVLT immediate and RAVLT forgetting) to compute the

score z cli , and that the only common clinical test between the ADNI

and GMC cohorts is the MMSE. However, relying only on the MMSE

would bias the computation of z cli for the subjects from the GMC

cohort. To overcome this issue, we imputed the 6 missing clinical

scores for all the subjects from the GMC cohort. Imputation was

carried out through k-neighbors regressions trained on the ADNI

database to predict each clinical score based on the MMSE and

the measures of regional grey matter volume. The trained mod-

els were subsequently applied on the GMC cohort to estimate the

associated clinical scores. We performed a 10-fold cross validation

on the ADNI database to evaluate the prediction performances of

the models. We show in Table 2 the average and the 95% confi-

dence interval of the relative error between the ground truth and

predicted score. The average relative error remains below 10% for

the CDRSB, ADAS11, RAVLT immediate and FAQ, while not exceed-

ing 20% for the RAVLT learning and RAVLT forgetting. We provide
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Table 2 

Relative error between the ground truth and k-neighbors prediction of the different clinical scores in the ADNI cohort. Aver- 

age values and 95% confidence interval. Key: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADAS11, Alzheimer’s Disease 

Assessment Scale; CI, confidence interval; CDRSB, Clinic Dementia Rating Scale Sum of Boxes; FAQ, Functional Assessment Ques- 

tionnaire; RAVLT, Rey Auditory Verbal Learning Test. 

Score CDRSB ADAS11 RAVLT immediate RAVLT learning RAVLT forgetting FAQ 

Relative error (%) 5.2 6.0 7.5 14.2 17.8 9.1 

95% CI [1.4 ; 10.3] [3.2 ; 10.6] [5.2 ; 10.2] [10.7 ; 18.8] [10.3 ; 25.8] [1.5 ; 18.8] 

Fig. 1. Scatter plot between the regional early-amyloid uptake and the corresponding FDG uptake for 57 patients of the GMC cohort. Solid black lines show the fitted linear 

model between regional FDG and early-amyloid. The dashed-lines represent 95% confidence interval. Abbreviations: FDG, (18)F-fluorodeoxyglucose; GMC, Geneva Memory 

Center. 

Fig. 2. Distribution of the regional amyloid uptake depending on the tracer used during acquisition for the subjects from the GMC cohort. 76 amyloid-PET scans were ac- 

quired using florbetapir and 17 using flutemetamol. Tracer correction indicates that the regional amyloid uptake of subjects whose PET scan was acquired using flutemetamol 

was converted to a florbetapir scale. GMC, Geneva Memory Center; PET, positron emission tomography; SUVR, standardized uptake value ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

additional information about the estimation error in Supplemen-

tary Section. 

FDG data harmonization. We can observe in Table 1 that in the

GMC cohort 36 subjects out of 93 are missing an FDG-PET scan,

thus preventing the computation of their score z met . For these sub-

jects their disease severity can therefore be estimated only based

on three z-scores ( z cli , z atr , z cli ), leading to potential bias and mis-

estimation compared to the rest of the cohort. To prevent this is-

sue we computed the regional FDG uptake for every subjects of

the GMC cohort based on their corresponding early-phase (6 min)

of amyloid-PET scan ( Daerr et al. 2017 ). This was done by fitting

a linear regression between the early-amyloid and FDG uptake of

all the subjects for each brain region. Figure 1 illustrates the linear

fit between early-amyloid and FDG regional uptake for three brain

regions. We show similar relationships for additional brain regions

in Supplementary Section. 

Tracer bias correction. The amyloid-PET scan of 17 subjects

from the GMC cohort was acquired using the flutemetamol tracer,

while the amyloid-PET scans of the remaining subjects from both

ADNI and GMC cohorts were acquired using florbetapir. To com-

pensate the effect of the tracer on the regional uptake for these

subjects, we converted the extracted amyloid burden on the cen-

tiloid scale and back to a florbetapir scale ( Battle et al. 2018; Klunk

et al. 2015; Navitsky et al. 2018 ). We observe in Fig. 2 that the

correction reduces the variability of the amyloid uptake values for

the flutemetamol group, increasing the overlapping with the flor-
betapir one. Supplementary Section provides histograms illustrat-

ing the same effect in other brain regions. 

3. Results 

3.1. Known-groups validity 

In this section, we considered the pathological progression pre-

viously estimated in Abi Nader et al. (2021) by SimulAD as a refer-

ence trajectory, and computed the disease severity of the individ-

uals from both cohorts based on the procedure of Section 2.3 . We

show in Fig. 3 the group-wise distribution of the disease sever-

ity estimated by SimulAD for each subject in the ADNI and GMC

datasets. We observe that for both cohorts the disease severity in-

creases when going from healthy to pathological stages. The group-

wise difference of disease severity across clinical groups is statis-

tically significant for each comparison (Student’s t -test p < 0 . 05 )

except in the case of MCI stable vs MCI converters for the GMC

cohort ( cf . Table 3 a). We also notice rather large differences be-

tween clinical groups ( d > 0 . 7 , cf . Table 3 a) for both cohorts ex-

cept in the case of NL stable vs MCI stable for the ADNI cohort

and MCI stable vs MCI converters for the GMC database. We also

evaluated the consistency of the disease severity by comparing its

distribution for similar clinical groups across cohorts. We observe

in Table 3 b that the estimated disease severity of similar clinical

groups is not significantly different ( p > 0 . 05 ), and differences be-
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Fig. 3. Distribution of the disease severity estimated by SimulAD across clinical stages for the ADNI and GMC cohorts relatively to the estimated model of disease progression 

(Supplementary Figure ). AD, Alzheimers dementia; ADNI, Alzheimers Disease Neuroimaging Initiative; GMC, Geneva Memory Center; MCI, mild cognitive impairment; NL, 

cognitively healthy. Converters are NL patients progressing to MCI or AD dementia, or MCI individuals progressing to AD dementia. 

Table 3 

Comparison of the estimated disease severity distribution between clinical groups within each cohorts (a) and between similar clinical groups across cohorts 

(b); We report p-values of Student’s t -test as well as the associated effect size (Cohen’s d ). 

(a) 

Within cohorts disease severity comparison 

NL stable NL stable MCI stable MCI stable MCI converters 

vs vs vs vs vs 

NL converters MCI stable MCI converters AD dementia AD dementia 

Cohort ADNI GMC ADNI GMC ADNI GMC ADNI GMC ADNI GMC 

p -value 7 . 5 · 10 −4 / 1 . 8 · 10 −2 1 . 0 · 10 −4 1 . 2 · 10 −11 4 . 4 · 10 −1 1 . 1 · 10 −26 3 . 8 · 10 −3 3 . 1 · 10 −7 1 . 6 · 10 −2 

Cohen’s d 0 . 75 / 0 . 35 1 . 1 0 . 91 0 . 21 1 . 5 0 . 80 0 . 74 0 . 81 

(b) 

Between cohorts disease severity comparison 

NL stable MCI stable MCI converters AD dementia 

p -value 8 . 2 · 10 −1 7 . 0 · 10 −3 9 . 5 · 10 −1 7 . 3 · 10 −1 

Cohen’s d 0 . 03 0 . 57 0 . 10 0 . 09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tween cohorts are rather small ( d ≤ 0 . 1 ), except in the case of MCI

stable. We recall that, apart from the MMSE, the clinical scores of

the subjects from the GMC cohort were imputed based on the pro-

cedure detailed in Section 2.6 . We show in Supplementary Section

that the estimation of the individual disease severity is robust to

this approximation. 

3.2. Concurrent validity 

We show in Fig. 4 the progression of standard clinical and

imaging markers with respect to the disease severity estimated by

SimulAD for subjects from the ADNI and GMC databases. For both

cohorts, the disease severity significantly correlates with the MMSE
score (ADNI: ρ = −0 . 58 , p < 0 . 01 ; GMC: ρ = −0 . 55 , p < 0 . 01 ). Re-

garding imaging-biomarkers, in both ADNI and GMC datasets the

estimated disease severity correlates with hippocampal volume

(ADNI: ρ = −0 . 57 , p < 0 . 01 ; GMC: ρ = −0 . 62 , p < 0 . 01 ), glucose

metabolism (ADNI: ρ = −0 . 80 , p < 0 . 01 ; GMC: ρ = −0 . 67 , p <

0 . 01 ) and amyloid burden (ADNI: ρ = 0 . 44 , p < 0 . 01 ; GMC: ρ =
0 . 31 , p < 0 . 01 ). Since 50 individuals from the GMC cohort under-

went a tau-PET scan, we also compare their estimated disease

severity with their tau burden and show a significant correlation

between them in Fig. 4 ( ρ = 0 . 62 , p < 0 . 01 ). This latter correlation

of the disease severity with a typical biomarker of AD that was

not used for building the model supports the reliability of such a

measure to summarize the overall severity of AD. 



A.N. Clément, F. Ribaldi, G.B. Frisoni et al. / Neurobiology of Aging 113 (2022) 73–83 79 

Fig. 4. Relationships between the estimated disease severity and global cognition (MMSE), hippocampal volume, glucose metabolism, amyloid burden and tau burden (only 

for the GMC cohort). For each subject the estimated disease severity quantifies their position with respect to the model of disease progression (Supplementary Figure ). The 

dashed-lines represent 95% confidence interval. ADNI, Alzheimers Disease Neuroimaging Initiative; GMC, Geneva Memory Center; SUVR, standardized uptake value ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Model reliability 

In the previous sections, we assessed the disease severity of the

subjects based on the model of progression simulated on the ADNI

cohort ( Abi Nader et al. 2021 ). In order to demonstrate the re-

liability of the dynamics estimated by SimulAD, we simulated a

new model of disease progression personalized to the GMC co-

hort. We show in Fig. 5 the predicted evolution of imaging and

clinical measurements based on this dataset. Similarly to what

has been observed on the model previously trained on the ADNI

database (Supplementary Figure ), amyloid load increases and sat-

urates early while following a uniform spatial pattern. Amyloid de-

position is followed by a delayed process of neurodegeneration,

more specifically a decrease of glucose metabolism and gray mat-

ter atrophy, mostly affecting temporal and parietal regions. Finally,

clinical scores such as the MMSE or the CDRSB show a non-linear

evolution accelerating during the latest stages of the disease. 

We also compared the models of progression obtained on the

ADNI and GMC cohorts. Fig. 6 shows the evolution of the differ-

ent z-scores depending on the cohort used to estimate the dis-

ease progression. These z-scores indicate the overall evolution of

clinical scores, cerebral atrophy, amyloid deposition and glucose

metabolism during AD. Given that the z-scores are not related to

a physical unit but rather quantify the abnormality of a particu-

lar process, they were re-scaled between 0 and 1 to illustrate the

progression from healthy towards pathological stages. We observe

that the four z-scores exhibit similar evolution patterns, whether

they have been estimated on the ADNI or the GMC cohort. When

averaged across time, the error between the z-scores of the two

cohorts is of 6%, 7%, 8% and 9% for z cli , z atr , z met and z amy respec-

tively. We provide in Supplementary Section the evolution of the

error between the evolutions of clinical scores and imaging re-

 

gional measurements estimated based on the ADNI and the GMC

cohort. When averaged over time, brain regions and clinical scores,

the error is of 3%, 6%, 7% and 12% for MRI, FDG-PET, amyloid-PET

derived regional measurements and clinical scores respectively. Fi-

nally, in spite of the fact that most of the clinical scores were im-

puted in the GMC cohort, Supplementary Section shows that the

resulting z-scores trajectories are robust to this estimation. Indeed,

we observe that adding an additional error when imputing the

clinical scores in the GMC cohort leads to rather small changes

for the estimated z-scores trajectories compared to the results pre-

sented in Fig. 6 . 

Finally, we applied SimulAD individually on all the patients

from the GMC cohort to simulate their evolution over five years.

We computed the error between their simulated MMSE and the

one assessed by the physicians for the patients with available

follow-up visits. The results are presented in Table 4 , where we

observe that the mean error ranges from 1.8 to 2.4 across clini-

cal groups highlighting the reliability of the model for estimating

clinical outcomes during follow-up. For illustrative purposes, we

also provide in Supplementary Figure the simulated evolution of

the MMSE, hippocampus volume, glucose metabolism and amyloid

burden for four patients from the GMC cohort. We show in this fig-

ure how SimulAD accurately predicts the MMSE at the individual

level for four patients over 5 years. 

4. Discussion 

In this study, we presented a thorough assessment of Sim-

ulAD on the independent GMC clinical cohort. The model was

initially estimated based on the analysis of longitudinal imag-

ing and clinical data from a subset of the ADNI database

( Abi Nader et al. 2021 ). Due to a mismatch between cohorts in
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Fig. 5. Simulated long-term evolution of cortical measurements for the different types of imaging markers and clinical scores based on the GMC cohort. Shadowed areas 

represent the standard deviation of the average trajectory. Abbreviation: GMC, Geneva Memory Center. 

Fig. 6. Estimated long-term dynamics depending on the cohort used for simulating the z-scores trajectories (time is relative to conversion to Alzheimer’s dementia). The 

z-scores have been re-scaled between 0 and 1 to illustrate the progression of each process from normal to pathological stages. Abbreviations: ADNI, Alzheimers Disease 

Neuroimaging Initiative; GMC, Geneva Memory Center. 

Table 4 

For each clinical group, follow-up time in years (mean and standard deviation), total 

number of times the MMSE was assessed, and absolute error between the MMSE pre- 

dicted by our method and the ground truth value from clinical evaluation (mean and 

standard deviation). Key: AD, Alzheimers dementia; MCI, mild cognitive impairment; NL, 

cognitively healthy. Converters are MCI individuals progressing to AD dementia. 

Group NL MCI stable MCI converters AD dementia 

Follow-up (years) 1.9 (1.2) 2.3 (1.5) 2.4 (1.7) 1.8 (1.4) 

# MMSE assessments 48 63 59 31 

Error 2.1 (1.5) 2.4 (1.9) 2.3 (2.0) 1.8 (1.6) 
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terms of missing measurements and data acquisition, we designed

a pre-processing pipeline in order to enable the application of the

model. We subsequently carried out a set of experiments to eval-

uate the validity of our approach and showed that the results

obtained on the ADNI database were reproducible on the GMC

cohort, outlining the robustness and generalization properties of

SimulAD. 

The present results underlined the feasibility of applying our

model in a clinical context. We recall that throughout the exper-

iments the disease severity was only assessed at baseline. Indeed,

in the GMC cohort the subjects underwent the MMSE as well as an

MRI, FDG-PET and amyloid-PET scan at baseline only. During the

subsequent visits, only the MMSE was assessed in order to deter-

mine the clinical status of the subjects, however no imaging data

was available. While the model is able to assess the disease sever-

ity even if many data modalities are missing, in this particular case

the disease severity estimation would be entirely based on clin-

ical information without any input from the imaging modalities.

We showed that SimulAD was able to differentiate subjects across

clinical groups for both cohorts ( Fig. 3, Table 3 ). Known-groups va-

lidity was established by assessing the similarity between cohorts

of the estimated disease severity distribution for the NL stable, MCI

converters and AD dementia groups ( Table 3 b). Moreover, the esti-

mated disease severity correlated with clinical and imaging assess-

ments in both cohorts, and especially with tau burden on the GMC

cohort. We recall that AD is defined by evidence of an abnormal

load of both amyloid and tau ( Jack et al. 2018 ). Therefore, given

that the model was estimated based on a subset of the ADNI co-

hort without accounting for tau-PET data, the correlation between

the disease severity and tau burden on an external dataset is an

appreciable demonstration of the concurrent validity of SimulAD.

We also observed that independently from the cohort used to sim-

ulate the disease progression, the long-term evolution of the z-

scores were similar between cohorts ( Fig. 6 ), thus outlining the

reliability of the proposed model of AD progression. Finally, we

showed that when applied on the GMC cohort, SimulAD was able

to reliably predict the evolution of the MMSE of the subjects, high-

lighting its potential as a tool for individual monitoring of clinical

outcomes. Overall, these results indicate general robustness of Sim-

ulAD when applied to independent cohorts characterized by differ-

ent imaging acquisition protocols. 

Some results highlighted in the proposed analysis deserve fur-

ther discussion. There is no statistically significant difference be-

tween the estimated severity of the MCI stable and converters in

the GMC cohort, while there is a significant difference of the es-

timated disease severity between the MCI stable of the ADNI and

GMC cohorts. Concerning the first remark, it is important to note

that among the 28 MCI stable subjects of the GMC cohort, a sin-

gle visit only was available for 16 of them. It is therefore likely

that this sub-group contains potential converters who may bias

the MCI stable group with non-representative measurements. Re-

garding the second remark, we note in Fig. 3 that the median dis-

ease severity of the MCI stable group of the ADNI dataset is ap-

proximately of -8 years, while it is close to -4 years for the GMC

cohort. This means that, according to our model, the pathological

condition of the group of MCI stable from the GMC cohort is more

severe than the one of the ADNI subset considered in the study.

This is in agreement with the fact that compared to the ADNI

database, the MCI stable subjects from the GMC cohort exhibit a

statistically significant lower MMSE score, lower volume of the hip-

pocampus, lower glucose metabolism and higher amyloid burden

( p -values < 0.05, Student’s t -test). Moreover, we note that the dis-

tribution of the disease severity is conserved between both cohorts

for NL stable, MCI converters and AD dementia groups. This result

may point to the generalization capabilities of the disease sever-
ity estimation, which seems to be solely influenced by the clinical

status. It also shows the ability of the model to identify specific

clinical sub-types. 

To our knowledge, the EBM and the DEBM are the only data-

driven models of disease progression which have been evaluated

on several external cohorts ( Archetti et al. 2019 ). The type of study

here presented is therefore of relevant experimental value to en-

able the future application of disease progression models. We note

that SimulAD presents certain advantages compared to standard

event-based models, as it provides a finer-grained description of

the disease for both spatial and temporal scales, in which regional

changes affecting the brain are modelled on a continuous long-

term time span. In addition, the method allows to personalize the

evolution of clinical and imaging measurements for any patient

or group of patients. Finally, the proposed mathematical formu-

lation of AD progression as a system of ODEs allows to go be-

yond a simple description of the dynamics at stake during the dis-

ease evolution. In particular, we can simulate the impact of an

anti-amyloid treatment on cognitive outcomes ( Abi Nader et al.

2021 ). 

As data-driven models are becoming more popular in health-

care thanks to their ability to leverage large scale clinical data, it is

of utmost importance to facilitate their transfer from a research

context to clinical practice. A growing number of regulatory in-

stitutions provided guidelines to help designing machine learning

models that could be applied in clinical practice ( Health 2019 ). The

major problem revolves around the generalization of the models

beyond the dataset used to develop them, the main obstacle be-

ing their robustness to biases ( Ghassemi et al. 2019 ). In this study,

we developed a pipeline to mitigate the biases due to data hetero-

geneity and missing measurements. This work included data im-

putation for clinical data, and data standardization for PET imag-

ing scans. We carried out extensive tests to assess the reliability of

our imputation strategy for the clinical scores in Section 2.6 and

Supplementary Section. However we could not evaluate the effect

of the FDG uptake imputation on the model performances, as no

early-phase amyloid-PET was available to predict the correspond-

ing FDG uptake on the sub-sample of the ADNI database used to

train SimulAD. To avoid any sort of imputation, a more radical ap-

proach could be to simply discard all the missing data modali-

ties, and re-train a new model with only the available data. We

explored this possibility in Supplementary Section, and showed

how it impacts the interpretability of the model as well as the

disease severity estimation. Overall, even if SimulAD proved ro-

bust to these approximations, one of the main challenge high-

lighted in this study points to the complexity of data integration

across cohorts and studies. In our particular case, neuropsycholog-

ical tests could be standardized on a common scale, thus allow-

ing to replace a score by another if they assess similar functions,

while PET data could be systematically converted to the centiloid

scale. 

Finally, this study motivates further extensions of SimulAD that

would foster its adoption in clinical practice. For instance, a lim-

itation of our model is the underlying hypothesis that there ex-

ists a unique progression of AD which is common across individ-

uals, while the disease is in fact highly heterogeneous. SimulAD

could be extended in the future to account for multiple risk fac-

tors, such as the presence of APOE4 ( Kim et al. 2009 ), thus leading

to a higher level of personalization of the predictions. Another av-

enue of improvement would be to account for a larger panel of

biomarkers, such as tau ( Pontecorvo et al. 2019 ), in order to better

comprehend the disease progression. Currently, SimulAD is still a

research software and future efforts should focus on the develop-

ment of a user-friendly platform that could be deployed in clinical

routine. 
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5. Conclusion 

We presented a preliminary validation of SimulAD on the clini-

cal cohort of the GMC. The results highlighted the reliability of the

dynamics simulated by SimulAD for the disease key biomarkers,

and showed encouraging performances in terms of disease staging

on both cohorts. SimulAD is a promising modeling tool that may

enable in the future the identification of subjects for enrollment in

clinical trials, or the monitoring of the efficacy of disease modify-

ing drugs. 
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