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ABSTRACT 

Background and objectives: Currently, amyloid-β (Aβ) staging models assume a single spatial-

temporal progression of amyloid accumulation. We assessed evidence for Aβ accumulation subtypes 

by applying the data-driven Subtype and Stage Inference (SuStaIn) model to amyloid-PET data. 

Methods: Amyloid-PET data of 3010 subjects were pooled from 6 cohorts (ALFA+, EMIF-AD, ABIDE, 

OASIS, and ADNI). Standardized uptake value ratios (SUVr) were calculated for 17 regions. We 

applied the SuStaIn algorithm to identify consistent subtypes in the pooled dataset based on the 

cross-validation information criterion (CVIC) and the most probable subtype/stage classification per 

scan. The effect of demographics and risk factors on subtype assignment was assessed using 

multinomial logistic regression. 

Results: Participants were mostly cognitively unimpaired (N=1890, 62.8%), had a mean age of 68.72 

(SD=9.1), 42.1% was APOE-ε4 carrier, and 51.8% was female. While a one-subtype model recovered 

the traditional amyloid accumulation trajectory, SuStaIn identified an optimal of three subtypes, 

referred to as Frontal, Parietal, and Occipital based on the first regions to show abnormality. Of the 

788 (26.2%) with strong subtype assignment (>50% probability), the majority was assigned to Frontal 

(N=415, 52.5%), followed by Parietal (N=199, 25.3%), and Occipital subtypes (N=175, 22.2%). 
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Significant differences across subtypes included distinct proportions of APOE-ε4 carriers 

(Frontal:61.8%, Parietal:57.1%, Occipital:49.4%), subjects with dementia (Frontal:19.7%, 

Parietal:19.1%, Occipital:31.0%) and lower age for the Parietal subtype (Frontal/Occipital:72.1y, 

Parietal:69.3y). Higher amyloid (Centiloid) and CSF p-tau burden was observed for the Frontal 

subtype, while Parietal and Occipital did not differ. At follow-up, most subjects (81.1%) maintained 

baseline subtype assignment and 25.6% progressed to a later stage.  

Discussion: While a one-trajectory model recovers the established pattern of amyloid accumulation, 

SuStaIn determined that three subtypes were optimal, showing distinct associations to AD risk 

factors. Nonetheless, further analyses to determine clinical utility is warranted.  
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INTRODUCTION 

Positron emission tomography (PET) imaging is one of the main currently available tools to study 

amyloid pathology in vivo. The technique makes use of amyloid-β (Aβ) radiotracers validated against 

neuropathology 1-3. In comparison with other Aβ biomarkers such as cerebrospinal fluid (CSF) or 

plasma, PET imaging provides spatial-temporal information 4, which may be of particular interest for 

Alzheimer’s disease (AD) research and clinical trials. 

Since the first proposal of a population-based neuropathological progression scheme by Braak & 

Braak in 1991 5, multiple amyloid PET studies proposed similar frameworks that would allow the 

staging of an individual’s biomarker along a spectrum of pathological burden 6-9. These approaches 

have demonstrated high applicability at the population level, and indicate that determining the 

extent of amyloid pathology can be used to better characterize prognosis and risk of cognitive 

decline 7-9. However, these models have invariably relied on the assumption that the path to AD 

dementia-like levels of Aβ is the same across individuals, disregarding variability in the data that 

could point to distinct trajectories of amyloid accumulation. On the other hand, most studies aimed 

at identifying disease subtypes assume subjects to be at a common disease stage (e.g. dementia) for 

valid comparison 10, which is especially challenging in a sporadic and long-term disease processes 

such as AD. Therefore, while both approaches are useful, stage-only models do not disentangle 

potential subtypes, and subtype-only models do not account for distinct stages across individuals, 

hampering the identification of the simultaneous effect of subtypes and stages on disease 

presentation and risk assessment 11.   

Recently, a data-driven method has been developed to jointly resolve both stages and subtypes from 

heterogeneous cross-sectional data, namely the Subtype and Stage Inference (SuStaIn) model 11. This 

algorithm was previously applied to uncover patterns of brain atrophy in AD, showing an improved 

prediction of clinical conversion compared to stage- or subtype-only models 11. More recent work 

identified four distinct spatio-temporal phenotypes of tau accumulation, which were associated with 

different clinical profiles and longitudinal cognitive outcomes, suggesting the value of such models 
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for improving individualized prognosis and clinical care 13. In the context of amyloid, previous 

descriptions of a homogeneous spatial-temporal progression of amyloid pathology were not in full 

agreement4, and staging models’ success could be attributed to a reduced spatial resolution (i.e. 

small number of stages covering large portions of the brain)8, 9. Therefore, it is possible that an 

underlying heterogeneity in amyloid spatial-temporal progression remains unresolved.  

To determine whether there is evidence for patterns of cerebral Aβ accumulation, we applied the 

SuStaIn model to pooled amyloid-PET data from five cohorts. These included observational cohorts 

and open-access data repositories with mostly cognitively unimpaired individuals, and clinical 

populations with different levels of cognitive impairment. We first assessed whether subtypes of 

progression are statistically preferred to the common assumption of a universal trajectory. We then 

described possible subtype differences with respect to main demographics and risk factors. Finally, 

we validated the observed subtypes in a longitudinal sub-set of data.  
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METHODS 

Cohorts 

From five cohorts, all participants with available amyloid PET scans of sufficient quality for 

quantification were retrospectively included (Table 1). [18F]Flutemetamol scans of 358 cognitively 

unimpaired (CU) subjects from the Alzheimer’s and Family (ALFA) cohort of the Barcelonaβeta Brain 

Research Center 14 and 190 CU subjects from the Innovative Medicine Initiative European Medical 

Information Framework for AD (EMIF-AD) 15 were included. [18F]Florbetaben scans of 350 memory 

clinic patients from the Alzheimer’s biomarkers in daily practice (ABIDE) study were included 16. From 

the Open Access Series of Imaging Studies (OASIS)-3 dataset 17, 572 [11C]Pittsburgh compound B (PiB) 

and 360 [18F]florbetapir scans of CU subjects were obtained. Finally, 1180 subjects scanned with 

[18F]florbetapir were included from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 

The ADNI study was launched in 2003 as a public-private partnership, led by principal investigator 

Michael W. Weiner, MD. The primary goal of ADNI is to test whether serial MRI, PET, other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early AD. 

In total, the complete data-set available for this study consisted of amyloid PET imaging data from 

3010 subjects (1890 CU, 648 Cognitively Impaired (CI), 445 Dementia, and 27 with missing diagnosis 

at time of baseline PET). Subjects that were labeled as CI had a clinical diagnosis of mild cognitive 

impairment or a Clinical Dementia Rating of 0.5 in the absence of a clinical diagnosis. In addition, 

from cohorts where longitudinal PET imaging was available (ADNI and OASIS), we selected those for 

whom a second scan was performed ≥4 years after baseline (N=519). 

 

Standard Protocol Approvals, Registrations, and Patient Consents 

The protocol, patient information, consent form, and other relevant study documentation were 

approved by the Ethics Committees or Institutional Review Boards of each site before study 
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initiation. The studies were performed in accordance with the Declaration of Helsinki and consistent 

with Good Clinical Practice. Before enrollment, all patients provided written informed consent. 

 

Image acquisition and processing 

[18F]Flutemetamol scans from the ALFA cohort consisted of four frames (4x5 minutes) acquired 90-

110 minutes post-injection (p.i.). Images were checked for motion, and PET and accompanying 

structural T1-weighted MR images were warped into MNI space using SPM12. [18F]flutemetamol 

EMIF-AD scans were acquired using a dual-time-window protocol 18 (0-30 minutes p.i., 60 minute 

break, 90-110 minutes p.i.), but only the late frames (90-110 min p.i.) were used for this work 19. 

[18F]florbetaben scans from ABIDE were processed as described previously, with static scans 

consisting of four frames (4x5 minutes) acquired 90-110 minutes p.i. 19. All EMIF-AD and ABIDE 

images were checked for motion and accompanying structural T1-weighted MR images were co-

registered to PET using the Vinci software (Max Planck Institute for Neurological Research, Cologne, 

Germany) and then warped into MNI using SPM12. [18F]Florbetapir (50-70 minutes p.i.) and [11C]PiB 

(30-60 minutes p.i.) data from the OASIS platform were processed with FreeSurfer and the PET 

Unified Pipeline 20. Finally, [18F]florbetapir PET scans from ADNI consisted of four frames (4x5 

minutes), acquired 50-70 minutes p.i. and were processed using FreeSurfer. 

 

PET quantification 

For all cohorts, standard uptake value ratios (SUVr) relative to the cerebellar gray matter were 

available for all Desikan-Killiany atlas regions 21. For the purposes of this work, a set of 17 regions of 

interest (ROI) was constructed by volume-weighted averaging of anatomically adjacent regions. The 

final 17 regions were the anterior, posterior and isthmus cingulate, medial and lateral orbitofrontal, 

precuneus, inferior, middle and superior frontal, supramarginal, insula and lingual gyrus, the lateral 

parietal lobe (superior and inferior parietal), lateral temporal lobe (middle, transverse and superior 

temporal, superior temporal sulcus, and temporal pole), basal temporal lobe (fusiform and inferior 
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temporal), occipital lobe (lateral occipital, cuneus and pericalcarine), and striatum (caudate and 

putamen).  

In order to pool regional data across cohorts and tracers, SUVr values were standardized to z-scores. 

The z-scoring transformation was cohort-, radiotracer- and region-specific and the reference groups 

consisted of CU subjects of each study. We applied Gaussian Mixture Modeling to the regional data 

of each reference group to select the mean and standard deviation of the left (‘normal’) Gaussian 

curve. These refined regional estimates were then used for z-scoring the regional SUVr values 

(eFigure 1).  

In addition, standardized quantification of global amyloid burden was obtained using the Centiloid 

(CL) scale 22. PET scans from the ALFA, EMIF-AD, and ABIDE studies were processed by Barcelonaβeta 

Brain Research Center (BBRC) using a validated standard Centiloid pipeline 23. Centiloid values were 

directly obtained from the OASIS-3 and ADNI databases. As per standard guidelines, the reference 

region used for CL was the whole cerebellum for all data 22. 

 

Subtype and Stage Inference (SuStaIn) Model  

In this work, the Mixture SuStaIn implementation in PySuStaIn, cloned from the master branch of on 

30 October 2020, was used with Python 3.7. SuStaIn is a probabilistic machine learning algorithm 

that can characterize the heterogeneity of disease by inferring both patterns of disease progression 

(subtypes) and an individual’s disease stage (i.e. degree of progression within a subtype) from cross-

sectional data. Importantly, the number of SuStaIn stages is defined by the number of biomarkers (in 

our case ROIs) provided to the model.  The model uses a data likelihood based on how far a 

biomarker measurement deviates from normality to group events based on their associated z-score 

(e.g. one, two or three standard deviations away from control population mean) for each biomarker. 

However, in cases where the control population displays little abnormality (such as the case in our 

work, where amyloid load in the reference group will be low), the resulting z-scores in patients can 

become too large in comparison. Instead, it is more sensible to use two distributions, one to describe 
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the control population and a separate one to describe patients’ measurements, therefore defining an 

event as a biomarker (in our case regional SUVr of the 17 pre-defined ROIs) going from normal to 

abnormal (as in the event-based model; EBM 12, 24).  

The SuStaIn model fitting consists of an iterative procedure that simultaneously optimizes subtype 

event sequences  and subtype classification  for a pre-selected number of subtypes. Model out-of-

sample likelihoods across 10-folds were used to calculate the cross-validation information criterion 

(CVIC) per model. The CVIC is a measure of how well the model fits the test data, similar to the 

Akaike information criterion, but with less penalty on model complexity25. A complete mathematical 

description of the SuStaIn algorithm can be found in Young and colleagues 11. The number of 

subtypes was iteratively increased, and the model chosen for further analysis was selected based on 

the CVIC. In particular, we repeated the cross-validation analysis 20 times to exclude spurious 

findings and picked the subtype model such that the CVIC was lowest or, in cases where the CVIC was 

very similar, had the lower model complexity (i.e. fewer subtypes).  

 

Statistical Analyses 

Statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) version 26, 

and significance was set at p<0.05. 

 

Optimal model fit 

The SuStaIn model was constructed based on the full baseline data-set (N=3010) and the optimal 

number of subtypes was tested by iteratively increasing the number of selected subtypes until the 

lowest CVIC value was reached. In addition, Spearman rank correlation analyses were used to assess 

the agreement between the regional ordering of a one-trajectory model (i.e. ‘one’ subtype, as per 

previously proposed staging models) and that of each of the subtypes determined by the optimal 

model. Rank correlations between each subtypes were also determined.  

 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

Subtype analyses 

Overall differences between subtypes were assessed independently of stage. First, subjects classified 

as stage 0 were labeled as ‘no subtype’ and excluded for analyses. For subjects assigned to stage ≥1, 

only those with a strong probability (>50%) of assignment to a subtype were included. A multinomial 

logistic regression (MLR) was used to determine the effect of demographics and risk factors on 

subtype assignment, such as age, cohort representation, proportion of males/females, APOE-ε4 and 

APOE-ε2 carriers, Mini-Mental State Examination (MMSE) scores, and diagnostic groups. Next, two 

separate MLRs were used to determine the relationship between subtypes and biomarkers of AD 

pathology (amyloid and p-tau), corrected for the variables above. In addition to z-scored CSF p-tau, 

the first model included Centiloid as a marker for amyloid pathology, while the second model 

included z-scored CSF Aβ42. CSF values were z-scored based on the mean and standard deviation 

from the GMM derived normal curve of each cohort. CSF was available for 1522 subjects (ABIDE: 241 

(15.8%), ADNI: 858 (56.4%), ALFA+: 303 (19.9%), EMIF-AD: 120 (7.9%)).  

 

Longitudinal validation 

 The optimal SuStaIn model derived from the baseline data was subsequently applied to the sub-set 

(N=591) of available longitudinal amyloid PET scans. Descriptive statistics were used to determine 

subtype stability (proportion of subjects classified as the same subtype at follow-up) and stage 

progression (proportion of subjects with lower, same or higher stage at follow-up). In addition, a MLR 

was used to assess whether annualized rates of change in Centiloid were different between 

subtypes, accounting for all significant covariates and baseline amyloid burden. 

 

Data Availability 

The data that support the findings of this study can be made available upon request with the study-

specific principal investigator (i.e. ABIDE, EMIF-AD, ALFA) or are openly available (i.e. ADNI & OASIS 

open-source databases).  
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RESULTS 

Main demographics are shown in Table 1. Across cohorts, subjects had a mean age of 68.72 ± 9.06, 

51.8% were female. Most subjects were cognitively unimpaired (N=1890, 62.4%), MMSE=27.88 ± 

2.93 and the proportion of APOE-ε4 carriers was relatively high (42.1%).  

 

Identified subtypes of amyloid accumulation  

The optimal model fit identified three different subtypes according to the CVIC (eFigures 2–3). The 

three subtypes are referred to as Frontal, Parietal, and Occipital in the remainder of this study 

according to the earliest regions to become abnormal in each of them.  

The Frontal subtype identified the first abnormalities in amyloid PET signal in the medial orbitofrontal 

region, progressing from the anterior to the posterior parts of the brain, and culminating with the 

involvement of the striatum and the occipital lobe. Similarly, the Parietal subtype also identified the 

striatum and occipital lobe as the last to become abnormal, while first regions to display abnormality 

were the posterior cingulate and the precuneus with the intermediate spatial-temporal progression 

evolving from posterior to anterior regions. Finally, the Occipital subtype displayed an inverse overall 

ordering, beginning in the occipital and temporal-parietal lobes, progressing to frontal regions and 

ending in the striatum (Figure 1A, eFigure 4). 

In comparison, the regional ordering from a one-trajectory model closely resembled previously 

proposed staging models, with a medial frontal and precuneal start of amyloid accumulation, 

expanding throughout the cortex, and ending with the occipital cortex and striatum (Figure 1B). This 

regional ordering was strongly and positively correlated with the regional ordering of the Frontal 

(ρ=0.90, p<0.001), and the Parietal (ρ=0.89, p<0.001) subtypes, but not with the Occipital subtype (ρ= 

-0.01, p=0.96; eFigure 5). When comparing subtypes, the regional ordering of the Frontal and Parietal 

was positively correlated (ρ=0.74, p<0.001), while Occipital subtype regional ordering did not 
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significantly correlate with the Frontal (ρ=-0.18, p=.50) or Parietal subtypes (ρ=-0.4, p<0.88; eFigure 

6).  

 

Subtype assignment 

Across the complete baseline data-set (N=3010), the majority of scans either showed fully normal 

(stage 0: N=1810, 60.1%) or widespread abnormal (stage 17: N=282, 9.4%) Aβ levels across all brain 

regions, which challenged accurate subtype assignment (Figure 2). Therefore, only cases with a 

strong subtype assignment probability (>50% probability) across stages higher than 0 were selected 

for subsequent subtype analyses (N=788, 26.2%). Within the 788 subjects with strong subtype 

assignment, the majority (N=415, 52.5%) was assigned to the Frontal, followed by the Parietal 

(N=199, 25.3%), and Occipital subtypes (N=175, 22.2%). This distribution was present within each 

cohort, with the exception of ABIDE (N=101) where the majority of subjects (N=46, 45.5%) were 

assigned to the Parietal subtype instead (χ2=70.31, p<0.001, Figure 3A, eTable 1). 

 

Subtype differences 

Demographics per subtype can be found in Table 2. The proportion of males/females was similar 

between subtypes. Subjects assigned to the Parietal subtype were younger compared to the Frontal 

(β=0.05, p<0.001) and Occipital (β=0.04, p=0.005). While MMSE scores did not differ between 

subtypes, diagnostic groups were differentially represented, with Occipital displaying a higher 

proportion of subjects with dementia than the other two (vs Frontal: β=0.84, p<0.001; vs Parietal: 

β=0.63, p=0.02, Figure 3B). The proportion of carriers across subtypes was similar for the ε2 allele 

(6.6-7.9%), while ε4 carriership differed, with the highest percentage of APOE-ε4 carriers observed in 

the Frontal subtype (vs Parietal: β=-0.43, p=0.02; vs Occipital: β=-0.79, p<0.001; Figure 3C). 

With respect to the biomarkers of AD pathology, MLR analyses (N=430) corrected for the variables 

above showed significantly higher amyloid burden as expressed in CL levels for the Frontal subtype 

compared to the Parietal (β=-0.02, p=0.002) and Occipital (β=-0.01, p=0.02), but no differences for 
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CSF Aβ42Figure 3D/E). CSF p-tau levels were also significantly higher for the Frontal subtype 

compared to Parietal (CL model: β=-0.19, p=0.006; CSF Aβ42 model: β=-0.25, p<0.001) and Occipital 

(CL model: β=-0.10, p=0.11; CSF Aβ42 model: β=-0.14, p=0.03), while Parietal and Occipital did not 

differ (Figure 3F).   

 

Longitudinal validation  

A total of 519 (ADNI N=376 [72.4%]; OASIS N=143 [27.6%]) subjects had available longitudinal 

amyloid PET at least 4 years after baseline available (M=5.5±1.2 [4.0 – 9.6] years). Mean follow-up 

time was longer for OASIS (M=6.2±1.4 [4.0 – 9.6] years) compared to ADNI (M=5.2±1.0 [4.0 – 9.4] 

years, F=71.0, p<0.001). Subjects with longitudinal PET data had highly similar demographics 

compared to the full cohort, with most participants being CU as baseline (N=320, 61.7%), had a mean 

MMSE score of 28.72 (SD=1.61), an average age of 70.0 years (SD=9.01), and 51.3% was female.  

The longitudinal validation was performed across the entire sample (even if the baseline probability 

of subtype assignment was lower than 50%). In the complete longitudinal sample, the majority of 

subjects were assigned to ‘no subtype’ (i.e. stage 0) at baseline (N=381, 73.4%), followed by Frontal 

subtype (N=86, 16.6%), Parietal (N=47, 9.1%) and Occipital (N=5, 1.0%).  

 

Subtype stability 

In the entire longitudinal sample, 421 (81.1%) subjects were stable in subtype assignment; 322 

remained stage 0 i.e. ’no subtype’, 65 from the Frontal, and 34 from the Parietal subtype. In contrast, 

98 (18.9%) subjects changed subtype assignment at follow-up (‘no subtype’=59, Frontal=21, 

Parietal=13, and Occipital=5 at baseline). From those, Frontal mostly changed to Parietal and vice-

versa (F→P: 76.2%, N=16 and F→0: 23.8%, N=5| P→F: 76.9%, N=10 and P→O: 7.7%, N=1), while all 

Occipital subjects (N=4) changed subtype, and mostly to Parietal (O→F: 20.0%, N=1 and O→P: 60.0%, 

N=3, Figure 4A). The most common “change in subtype” occurred in subjects who started in stage 0 

(0�F: 66.1%, N=39, 0�P: 30.5%, N=18, 0�O: 3.4%, N=2, Figure 4B).    
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Amyloid accumulation 

When we evaluated staging, we found that 69.0% (N=358) remained stable, 25.6% (N=133) 

progressed to later stages, and 5.4% (N=28) of subjects regressed in stage at follow-up. This was 

independent of subtype stability. These changes in stage can also be observed using the Centiloid 

scale (Figure 4C). Yearly rates of change in Centiloid were different between subjects assigned to one 

of the three subtypes or ‘no subtype’ at baseline, even after accounting for syndromic diagnosis, 

cohort, APOE-ε4 carriership and baseline amyloid burden. More specifically, the longitudinal rates of 

change were lower for the ‘no subtype’ (vs Frontal: β=4.09 p<0.001; vs Parietal: β=4.23 p<0.001; vs 

Occipital: β=2.84 p=0.004) and slightly higher for Occipital subtype (vs Frontal: β=-0.08 p<0.001; vs 

Parietal: β=-0.07 p=0.03 ; vs no subtype: β=-0.35, p<0.001), but did not differ between the Frontal 

and Parietal subtypes.  

 

DISCUSSION 

In this work, applying the Subtype and Stage Inference (SuStaIn) model to a pooled data-set of >3000 

PET scans provided support for the existence of 3 subtypes of topographical cortical amyloid 

accumulation, in contrast to the traditional assumption of single-trajectory models reported 

previously 4, 6, 8, 9. The three subtypes are referred to as Frontal, Parietal, and Occipital based on the 

earliest regions to show abnormality. Of these, the Frontal subtype was most prevalent in our sample 

and was associated with a higher proportion of APOE-ε4 carriership and higher amyloid and tau 

burden, while the Parietal subtype was associated with younger age. The Occipital subtype showed a 

higher proportion of patients with dementia.  

Previous models of amyloid accumulation in AD were based on the assumption of a universal 

trajectory of disease progression, consistently implicating the medial cortical regions early in the 

process of Aβ accumulation, followed by cortical association areas, and finally the late involvement 

of occipital and striatal regions 6-9. This population-level ordering was also identified by SuStaIn when 

the model was set to recover one trajectory, which seems to correspond to an average of the most 
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common Frontal and Parietal subtypes (eFigure 2). We now extend on former studies, as SuStaIn was 

able to further resolve subtype-specific initial stages, identifying the orbitofrontal cortex and 

precuneus regions as the starting point of distinct subtypes. Further, we observed that the 

concomitant abnormality in those regions corresponded to an intermediate SuStaIn stage shared 

between the Frontal and Parietal subtypes instead (i.e. ~Stage 8, Figure 1). Importantly, the 

precuneus seems more strongly implicated in patients with early-onset AD 27. In line, the Parietal 

subtype was more often observed in the ABIDE clinical cohort from the Alzheimercenter Amsterdam, 

a tertiary referral center specialized in dementia at a young age 16, 28. 

In the absence of neuropathological confirmation, it is important to note that recent work on 

regional visual assessment of [18F]flutemetamol PET images supports these results 29. The expert 

visual assessment of almost 500 amyloid-PET images showed both the traditional joint and early 

involvement of the medial orbitofrontal cortex and precuneus, as well as a non-negligible proportion 

of cognitively unimpaired subjects displaying isolated amyloid burden, specifically in one of these 

regions 29. Unfortunately, the occipital lobe is not part of the visual read guidelines of amyloid PET 

images 29, limiting the available information on the incidence of occipital uptake. Nonetheless, a 

subset of subjects in this previous report did show an relatively early involvement of temporal 

regions, especially together with parietal ones – a pattern that could reflect the first half of the 

Occipital subtype progression (up to ~stage 9, Figure 1).  

Importantly, the identification of the Occipital subtype by SuStaIn is remarkably distinct from 

traditional reports of early amyloid deposition in AD. In fact, the occipital lobe is commonly assumed 

to only harbor amyloid pathology towards the end of the disease process 6, 8, 9. Nonetheless, 

posterior or occipital uptake is often attributed to cerebral amyloid angiopathy (CAA), which most 

commonly affects this region and is a known risk factor for AD 30. Under this hypothesis, the 

assignment of subjects to the Occipital subtype could suggest the identification of CAA as cerebral Aβ 

accumulation by SuStaIn. Nonetheless, there is neuropathological support for an alternative 

hypothesis, i.e. that the occipital signal actually reflects cortical amyloid pathology. More specifically, 
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Braak and Braak (1991) described basal occipital uptake as part of the first neuropathological stage in 

AD 5. Also, (posterior) amyloid burden is observed in approximately 50% of patients with Lewy Body 

dementia (DLB), which is suggested to reflect AD co-pathology and is associated with a worse 

prognosis 31. A post-hoc analysis of subtype classification in specifically the clinical ABIDE cohort 

provides further support of this observation, as the Occipital subtype was overrepresented in the 

DLB patient population (eFigure 7). To further determine the underlying pathology of this subtype, 

its relationship to (occipital-) micro bleeds (a symptom of CAA 30) and different etiologies in patients 

with non-AD dementia should be investigated. Still, this over-representation of subjects with 

dementia in the Occipital subtype indicates that early amyloid-PET signal in the occipital lobe may 

harbor relevant prognostic information. As such, future AD research should consider the assessment 

of occipital regions, and future visual read guidelines could consider including the occipital lobe for 

the assessment of amyloid PET scans should these findings be confirmed. 

Overall, subtype assignment might have the highest utility in the pre-dementia stages of AD, 

considering the main differences between the trajectories are apparent at the beginning of the 

process. Indeed, the highest probability of subtype assignment was observed in individuals at the 

early-to-intermediate stages of amyloid-PET abnormality (stages 6-7), while higher stages resulted in 

lower probability of assignment since subtypes merge into similar trajectories (Figure 2). 

Nonetheless, the earliest regions of each subtype still display higher amyloid at the late stages, 

indicating that subtypes can still be identified even beyond the amyloid saturation point. While this 

suggests that the subtypes are not merely ephemeral states, an important question is whether they 

have prognostic value, both in terms of differences in speed of amyloid accumulation as well as in 

terms of risk or speed of subsequent pathological progress and cognitive decline. Regarding the 

former, our longitudinal analyses already suggest the Frontal subtype to have lower amyloid 

accumulation rates compared to the other groups. However, these results must be interpreted with 

caution, as the sample size of both Parietal and Occipital subtypes were too small. Another possible 

impact of amyloid subtypes could be related to subsequent tau spread. While previous literature 
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suggests tau spread beyond the medial temporal lobe to only occur after sufficient amyloid 

deposition, it remains unclear whether and how the spatial distribution of amyloid further influences 

this event. In addition, recent work identified four subtypes of tau accumulation, further suggesting a 

possible interaction between amyloid and tau spatial-temporal trajectories13. In terms of cognition, 

the different proportions of clinical diagnostic groups (i.e. cognitively unimpaired, cognitively 

impaired and dementia) already indicate worse prognosis for the Occipital subtype. Nonetheless, 

clinical diagnosis is a relatively crude measure for overall cognitive performance, and further 

exploration of the severity and type of cognitive symptoms associated with each of the subtypes will 

be necessary to determine their clinical relevance. In addition, previous work has shown that the 

extent of amyloid burden as measured in CL units predicts the risk of global cognitive decline 32. 

Future work should investigate whether additional information on amyloid accumulation subtype 

further improves risk stratification.   

There are some methodological limitations to consider when interpreting the results of this work. 

First, while SuStaIn uses a cross-validation framework and the results are bootstrapped, one could 

argue we should have used a separate training- and test-set to validate the results. We opted not to 

do this, as the majority of subjects were cognitively normal and had no amyloid, thus the amount of 

data with variable amyloid burden was already limited. In addition, it should be noted that the 

majority of the data included in this work was previously used to describe a one-trajectory amyloid 

accumulation pattern, though implementing a different methodological approach 9. Thus, the high 

agreement between the SuStaIn-identified one-trajectory model and some of the previous staging 

work is possibly partly due to the re-use of data. Second, while Centiloid units are generally used to 

pool PET data, we standardized regional SUVr using a z-scoring approach. This was done to account 

for not only tracer differences, but also for the differential signal distortion effects between medial 

and lateral regions (inherit to the PET metric) 4, which is not taken into account in the Centiloid 

approach 22. Third, while our initial results suggest robust assignment over time (i.e. stable for 87.7% 

of subjects), only ADNI and OASIS-3 had available longitudinal PET imaging data, limiting our sample 
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sizes for longitudinal analyses, especially for the Occipital subtype. Finally, yearly rates of change in 

amyloid burden might be underestimated for the Occipital subtype, as the Centiloid mask does not 

include this region.  

CONCLUSION 

The SuStaIn model provides data-driven evidence for the existence of three spatio-temporal 

subtypes of cortical amyloid accumulation and opens possibilities for further exploration of the 

identified subtypes. The initial results indicate differences in their relation to AD risk factors as well 

as prognosis, and therefore suggest subtype assignment may have clinical relevance and/or could 

support individualized risk assessment. Future work should assess whether subtypes are associated 

with distinct cognitive profiles or risk of cognitive decline and investigate the possible underlying 

pathophysiology.  
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Table 1. Baseline demographics for each cohort 

Tracer [
18

F]flutemetamol [
18

F]florbetaben [
11

C]PiB [
18

F]florbetapir 
 

Cohort 
ALFA 

(N = 358) 

EMIF-AD  

(N = 190) 

ABIDE 

(N = 350) 

OASIS  

(N = 572) 

OASIS 

(N = 360) 

ADNI 

(N = 1180) 

Total 

(N=3010) 

Diagnostic 

group 
CU CU 

CU  

(N = 126) 

CI 

(N = 66) 

Dementia 

(N = 158) 

CU 

(N = 482) 

CI 

(N = 32) 

Dementia 

(N = 58) 

CU 

(N = 304) 

CI 

(N = 25) 

Dementia 

(N = 31) 

Missing 

(N = 27) 

CU 

(N = 430) 

CI 

(N = 525) 

Dementia 

(N = 198) 

CU=1890 / CI=648 

/ Dementia=445 / 

Missing=27  

Age (SD) 
61.50 
(4.64) 

70.44 
(7.55) 

60.53 
(7.80) 

66.13 
(7.09) 

66.68 
(7.34) 

64.63  
(9.32) 

70.44 
(8.35) 

74.09 
(8.21) 

66.78 
(8.51) 

70.92 
(6.30) 

73.50 
(6.84) 

72.72 
(9.84) 

73.97 
(6.78) 

72.87 
(7.96) 

75.02 
(7.75) 

68.72 (9.06) 

Sex (F) 
220 

(61.5%) 
112 

(58.9%) 
54  

(42.9%) 
24  

(36.4%) 
65  

(41.1%) 
292  

(60.6%) 
18  

(56.3%) 
24 

(41.4%) 
163 

(53.6%) 
17 

(68.0%) 
19  

(61.3%) 
14 

(51.9%) 
233 

(54.2%) 
222 

(42.3%) 
82  

(41.4%) 
1559 (51.8%) 

MMSE (SD) 
29.18 
(0.95) 

28.99 
(1.14) 

27.77 
(2.40) 

26.94 
(2.01) 

23.12  
(4.09) 

29.13  
(1.15) 

27.97  
(1.94) 

23.77 
(6.01) 

29.04 
(1.26) 

28.56 
(1.53) 

24.45 
(4.07) 

26.00 
(2.55) 

29.06 
(1.19) 

28.02 
(1.78) 

22.49 
(3.28) 

27.88 (2.93) 

APOE-ε4 

carriership +  

198 
(55.3%) 

62  
(33.3%) 

49  
(38.9%) 

31  
(47.0%) 

83  
(52.5%) 

161  
(33.5%) 

15 
(46.9%) 

35  
(60.3%) 

101 
(34.7%) 

7 (30.4%) 23 (74.2%) 
8  

(36.4%) 
124 

(29.0%) 
241 

(45.9%) 
129  

(65.5%) 
1267 (42.1%) 

APOE-ε2 

carriership + 
31 (8.7%) 17 (8.9%) 

15 
(11.9%) 

9  
(13.6%) 

12  
(7.6%) 

81 
(16.8%) 

4 
(12.5%) 

6 
(10.3%) 

52 
(17.9%) 

3 (13.0%) 2 (6.5%) 
1  

(4.5%) 
57 

(13.3%) 
52 (9.9%) 8 (4.1%) 350 (11.6%) 

Centiloid (SD) 
2.76 

(17.02) 
14.58 

(23.02) 
13.00 

(26.53) 
28.35 

(32.36) 
45.51  

(45.15) 
11.77 

(26.70) 
36.75 

(43.74) 
72.14 

(42.55) 
18.77 

(32.06) 
47.02 

(59.19) 
75.70 

(42.30) 
39.71 

(39.32) 
17.79 

(27.89) 
33.45 

(35.89) 
60.43 

(35.33) 
24.24 (35.75) 

Aβ-positivity
$
 

38 
(10.6%) 

40 
(21.1%) 

29 
(23.0%) 

29 
(43.9%) 

101  
(63.9%) 

90 
(18.7%) 

14 
(43.8%) 

49 (84.5%) 
85 

(28.0%) 
13 

(52.0%) 
27 (87.1%) 

15 
(55.6%) 

125 
(29.1%) 

275 
(52.4%) 

167  
(84.3%) 

1097 (36.4%) 

CSF Aβ42 (SD) 
1309.38 
(371.89) 

892.28 
(317.98) 

1078.08 
(283.21) 

906.45 
(319.25) 

745.72 
(298.79) 

N/A N/A N/A 
1246.92 
(433.15) 

1016.95 
(431.53) 

696.12 

(338.48) 
N/A 

CSF P-Tau 

(SD) 

16.44  
(7.49) 

76.34  
(44.38) 

53.98  
(29.84) 

65.75  
(27.82) 

70.90 
(33.08) 

N/A N/A N/A 
22.13 

(9.35) 

26.60 

(14.32) 

36.71 

(16.37) 
N/A 
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CU = cognitively unimpaired, which includes both controls and subjective cognitive decliners; CI = cognitively impaired, subjects either had a clinical diagnosis of mild 

cognitive impairment or a Clinical Dementia Rating of 0.5 (in the absence of a clinical diagnosis) 

Dementia includes both AD or non-AD  
# Subject carries at least 1 APOE-ε4 allele 
† Subject carries at least 1 APOE-ε2 allele 
$ Aβ-positivity = CL>21 

 

  

CSF Essay Elecsys 
Adx 

Euroimm
une 

Innotest N/A N/A Elecsys 
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Table 2 . Baseline demographics for each subtype 

 

Subtype 
Frontal 

(N = 414) 

Parietal 

(N =199 ) 

Occipital 

(N = 175) 

Diagnostic group (N) 

Missing = 2 (0.5%) 
CU = 215 (51.9%) 
CI = 112 (27.1%) 

Dementia = 82 (19.8%) 

Missing = 2 (1.0%) 
CU = 109 (54.8%) 
CI = 50 (25.1%) 

Dementia = 38 (19.1%) 

Missing = 4 (2.3%) 
CU = 77 (44.0%) 
CI = 41 (23.4%) 

Dementia = 53 (30.3%) 

Age (SD) 72.12 (8.14)
 

69.26 (9.61)
 

72.13 (8.07)
 

Sex (F) 196 (47.3%) 97 (43.7%) 85 (48.6%) 

MMSE (SD) 27.35 (3.19)
 

27.40 (2.56) 26.56 (3.50)
 

APOE-ε4 carriership +
#
  264 (64.2%)

 
113 (57.7%) 86 (49.4%) 

APOE-ε2 carriership +
†
 31 (7.5%) 13 (6.6%) 12 (6.9%) 

Centiloid (SD) 50.73 (27.52)
 

36.71 (28.99)
 

40.65 (29.26)
 

z-scored CSF Aβ42 (SD) -2.45 (1.60) -2.19 (1.78) -2.38 (1.72) 

z-scored CSF P-Tau (SD) 2.08 (2.501) 0.91 (2.03) 1.51 (2.03) 

CU = cognitively unimpaired, which includes both controls and subjective cognitive decliners; CI = cognitively impaired, subjects either had a clinical diagnosis of mild 

cognitive impairment or a Clinical Dementia Rating of 0.5 (in the absence of a clinical diagnosis) 

Dementia includes both AD or non-AD  
# Subject carries at least 1 APOE-ε4 allele 
† Subject carries at least 1 APOE-ε2 allele 
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FIGURE LEGENDS 

 

Figure 1. In (A), a representation of the final three subtypes as identified by SuStaIn, referred to as 

Frontal (top row), Parietal (middle row) and Occipital (bottom row), as in accordance to the earliest 

regions to become abnormal; in (B), the same representation for a one-trajectory model across the 

data-set, which was not preferred against the three-subtype model.   
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Figure 2. Subtype assignment probability against assigned stage 

Boxplots shows the relationship between stage assignment on the x-axis against the probability of 
subtype assignment on the y-axis for the whole baseline data-set. The solid line represents the cut-
off for high probability, i.e. >50%. It can be appreciated that subtype assignment probability is lowest 
for those subjects in stage 0 or 17, who present little least spatio-temporal information. Also, the 
highest probability assignment is observed for those subjects around 7, where the subtypes are most 
different from each other.  
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Figure 3. Cross-sectional relationships 

For the 788 subjects with a strong subtype assignment (>50% probability) at baseline, differences in 
subtypes are shown for A) cohort and tracer representation, B) diagnostic groups, C) APOE-ε4 
carriership, D) amyloid burden expressed in Centiloid units, E) amyloid burden in CSF Aβ42, and F) CSF 
p-tau. Demographics and risk factors (A-C) were significantly different between the three subtypes. 
D/F) The Frontal subtype was associated with higher Centiloid and CSF p-tau values, E) though no 
differences were observed for CSF Aβ42 between subtype . 
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Figure 4. Longitudinal validation 

In panel A), the subtype assignment at baseline vs at follow-up is shown. Spaghetti plots illustrates 
the change in B) stage and C) Centiloid (CL) units per subtype as assigned at baseline. Lines are color 
coded to show changes in subtype assignment at follow-up. Overall, changes in stage are associated 
with changes in CL and yearly rates of change were lowest for the Frontal subtype. 

 
 
 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

Appendix 1– Authors 

Name Location Contribution 

Lyduine E. Collij, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Literature search, design, data 
collection, analysis, interpretation, 
drafted manuscript 

Gemma Salvadó, PhD Barcelonaβeta Research Center, 
Barcelona, ES 

Literature search, design, data 
collection, analysis, interpretation, 
drafted manuscript 

Viktor Wottschel, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Design, analysis, interpretation, 
drafted manuscript, revised 
manuscript 

Sophie E. Mastenbroek, MSc. Amsterdam UMC, VUmc, Amsterdam, 
NL 

Analyses, interpretation, drafted 
manuscript, revised manuscript 

Pierre Schoenmakers, BSc. Amsterdam UMC, VUmc, Amsterdam, 
NL 

Data collection, analysis, revised 
manuscript 

Fiona Heeman, MSc. Amsterdam UMC, VUmc, Amsterdam, 
NL 

Data collection, interpretation, 
revised manuscript 

Leon M. Aksman, PhD Stevens Neuroimaging and Informatics 
Institute, University of Southern 
California, Los Angeles, US.  

Analysis, revised manuscript 

Alle Meije Wink, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Interpretation, revised manuscript 

Bart N.M. van Berckel, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Data collection, interpretation, 
revised manuscript 

Wiesje M. van der Flier, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Data collection, analyses, 
interpretation, revised manuscript 

Philip Scheltens, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Data collection, revised manuscript 

Pieter Jelle Visser, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Data collection, revised manuscript 

Frederik Barkhof, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL; University College London, London, 
UK 

Data collection, interpretation, 
revised manuscript 

Sven Haller, PhD Faculty of Medicine of the University of 
Geneva, Geneva, Switzerland 

Design, analyses, interpretation, 
revised manuscript 

Juan Domingo Gispert, PhD Barcelonaβeta Research Center, 
Barcelona, ES; 

Design, data collection, analyses, 
interpretation, revised manuscript 

Isadora Lopes Alves, PhD Amsterdam UMC, VUmc, Amsterdam, 
NL 

Literature search, design, analysis, 
interpretation, drafted manuscript 

  



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

 
WNL-2022-200401_sup ---http://links.lww.com/WNL/B861 

WNL-2022-200401_coinvestigator_appendix2 --http://links.lww.com/WNL/B862 

WNL-2022-200401_coinvestigator_appendix3 --http://links.lww.com/WNL/B863 

 

 

REFERENCES 
 
 
1. Salloway S, Gamez JE, Singh U, et al. Performance of [(18)F]flutemetamol amyloid 
imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA 
recommendations for the neuropathologic diagnosis of Alzheimer's disease. Alzheimers 

Dement (Amst). 2017;9:25-34. doi:10.1016/j.dadm.2017.06.001 
2. Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta 
plaques in Alzheimer's disease: phase 3 study. Alzheimers Dement. Aug 2015;11(8):964-74. 
doi:10.1016/j.jalz.2015.02.004 
3. Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging β-amyloid 
pathology. Jama. 2011;305(3):275-283.  
4. Fantoni E, Collij L, Alves IL, Buckley C, Farrar G. The spatial-temporal ordering of 
amyloid pathology and opportunities for PET imaging. J Nucl Med. Dec 13 
2019;doi:10.2967/jnumed.119.235879 
5. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta 

Neuropathol. 1991;82(4):239-59.  
6. Grothe MJ, Barthel H, Sepulcre J, et al. In vivo staging of regional amyloid deposition. 
Neurology. Nov 14 2017;89(20):2031-2038. doi:10.1212/WNL.0000000000004643 
7. Hanseeuw BJ, Betensky RA, Mormino EC, et al. PET staging of amyloidosis using 
striatum. Alzheimers Dement. May 21 2018;doi:10.1016/j.jalz.2018.04.011 
8. Mattsson N, Palmqvist S, Stomrud E, Vogel J, Hansson O. Staging β-amyloid pathology 
with amyloid positron emission tomography. JAMA neurology. 2019;76(11):1319-1329.  
9. Collij LE, Heeman F, Salvado G, et al. Multitracer model for staging cortical amyloid 
deposition using PET imaging. Neurology. Sep 15 2020;95(11):e1538-e1553. 
doi:10.1212/WNL.0000000000010256 
10. Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and 
neuroanatomical variability in Alzheimer's disease. Brain. May 2016;139(Pt 5):1551-67. 
doi:10.1093/brain/aww027 
11. Young AL, Marinescu RV, Oxtoby NP, et al. Uncovering the heterogeneity and 
temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nat 

Commun. Oct 15 2018;9(1):4273. doi:10.1038/s41467-018-05892-0 
12. Young AL, Oxtoby NP, Daga P, et al. A data-driven model of biomarker changes in 
sporadic Alzheimer's disease. Brain. Sep 2014;137(Pt 9):2564-77. doi:10.1093/brain/awu176 
13. Vogel JW, Young AL, Oxtoby NP, et al. Four distinct trajectories of tau deposition 
identified in Alzheimer’s disease. Nat Med. 2021/04/29 2021;doi:10.1038/s41591-021-
01309-6 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

14. Molinuevo JL, Gramunt N, Gispert JD, et al. The ALFA project: A research platform to 
identify early pathophysiological features of Alzheimer's disease. Alzheimers Dement (N Y). 
Jun 2016;2(2):82-92. doi:10.1016/j.trci.2016.02.003 
15. Konijnenberg E, Carter SF, Ten Kate M, et al. The EMIF-AD PreclinAD study: study 
design and baseline cohort overview. Alzheimers Res Ther. Aug 4 2018;10(1):75. 
doi:10.1186/s13195-018-0406-7 (http://www.emif.eu/emif-ad-2/) 
16. de Wilde A, van Maurik IS, Kunneman M, et al. Alzheimer's biomarkers in daily 
practice (ABIDE) project: Rationale and design. Alzheimers Dement (Amst). 2017;6:143-151. 
doi:10.1016/j.dadm.2017.01.003 
17. LAMontagne PJ KS, Lauren W, Xiong C, Grant EA, Moulder KL, Morris JC, Bezinger TLS, 
Marcus DS. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitivel Dataset for Normal 
Aging and Alzheimer's Disease. AAIC 2018 poster presentation. 2018;14(7):P1097. 
doi:https://doi.org/10.1016/j.jalz.2018.06.1439 (https://www.oasis-brains.org/) 
18. Heeman F, Yaqub M, Lopes Alves I, et al. Optimized dual-time-window protocols for 
quantitative [(18)F]flutemetamol and [(18)F]florbetaben PET studies. EJNMMI Res. Mar 27 
2019;9(1):32. doi:10.1186/s13550-019-0499-4 
19. Collij L, Konijnenberg E, Reimand J, et al. Assessing Amyloid Pathology in Cognitively 
Normal Subjects using [(18)F]Flutemetamol PET: Comparing Visual Reads and Quantitative 
Methods. J Nucl Med. Oct 12 2018;doi:10.2967/jnumed.118.211532 
20. Su Y, D'Angelo GM, Vlassenko AG, et al. Quantitative analysis of PiB-PET with 
FreeSurfer ROIs. PLoS One. 2013;8(11):e73377. doi:10.1371/journal.pone.0073377 
(https://github.com/ysu001/PUP) 
21. Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing 
the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 
Jul 1 2006;31(3):968-80. doi:10.1016/j.neuroimage.2006.01.021 
22. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative 
amyloid plaque estimation by PET. Alzheimers Dement. Jan 2015;11(1):1-15 e1-4. 
doi:10.1016/j.jalz.2014.07.003 
23. Salvado G, Molinuevo JL, Brugulat-Serrat A, et al. Centiloid cut-off values for optimal 
agreement between PET and CSF core AD biomarkers. Alzheimers Res Ther. Mar 21 
2019;11(1):27. doi:10.1186/s13195-019-0478-z 
24. Fonteijn HM, Modat M, Clarkson MJ, et al. An event-based model for disease 
progression and its application in familial Alzheimer's disease and Huntington's disease. 
Neuroimage. Apr 15 2012;60(3):1880-9. doi:10.1016/j.neuroimage.2012.01.062 
25. Reiss PT, Huang L, Cavanaugh JE, Roy AK. Resampling-based information criteria for 
best-subset regression. Annals of the Institute of Statistical Mathematics. 2012;64(6):1161-
1186.  
26. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev 

Neurosci. Nov 2018;19(11):687-700. doi:10.1038/s41583-018-0067-3 
27. Ossenkoppele R, Zwan MD, Tolboom N, et al. Amyloid burden and metabolic function 
in early-onset Alzheimer's disease: parietal lobe involvement. Brain. Jul 2012;135(Pt 7):2115-
25. doi:10.1093/brain/aws113 
28. van der Flier WM, Scheltens P. Amsterdam Dementia Cohort: Performing Research to 
Optimize Care. J Alzheimers Dis. 2018;62(3):1091-1111. doi:10.3233/JAD-170850 
29. Collij LE, Salvado G, Shekari M, et al. Visual assessment of [(18)F]flutemetamol PET 
images can detect early amyloid pathology and grade its extent. Eur J Nucl Med Mol 

Imaging. Feb 22 2021;doi:10.1007/s00259-020-05174-2 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

30. Charidimou A, Farid K, Tsai HH, Tsai LK, Yen RF, Baron JC. Amyloid-PET burden and 
regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis 
of biomarker performance. J Neurol Neurosurg Psychiatry. Apr 2018;89(4):410-417. 
doi:10.1136/jnnp-2017-316851 
31. Chetelat G, Arbizu J, Barthel H, et al. Amyloid-PET and (18)F-FDG-PET in the 
diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurol. Nov 
2020;19(11):951-962. doi:10.1016/S1474-4422(20)30314-8 
32. van der Kall LM, Truong T, Burnham SC, et al. Association of beta-amyloid level, 
clinical progression and longitudinal cognitive change in normal older individuals. Neurology. 
Nov 12 2020;doi:10.1212/WNL.0000000000011222 
33. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. Mar 2 
2021;doi:10.1016/S0140-6736(20)32205-4 
34. Mila-Aloma M, Salvado G, Gispert JD, et al. Amyloid beta, tau, synaptic, 
neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer's 
continuum. Alzheimers Dement. Oct 2020;16(10):1358-1371. doi:10.1002/alz.12131 
35. Palhaugen L, Sudre CH, Tecelao S, et al. Brain amyloid and vascular risk are related to 
distinct white matter hyperintensity patterns. J Cereb Blood Flow Metab. Sep 21 
2020:271678X20957604. doi:10.1177/0271678X20957604 
36. Dicks E, van der Flier WM, Scheltens P, Barkhof F, Tijms BM, Alzheimer's Disease 
Neuroimaging I. Single-subject gray matter networks predict future cortical atrophy in 
preclinical Alzheimer's disease. Neurobiol Aging. Oct 2020;94:71-80. 
doi:10.1016/j.neurobiolaging.2020.05.008 

 



DOI 10.1212/WNL.0000000000200148
 published online March 15, 2022Neurology 

Lyduine E. Collij, Gemma Salvadó, Viktor Wottschel, et al. 
Model Analysis

 Accumulation: A Subtype and Stage InferenceβSpatial-Temporal Patterns of Amyloid-

This information is current as of March 15, 2022

Services
Updated Information &

 ull
http://n.neurology.org/content/early/2022/03/15/WNL.0000000000200148.f
including high resolution figures, can be found at:

  
Permissions & Licensing

 http://www.neurology.org/about/about_the_journal#permissions
entirety can be found online at:
Information about reproducing this article in parts (figures,tables) or in its

  
Reprints

 http://n.neurology.org/subscribers/advertise
Information about ordering reprints can be found online:

0028-3878. Online ISSN: 1526-632X.
Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Print ISSN:
is now a weekly with 48 issues per year. Copyright Copyright © 2022 The Author(s). Published by Wolters 

® is the official journal of the American Academy of Neurology. Published continuously since 1951, itNeurology 

http://n.neurology.org/content/early/2022/03/15/WNL.0000000000200148.full
http://n.neurology.org/content/early/2022/03/15/WNL.0000000000200148.full
http://www.neurology.org/about/about_the_journal#permissions
http://n.neurology.org/subscribers/advertise

