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The suggested revision of the NINCDS–ADRDA criterion for the diagnosis of Alzheimer's disease (AD) includes
at least one abnormal biomarker among magnetic resonance imaging (MRI), positron emission tomography
(PET) and cerebrospinal fluid (CSF). We aimed to investigate if the combination of baseline MRI and CSF
could enhance the classification of AD compared to using either alone and predict mild cognitive impairment
(MCI) conversion at multiple future time points. 369 subjects from the Alzheimer's disease Neuroimaging
Initiative (ADNI) were included in the study (AD=96, MCI=162 and CTL=111). Freesurfer was used to
generate regional subcortical volumes and cortical thickness measures. A total of 60 variables were used
for orthogonal partial least squares to latent structures (OPLS) multivariate analysis (57 MRI measures and
3 CSF measures: Aβ42, t-tau and p-tau). Combining MRI and CSF gave the best results for distinguishing AD
vs. CTL. We found an accuracy of 91.8% for the combined model at baseline compared to 81.6% for CSF
measures and 87.0% for MRI measures alone. The combined model also gave the best accuracy when
distinguishing between MCI vs. CTL (77.6%) at baseline. MCI subjects who converted to AD by 12 and
18 month follow-up were accurately predicted at baseline using an AD vs. CTL model (82.9% and 86.4%
respectively), with lower prediction accuracies for those MCI subjects converting by 24 and 36 month follow
up (75.4% and 68.0% respectively). The overall prediction accuracies for converters and non-converters
ranged from 58.6% to 66.4% at different time points. Combining MRI and CSF measures in a multivariate
model at baseline gave better accuracy for discriminating between AD and CTL, between MCI and CTL and
for predicting future conversion from MCI to AD, than using either MRI or CSF separately.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is one of the most common forms of
neurodegenerative disorders characterized by a gradual loss of cognitive
functions such as episodicmemory. The disease is related to pathological
amyloid depositions and hyperphosphorylation of structural proteins
which leads to progressive loss of function, metabolic alterations and
structural changes in the brain.
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A revision of the National Institute of Neurological and Communi-
cative Disorders and Stroke (NINCDS) and the Alzheimer's disease and
related Disorders Association (ADRDA) criterion (McKhann et al., 1984)
for the diagnosis of AD has been suggested. The new research criterion
is still centered on a clinical core of early and significant episodicmemory
impairment, but also includes at least one abnormal biomarker among
magnetic resonance imaging (MRI), positron emission tomography
(PET) and cerebrospinal fluid (CSF) (Dubois et al., 2007). The new
suggested diagnostic criterion also utilizes biomarkers (McKhann et al.,
2011). Since evidence for use of these biomarkers is growing, it
strengthens their role in the diagnosis of AD. These biomarkers reflect
different yet connected aspects of the disease, with MRI measuring
early structural changes in the medial temporal lobe, particularly
entorhinal cortex and hippocampus, fluorodeoxyglucose (FDG)-PET
measuring glucose metabolism, amyloid PET measuring the build-up of
amyloid in tissue and CSF biomarkers reflecting changes in levels of Aβ,
tau proteins and ratios of the two. The utilization of the three biomarkers
varies from center to center and depends on factors including local
availability, cost and historical patterns of usage.
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An effective combination of different biomarkers may prove to be
more useful than using single biomarkers and could be a potent
biomarker in itself for disease diagnosis and prediction of progression
from MCI to AD. Therefore, we decided to investigate the impact of
combining MRI and CSF measures for the classification of AD and to
predict future conversion from the prodromal stage of the disease,
mild cognitive impairment (MCI).

The combination of MRI and CSF (Ewers et al., in press; Kohannim et
al., 2010; Nettiksimmons et al., 2010) or MRI, CSF and FDG-PET
(Kohannim et al., 2010; Walhovd et al., 2010; Zhang et al., 2011) has
previously been investigated, but few studies have previously utilized
baseline MRI and CSF measures for classification of individual subjects
(Ewers et al., in press; Kohannim et al., 2010; Walhovd et al., 2010).
No previous studies have systematically and extensively examined the
prediction of MCI conversion at multiple future time points.

We have utilized a novel technique (OPLS) with one of the largest
sample sizes to date from theADNI cohort to combine the twomeasures
for individual classification. We aimed to compare the ability of the
combination of MRI and CSF, MRI alone and CSF alone, to 1) distinguish
subjects with AD from healthy controls at baseline, 2) distinguish
subjects with MCI from healthy controls at baseline and 3) use baseline
MRI and CSF data to predict conversion from MCI to AD, using the
follow-up diagnosis at multiple future time points.

Material and methods

Data

Data was downloaded from the Alzheimer's disease Neuroimaging
Initiative (ADNI) database (www.loni.ucla.edu/ADNI, PI Michael M.
Weiner). ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial MRI, PET and other biological
markers are useful in clinical trials of MCI and early AD. Determination
of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of
clinical trials. ADNI subjects aged 55 to 90 from over 50 sites across
the U.S. and Canada participated in the research and more detailed
information is available at www.adni-info.org.

Inclusion and diagnostic criteria

A total of 369 subjects were included in the current study (AD=96,
MCI=162 and CTL=111). The demographics of the cohort are given in
Table 1. Data was acquired from 55 different sites (AD and MCI patients
from 47 different sites and CTL from 51 different sites), with one to six
subjects from each group acquired at each site. We included all subjects
Table 1
Subject characteristics.

AD (n=96) MCI (n=162) CTL (n=

Female/male 41/55 61/101 55/56
Age 74.4±7.8 74.1±7.2 75.6±5
Education 15.1±3.2 15.9±2.9 15.7±2
MMSE 23.5±1.8a,b 26.9±1.8b 29.1±0
CDR 0.7±0.2a,b 0.5b 0
ADAS1 6.2±1.4a,b 4.6±1.4b 2.8±1.

Data are represented as mean±standard deviation. AD = Alzheimer's disease, MCI =mild
state examination, ADAS1 = word list non-learning (mean), CDR = clinical dementia ratin
Two-way student t-test with Bonferroni correction was used for age and education and ne

a Indicates significance compared to MCI group.
b Indicates significance compared to control group.
who had successful MRI and CSF measures at baseline which passed the
quality control steps outlined below. We use the term baseline to refer
to when the first MRI scans were performed on the ADNI cohort and a
clinical examination carried out to determine the subject group (i.e. AD,
MCI and CTL). Other investigators have selected smaller samples but we
feel that it is important to evaluate novel methods on the full range of
available data to avoid bias. Of the 162 MCI subjects, 81 converted to AD
(MCIc) at 12 month, 18 month, 24 month or 36month follow-up.
Subjects who did not convert at each time point are referred to as MCI
stable (MCIs) here.

A detailed description of the inclusion criteria can be found on the
ADNI webpage (http://www.adni-info.org/Scientists/AboutADNI.aspx#).
Subjects were between 55 and 90 years of age. They had a study partner
able to provide an independent evaluation of functioning, and spoke
either English or Spanish. All subjects were willing and able to undergo
all test procedures including neuroimaging and agreed to longitudinal
follow up. Specific psychoactive medications were excluded.

Alzheimer's disease (General inclusion/exclusion criteria): 1) Mini
mental state examination (MMSE) scores between 20 and 26, 2)
Clinical dementia rating scale (CDR) of 0.5 or 1.0, 3) Met NINCDS/
ADRDA criteria for probable AD, 4) Geriatric Depression Scale b6,
and 5) Subjects were excluded if they had any other significant
neurologic disease other than Alzheimer's disease.

Mild cognitive impairment (General inclusion/exclusion criteria): 1)
Subjects had MMSE scores between 24 and 30 (inclusive), 2) Memory
complaint, with objective memory loss measured by education
adjusted scores on the Wechsler Memory Scale Logical Memory II,
3) CDR of 0.5, 4) Absence of significant levels of impairment in
other cognitive domains, essentially preserved activities of daily
living, and an absence of dementia, 5) Geriatric Depression Scale b6,
and 6) Subjects were excluded if they had any other significant
neurologic disease other than Alzheimer's disease.

Controls (General inclusion/exclusion criteria): 1) MMSE scores
between 24 and 30 inclusive, 2) CDR of zero, and 3) They were non-
depressed, non MCI, and non-demented.

MRI and CSF

Both MRI and CSF data was downloaded from the ADNI website
(www.loni.ucla.edu/ADNI). The description of the data acquisition of the
ADNI study can be found at www.loni.ucla.edu/ADNI/research/Cores/
index.shtml. Briefly, data from 1.5 T scanners was used with data
collected from a variety of MR-systems with protocols optimized for
each type of scanner. TheMRI protocol included a high resolution sagittal
3D T1-weighted MPRAGE volume (voxel size 1.1×1.1×1.2 mm3)
acquired using a custom pulse sequence specifically designed for the
ADNI study to ensure compatibility across scanners. Baseline CSF Aβ42,
t-tau and p-tau measures were used as features in this study. CSF was
collected in the morning after an overnight fast using a 20- or 24-gauge
spinal needle, frozen within 1 h of collection, and transported on dry ice
to the ADNI Biomarker Core laboratory at the University of Pennsylvania
111) MCIs (n=81) MCIc (n=81) p

29/52 32/49 –

.2 73.9±7.2 74.3±7.2 –

.8 16.1±2.9 15.8±2.9 –

.9 27.2±1.7 26.6±1.8 b0.001
0.5 0.5 b0.001

2 4.2±1.5 5.0±1.2 b0.001

cognitive impairment, CTL = healthy control, education in years, MMSE = mini mental
g. Chi-square was used for gender comparison.
uropsychological tests comparisons.

http://www.loni.ucla.edu/ADNI
http://www.adni-info.org
http://www.adni-info.org/Scientists/AboutADNI.aspx#
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/research/Cores/index.shtml
http://www.loni.ucla.edu/ADNI/research/Cores/index.shtml
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Medical Center. The complete descriptions of the collection and
transportation protocols are provided in the ADNI procedural manual at
www.adni-info.org. Full brain and skull coverage was required for the
MRI datasets and detailed quality control carried out on all MR images
according to previously published quality control criteria (Simmons et
al., 2009, 2011).
Fig. 1. Representations of ROIs included as candidate input variables in the multivariate
OPLS model. (A) Regional subcortical volumes. (B) Regional cortical thickness
measures.
Regional subcortical volume segmentation and cortical thickness parcellation

We applied the Freesurfer pipeline (version 4.5.0) to the MRI
images to produce regional cortical thickness and subcortical
volumetric measures (Fig. 1). Cortical reconstruction and subcortical
volumetric segmentation include removal of non-brain tissue using
a hybrid watershed/surface deformation procedure (Segonne et al.,
2004), automated Talairach transformation, segmentation of the
subcortical white matter and deep gray matter volumetric structures
(including hippocampus, amygdala, caudate, putamen, ventricles)
(Fischl et al., 2002; Fischl et al., 2004a; Segonne et al., 2004), intensity
normalization (Sled et al., 1998), tessellation of the gray matter white
matter boundary, automated topology correction (Fischl et al., 2001;
Segonne et al., 2007), and surface deformation following intensity
gradients to optimally place the gray/white and gray/cerebrospinal
fluid borders at the location where the greatest shift in intensity
defines the transition to the other tissue class (Dale et al., 1999;
Dale and Sereno, 1993; Fischl and Dale, 2000). Once the cortical
models are complete, registration to a spherical atlas takes place
which utilizes individual cortical folding patterns to match cortical
geometry across subjects (Fischl et al., 1999). This is followed by
parcellation of the cerebral cortex into units based on gyral and sulcal
structure (Desikan et al., 2006; Fischl et al., 2004b). The pipeline
generated 68 cortical thickness measures (34 from each hemisphere)
and 50 regional subcortical volumes. Volumes of white matter
hypointensities, optic chiasm, right and left vessel, and left and right
choroid plexus were excluded from further analysis. White matter
hypointensities were excluded since most subjects were characterized
by zero values. Cortical thickness and subcortical volumetric measures
from the right and left side were averaged, since this makes the data
interpretation easier and the prediction accuracy does not significantly
change ifmeasures are averaged. InWestman et al. (2011a), we studied
the whole ADNI cohort, rather than the sub-cohort who had both MRI
and CSF measures at baseline and found for a AD vs. CTL model at
baseline the averaged/not averaged sensitivity and specificity were
86.9%/86.3% and 86.7%/88.4%, respectively. Others have also applied
this approach (Fjell et al., 2009; Walhovd et al., 2011). In total 57 MRI
measures were used as input variables for the OPLS classification, 34
regional cortical thickness measures and 23 regional subcortical
volumes (Table 2). All subcortical volumetric measures from each
subject were normalized by the subject's intracranial volume, which is
estimated based on an affine transform in Freesurfer.

Cortical thickness measures were not normalized and were used
in their raw form. This segmentation approach has been used for
neuropsychological-image analysis (Liu et al., 2010c; Liu et al.,
2011), imaging-genetic analysis (Liu et al., 2010a; Liu et al., 2010b)
and biomarker discovery (Thambisetty et al., 2010).
Multivariate data analysis

Before multivariate analysis, data was pre-processed using the
software package SIMCA-P+ (Umetrics AB, Umea, Sweden), including
mean centring and unit variance scaling. Mean centring improves the
interpretability of the data, by subtracting the variable average from
the data. By doing so the data set is repositioned around the origin.
Large variance variables are more likely to be expressed in modeling
than low variance variables. Consequently, unit variance scaling was
selected to scale the data appropriately. This scaling method calculates
the standard deviation of each variable. The inverse standard deviation
is used as a scaling weight for each MR-measure.

After pre-processing data was analyzed using orthogonal partial
least squares to latent structures (OPLS) (Bylesjo et al., 2007; Johan
Trygg, 2002; Rantalainen et al., 2006; Westman et al., 2011c; Wiklund
et al., 2008), a supervised multivariate data analysis method also
included in the software package SIMCA (Umetrics AB, Umea, Sweden).

http://www.adni-info.org


Table 2
Variable included in the OPLS analysis.

Cortical thickness measures Subcortical volumetric measures CSF

Banks of superior temporal sulcus Third ventricle Aβ42

Caudal anterior cingulate Fourth ventricle t-tau
Caudal middle frontal gyrus Brainstem p-tau
Cuneus cortex Corpus callosum anterior
Entorhinal cortex Corpus callosum central
Fusiform gyrus Corpus callosum midanterior
Inferior parietal cortex Corpus callosum midposterior
Inferior temporal gyrus Corpus callosum posterior
Isthmus of cingulate cortex CSF
Lateral occipital cortex Accumbens
Lateral orbitofrontal cortex Amygdala
Lingual gyrus Caudate
Medial orbitofrontal cortex Cerebellum cortex
Middle temporal gyrus Cerebellum white matter
Parahippocampal gyrus Hippocampus
Paracentral sulcus Inferior lateral ventricle
Frontal operculum Putamen
Orbital operculum Cerebral cortex
Triangular part of inferior frontal gyrus Cerebral white matter
Pericalcarine cortex Lateral ventricle
Postcentral gyrus Pallidum
Posterior cingulate cortex Thalamus proper
Precentral gyrus Ventral DC
Precuneus cortex
Rostral anterior cingulate cortex
Rostral middle frontal gyrus
Superior frontal gyrus
Superior parietal gyrus
Superior temporal gyrus
Supramarginal gyrus
Frontal pole
Temporal pole
Transverse temporal cortex
Insular

60 variables in total were included in the OPLS analysis, 34 cortical thickness measures,
23 subcortical volumetric measures and 3 CSF measures.

232 E. Westman et al. / NeuroImage 62 (2012) 229–238
Supervised techniques such as OPLS use prior information about
group information and do not attempt to explain as much variance in
the original data as possible, which is the case for unsupervisedmethods
like principal component analysis (PCA). Instead OPLS tries to maximize
the covariance between the dependent and the independent variables.
This is done via an inner relationship between the latent variables.
Trygg and Wold (2002) first described the OPLS method a decade ago.
The method combined the existing theory of partial least squares (PLS)
regression (Wold et al., 1984; Wold et al., 2001a) and orthogonal signal
correction (OSC) (Trygg and Wold, 2003; Wold et al., 2001b). PLS has
previously been used in several studies to analyze MR-data (Levine et
al., 2008; McIntosh and Lobaugh, 2004; Westman et al., 2009).

One way of describing PLS modeling (the relationship between
two blocks of variables) is that it fits and aligns two models
simultaneously, one model for X (independent variables) and one
for Y (dependent variables). The aim is to model X and Y and to
predict Y from X.

X ¼ 1 � x̄′ þT � P′ þ E

Y ¼ 1 � ȳ′ þ U � C′ þ F:

The terms 1 � x̄ ′ and 1 � �y′ originate from the pre-processing step
described above and represent the variable averages. Matrices T and
U are information related to the observations. They describe if the
observations are similar or dissimilar depending on the model and
problem at hand. The X-loading matrix P′ and the Y-weight matrix
C′ contain information connected to the variables. The last and final
terms E and F are the residual matrices which contain the noise
(data not modeled) (Eriksson et al., 2006). As previously stated,
OPLS is an extension of the PLS technique with orthogonal signal
correction. This means that the information in Y can be used to
decompose the X matrix into two blocks. One part is the structured
variation (correlated variation) and the other is the variation
orthogonal to Y (uncorrelated variation). To remove the variation in
X which is not related to Y, OSC is based on three criteria where
each component: 1) should involve the large systematic variations
in X, 2) should be predictive by X, 3) should be orthogonal to Y
(Trygg and Wold, 2002). OPLS and PLS give the same predictive
accuracy, but the advantage of OPLS is that the information related to
class separation (correlated variation) is found in the first component
of the model, the predictive component. The other orthogonal
components in the model, if any, relate to variation in the data not
connected to class separation (uncorrelated variation). Focusing the
information related to class separation on the first component makes
data interpretation easier (Wiklund et al., 2008). Similar to the PLS
method, the OPLS method can be written as:

X ¼ TpPp
T þ ToPo

T þ E
Y ¼ TpCp

T þ F
:

The TpPpT block (the Y-predictive block) is the representation of
the correlated variation and the ToPoT block (the Y-orthogonal block)
represents the uncorrelated variation.

The OPLS model is characterized by a Q2(Y) value that describes
the significance for separating groups (the predictability of the
model). Q2(Y) values >0.05 are regarded as significant (Umetrics,
2008), where

Q2 Yð Þ ¼ 1− PRESS=SSYð Þ

where PRESS (predictive residual sum of squares)=Σ(yactual−
ypredicted)2 and SSY is the total variation of the Y matrix after scaling
and mean centring (Eriksson et al., 2006). Q2(Y) is the fraction of
the total variation of the Ys (expected class values) that can be
predicted by a component according to cross validation (CV). Cross
validation is a statistical method for validating a predictive model
which involves building a number of parallel models. These models
differ from each other by leaving out a part of the dataset each time.
The data omitted is then predicted by the respective model. In this
study we used seven fold cross-validation, which means that 1/7th
of the data is omitted for each cross-validation round. Data is omitted
once and only once. Two groups are always compared using OPLS in
this study and Y contains the prior information about group
membership. Y is set to 1 for AD cases and 0 for CTL in the AD vs.
CTL model and Y is set to 1 for MCI cases and CTL to 0 in the MCI vs.
CTL model. The prediction value for a subject to belong to a group is
equal to 1 for maximum likelihood, and is equal to 0 for minimum
likelihood and vice versa depending on which group the subject
belongs to. The cut off value for accepting the observation as correctly
predicted is 0.5. When the model is generated each subject receives a
predictive Y value while it is omitted from the modeling during the
cross-validation rounds and then predicted on to the model.

Altogether 60 variables were used for OPLS analysis (Table 2). No
feature selection was performed, meaning all measured variables
were included in the analysis. MRI and CSF variables were analyzed
separately, which means a separate OPLS model is created for each
set of variables. The two models are then combined using hierarchical
modeling. This means that the scores obtained from each variable
model (the MRI OPLS model and the CSF OPLS model) are used as
new latent variables in a hierarchical model.

Three OPLS models were created for AD vs. CTL and MCI vs. CTL,
(1) MRI data, (2) CSF data and (3) a hierarchical model containing
models (1) and (2).
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As previously mentioned the OPLS models create a score for each
individual subject, which tends to be close to 1 for AD patients and
0 for CTL subjects. Scores above 0.5 indicate a more AD-like
characteristic and scores below 0.5 a more CTL-like characteristic.
The AD vs. CTL OPLS model including MRI+CSF baseline data was
used as a training set to prospectively predict MCIc vs. MCIs at 12,
18, 24 and 36 month follow-up. This produced a discriminant score
(the OPLS MRI+CSF based score) for each individual with MCI,
reflecting the degree to which the individual's pattern (based on
MRI and CSF) resembled the pattern of subjects with AD or the
pattern of CTL subjects.

Variables can be plotted according to their importance for the
separation of groups (Figs. 2 and 3). The plots show the MRI and CSF
measures and their corresponding jack-knifed confidence intervals.
Jack-knifing is used to estimate the bias and standard error. The cross-
validation results from each model can be fed directly to jack-knifing.
By doing so, the various sub-models generated by cross-validation are
used to calculate the standard error of the different model parameters,
which are then converted into confidence intervals via the t-distribution
(Eriksson et al., 2006). Measures with confidence intervals that include
zero have low reliability (Wiklund et al., 2008). Covariance is plotted on
the y-axis, where

Cov t;Xið Þ ¼ tTXi= N−1ð Þ

where t is the transpose of the score vector t in the OPLS model, i is the
centered variable in the data matrix X and N is the number of variables
(Wiklund et al., 2008). A measure with high covariance is more likely to
have an impact on group separation than a variable with low covariance.
MRI and CSF measures below zero in the plots have lower values in AD
andMCI subjects compared to CTL subjects, while MRI and CSF measures
above zero are higher in AD andMCI subjects compared to CTL subjects in
the model.
Vari
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Fig. 2. CSF variables of importance for the separation between ADvs. CTL andMCI vs. CTL. (A) CS
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more likely to have an impact on group separation than a measure with a low covariance. Mea
Sensitivity, specificity and area under the curve (AUC) were
determined from the cross-validated prediction values of the OPLS
models. The sensitivity was calculated as the percentage of AD subjects
classified as AD subjects and the specificity as the percentage of CTL
subjects classified as CTL subjects. The positive predictive value (PPV)
(true positive/test outcome positive) and negative predictive value
(NPV) (true negative/test outcome negative) were also evaluated.
Finally, the positive and negative likelihood ratios (LR+=sensitivity/
(100−specificity) and LR−=(100−sensitivity)/specificity)) were
calculated. A positive likelihood ratio between 5 and 10 or a negative
likelihood ratio between 0.1 and 0.2 increases the diagnostic value in
a moderate way, while a value above 10 or below 0.1 significantly
increases the diagnostic value of the test (Qizilbash et al., 2002).
Results

AD and MCI classification

Table 3 shows the classification accuracy, sensitivity, specificity,
positive and negative likelihood ratios (LR+ and LR−), positive
predictive value (PPV), negative predictive value (NPV), AUC and
Q2(Y) of the different models.

For the AD vs. CTLmodel, combining theMRImeasures with the CSF
measures resulted in a classification accuracy of 91.8% (sensitivity=
88.5%, specificity=94.6%, PPV=93.4%, NPV=90.5% and AUC=0.958)
compared to 87.0% forMRI only (sensitivity=83.3%, specificity=90.1%,
PPV=87.9%, NPV=86.2% and AUC=0.930) and 81.6% for CSF only
(sensitivity=84.4%, specificity=79.3%, PPV=77.9%, NPV=85.4% and
AUC=0.861) at baseline. The positive likelihood ratio, LR+, doubled
when combining the measures, compared to using MRI alone and
quadrupled compared to using CSF measures alone.

The same pattern was observed for the MCI vs. CTL model, although
less pronounced. Combining the MRI measures with the CSF measures
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Fig. 3.MRIvariables of importance for the separation betweenADvs. CTL andMCI vs. CTL. (A)MRImeasures forADvs. CTLmodel. (B)MRImeasures forMCI vs. CTLmodel.Measures above zero
have a larger value in AD andMCI subjects compared to CTL and measures below zero have a lower value in AD andMCI subjects compared to CTL. A measure with a high covariance is more
likely to have an impact on group separation than a measure with a low covariance. Measures with jack knifed confidence intervals that include zero have low reliability.
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resulted in a higher classification accuracy, 77.6% (sensitivity=
72.8%, specificity=84.7%, PPV=87.4%, NPV=68.1% and AUC=0.876)
compared to 71.8% forMRI alone (sensitivity=66.7%, specificity=79.3%,
PPV=82.4%, NPV=62.0% and AUC=0.815) and 70.3% for CSF alone
(sensitivity=66.7%, specificity=75.7%, PPV=80.0%, NPV=60.9% and
AUC=0.749). The results from the combined MCI vs. CTL model were
examined to investigate how many of the MCIc (n=81), subjects who
Table 3
Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, likelih

Accuracy Sensitivity Specificity LR

AD vs. CTL
CSF 81.6 (75.8–86.3) 84.4 (75.8–90.3) 79.3 (70.8–85.8) 4
MRI 87.0 (81.7–90.9) 83.3 (74.6–89.5) 90.1 (83.1–94.3) 8
CSF+MRI 91.8 (87.2–94.8) 88.5 (80.6–93.5) 94.6 (88.7–97.5) 16

MCI vs. CTL
CSF 70.3 (64.7–75.4) 66.7 (59.1–73.5) 75.7 (66.9–82.7) 2
MRI 71.8 (66.2–76.8) 66.7 (59.1–73.5) 79.3 (70.1–85.8) 3
CSF+MRI 77.6 (72.4–82.2) 72.8 (65.5–79.1) 84.7 (76.8–90.2) 4

AD=Alzheimer's disease, MCI=mild cognitive impairment, CTL=healthy control, confidenc
ratio, PPV = positive predictive values, NPV = negative predictive value and AUC = area und
converted at follow-up, were correctly classified as MCI within this
model. This resulted in 90.1% of the MCIc being correctly classified as
MCI. Only 54.3% of the MCIs group was correctly classified as MCI.
Variables of importance for the separation between groups were the
three CSFmeasures (p-tau, t-tau and Aβ42) and examples of brain regions
contributing include hippocampus, amygdala, entorhinal cortex, inferior
temporal gyrus, middle temporal gyrus, temporal pole, parahippocampal
ood ratios and AUC for the AD vs. CTL and MCI vs. CTL models at baseline.

+ LR− PPV NPV AUC Q2(Y)

.1 (2.8–5.9) 0.20 (0.12–0.32) 77.9% 85.4% 0.861 0.395

.4 (4.8–14.8) 0.19 (0.12–0.29) 87.9% 86.2% 0.930 0.549

.4 (7.5–35.8) 0.12 (0.07–0.21) 93.4% 90.5% 0.958 0.649

.7 (1.9–3.9) 0.44 (0.35–0.56) 80.0% 60.9% 0.749 0.185

.2 (2.2–4.7) 0.42 (0.33–0.53) 82.4% 62.0% 0.815 0.263

.8 (3.0–7.4) 0.32 (0.25–0.42) 87.4% 68.1% 0.876 0.400

e intervals within parenthesis, LR+=positive likelihood ratio, LR−=negative likelihood
er the curve. Q2(Y) values >0.05 are regarded as statistically significant model.



Table 5
MCI predictions at 12, 18, 24 and 36 months using the AD vs. CTL model at baseline.

Number Predicted as AD like Predicted as CTL like

Sensitivity in bolda Specificity in bolda

MCIc
12 monthsb 35 82.9% (29) 17.1% (6)
18 monthsb 44 86.4% (38) 13.6% (6)
24 monthsb 57 75.4% (43) 24.6% (14)
36 monthsb 50 68.0% (34) 32.0% (16)

MCIs
12 months 127 48.0% (61) 52.0% (66)
18 months 111 42.3% (47) 57.7% (64)
24 months 89 39.3% (35) 60.7% (54)
36 months 59 35.6% (21) 64.4% (38)

MCIc vs. MCIs Accuracy AUC PPV NPV

12 months 58.6% 0.594 32.2% 91.7%
18 months 65.8% 0.647 44.7% 91.4%
24 months 66.4% 0.610 55.1% 79.4%
36 months 66.1% 0.578 61.8% 70.4%

AD = Alzheimer's disease, MCI = mild cognitive impairment, MCIc = MCI converter,
MCIs =MCI stable, CTL = healthy control, AUC= area under the curve, PPV= positive
predictive values and NPV = negative predictive value.

a Sensitivity at each time point (percentage of MCIc subjects predicted as AD) and
specificity at each time point (percentage of MCI subjects predicted as CTL) in bold.

b Subjects who converted up to the specific time point (MCI to AD).
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gyrus and cerebral cortex (see Fig. 3 for more detailed information). The
same variables were important for the separation between AD vs. CTL
and for MCI vs. CTL, though less pronounced in the latter case with the
order of importance slightly different.

Predicting MCI conversion

Combining MRI and CSF measures proved to give better results
than using either MRI or CSF measures alone when distinguishing
between AD vs. CTL and MCI vs. CTL. We also wanted to investigate
if combining the measures would improve the ability of the AD vs.
CTL model to predict conversion from MCI to AD. During the follow-
up period of 36 months, 81 MCI subjects converted to AD and 81
remained stable (Table 1). Table 4 shows the classification accuracy,
sensitivity, specificity, positive and negative likelihood ratios (LR+
and LR−), positive predictive value (PPV), negative predictive value
(NPV) and AUC for the MCI predictions using the MRI and CSF
measures separately and combined. Again, the results showed that
combining the measures gave the best accuracy, (68.5%) compared
to an accuracy of 65.4% using either the MRI or CSF measures
separately (PPV=66.7% for the combined model compared to
PPV=65.4% for MRI and PPV=62.6% for CSF).

Since the combined MRI+CSF model gave the best results we
wanted to further investigate how the model could predict
conversion from MCI to AD at different time points separately, but
also to observe how the model predicted the subjects who remained
stable (Table 5). All MCI subjects were predicted as either AD like or
CTL like using the combined OPLS model (AD vs. CTL). The accuracy
of predicting both MCI statuses at follow up was 58.6%, 65.8%, 66.4%
and 66.1% for the 12, 18, 24 and 36 month time points respectively
(Table 5). The positive prediction values showed a similar pattern
with values of 32.2%, 44.7%, 55.1% and 61.8% for the same time points.
The overall accuracy, PPV, NPV and AUC (Table 5) masked different
results for the MCIc and MCIs groups. For the MCIc group the best
results using the AD vs. CTL model were obtained at 18 month follow
up (86.4% MCIc predicted as AD like) followed by 12 month follow up
(82.9%MCIc predicted as AD like). The accuracies for correctly classifying
MCIc subjects as AD like at baseline using the follow-up diagnosis at
24 months and 36 months were 75.4% and 68.0% respectively. The
inverse pattern was observed for predicting MCIs using the combined
model. The best result was observed at 36 month follow up (64.4%
predicted as CTL like), followed by 24 month (60.7%), 18 month
(57.7%) and 12 month follow up (52.0%). Investigating the total number
ofMCIc subjectswho converted after baselineup to 36 month follow-up,
74.1% were correctly predicted using the AD vs. CTL model.

Table 6 shows how many MCI subject converted at each time
point and the respective prediction accuracy. The table also illustrates
how many of the converters remained in the study at the different
time points.

Discussion

The use of biomarkers for diagnosis and prognosis in AD and MCI
is of great importance. At least one abnormal biomarker among MRI,
PET and CSF should be included alongside a clinical core of early and
Table 4
Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, likelih

Accuracy Sensitivity Specificity

MCIc vs. MCIs
CSF 65.4 (57.8–72.3) 76.4 (66.3–84.4) 54.3 (43.5–64.7)
MRI 65.4 (57.8–72.3) 65.4 (54.6–74.9) 65.4 (54.6–74.9)
CSF+MRI 68.5 (61.0–75.2) 74.1 (63.6–82.4) 63.0 (52.1–72.7)

AD = Alzheimer's disease, MCI = mild cognitive impairment, CTL = healthy control, confi
likelihood ratio, PPV = positive predictive values, NPV = negative predictive value and AU
significant episodic memory impairment for a diagnosis of AD
according to the new criteria (Dubois et al., 2007). A combination of
biomarkers may prove to be more useful than single biomarkers for
individual classification/prediction of subjects.

MRI and PET generate large volumes of data which can be analyzed
using automated techniques. Multivariate data analysis tools such as
support vector machines (SVM), linear discriminant analysis (LDA), PLS
and OPLS (McEvoy et al., 2011; McIntosh and Lobaugh, 2004; Westman
et al., 2011a; Zhang et al., 2011) can be powerful techniques for dealing
with large and complex data sets, but automated computerizedmethods
will only be implemented in clinical practice if they are carefully
investigated and validated.

We have previously shown that combining a set of automated MRI
measures of the brain together with manual measures of hippocampal
volume gives good classification accuracy using OPLS (Westman et al.,
2011c). Manual measures of different brain regions are time consuming
and operator dependent however and are hence not regularly used in
clinical settings. Therefore we also investigated the applicability of
OPLS using the same automated regional subcortical volumes and
cortical thickness measures as applied in the present study (Westman
et al., 2011a). To further validate the OPLS technique using fully
automated MRI measures as input, we compared the results to the
Schelten's scale for visual assessment of medial temporal lobe atrophy,
performed by an experienced neuroradiologist (Westman et al.,
2011b). This showed that the automated approach gave superior results
to the neuroradiologist. We have also previously investigated the value
of combining automated regional MRI measures with magnetic
resonance spectroscopy using OPLS (Westman et al., 2010) which
showed a significant improvement compared with using either set of
ood ratios and AUC for MCI predictions on the baseline AD vs. CTL model.

LR+ LR− PPV NPV AUC

1.7 (1.3–2.2) 0.43 (0.28–0.67) 62.6% 69.8% 0.668
1.9 (1.3–2.7) 0.53 (0.38–0.74) 65.4% 65.4% 0.731
2.0 (1.5–2.7) 0.40 (0.28–0.62) 66.7% 68.0% 0.760

dence intervals within parenthesis, LR+ = positive likelihood ratio, LR− = negative
C = area under the curve.



Table 6
MCI conversion and retention.

12 months 18 months 24 months 36 months

Converted at 12 months 35 (82.9%) 30 (93.3%) 26 (84.6%) 15 (86.7%)
Converted at 18 months – 14 (85.7%) 12 (83.3%) 8 (75.0%)
Converted at 24 months – – 19 (57.9%) 14 (50.0%)
Converted at 36 months – – – 13 (61.5%)

Number of MCI subjects who converted at each time point (in bold) and remained in
the study up to 36 month follow-up. Percentage of correctly predicted subjects on
the AD vs. CTL baseline model are given in parentheses.
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measures individually. The next natural step was to investigate the
power of combining MRI and CSF biomarkers (which are both included
in the newdiagnostic criterion) for AD classification andMCI conversion.

Alternative multivariate techniques such as SVM and LDA have
previously been utilized by others. We have previously shown that
OPLS provides robust results when comparing the results from two
large multi center studies (Westman et al., 2011a) and wished to
build on this prior work by combining MRI and CSF measures together.
There are many similarities between linear SVM and OPLS. Both
methods can handle datasets with more dimensions than samples.
Linear SVM weights illustrate the importance of the variables for the
classification in descending order in the same way as the loading plots
do for OPLS. The unique property of OPLS when compared to other
linear regression methods is its ability to separate the modeling of
correlated variation from structured noise (uncorrelated variation).
The structured noise is defined as orthogonal variation in Y. At the
same time the model maximizes the covariance between X and Y.

AD and MCI classification

Previous studies have combined different biomarkers for classification
of individual subjects usingMRI and FDG-PET (Fan et al., 2008;Hinrichs et
al., 2009a, 2009b), MRI and CSF (Davatzikos et al., 2011; Kohannim et al.,
2010; Nettiksimmons et al., 2010), as well as MRI, FDG-PET and CSF
(Kohannim et al., 2010; Zhang et al., 2011). In the current manuscript
we used the multivariate OPLS method with MRI and CSF data as input.
Compared to previous studies we utilized the largest cohort to date and
applied our technique for individual classification and prediction, in
contrast to some other studies. We also investigated conversion from
baseline MCI to AD at the full range of follow up time points up to
36 months (data downloaded from ADNI database on 14th September
2011). We did not use feature selection since it did not improve the
performance of our models, though feature selection does increase
computational time (Cuingnet et al., 2011). Further, the use of a limited
set of pre-defined features might not reflect the true pattern of the CSF
and MRI abnormalities (Fan et al., 2008; Zhang et al., 2011). In contrast
to some previous studies which have combined MRI and CSF we aimed
to predict conversion, introducing theMCI converters to the OPLSmodels
as new and unseen data. Further, we investigated how conversion rates
vary at different future time points (12, 18, 24 and 36 month follow-up).

Combining MRI with CSF resulted in better classification accuracy
(91.8%) than using either measure separately (87% and 81.6%
respectively) for theADvs. CTLmodel at baseline. The positive likelihood
ratio doubled when combining the measures, compared to using MRI
alone and quadrupled compared to using CSF measures alone, which
emphasizes the power of combining the measures (Table 3).

These results are in linewith those of Zhang et al. (2011),who found a
classification accuracy of 93.2% when combining MRI, FDG-PET and CSF,
using ten-fold cross validation. Our results are slightly lower but we
only used two biomarkers and the cohort we used was almost twice
the size of that of Zhang et al. It is easier to realize higher accuracies
with smaller groups, since classification techniques tend to focus on
features which discriminate the groups, but may not be representative
of the wider population. Since FDG-PET examinations can be expensive
it would have been interesting to see how the method of Zhang et al.
performed with just the combination of MRI and CSF, but this data was
not presented. On the other hand, obtaining CSF measurements can
cause discomfort for some patients, which might warrant the
combination of MRI and PET instead of MRI and CSF. However, it has
previously been shown that the combination ofMRI and CSF significantly
improves classification accuracy andWalhovd et al. (2010) have reported
that FDG-PET measures provide largely redundant information.

For the comparison betweenMCI and CTL subjects, again we found
that the best accuracy was obtained by combining the two measures
(77.6%). Within this model 90.1% of the MCIc subjects who converted
within the investigated time period were correctly classified. These
results are again similar to those of Zhang et al. (overall accuracy=76.4%
and accuracy for MCIc=91.5%) but we used just two biomarkers.
Kohannim et al. (2010) have also combined MRI, CSF and FDG-PET in a
smaller cohort. Using leave-one-out cross-validation they received an
accuracy of 88% for AD vs. CTL (present study 91.8%) when combining
MRI and CSF. Adding FDG-PET increased the accuracy to 90.7%. For
distinguishing between MCI vs. CTL they found an accuracy of 86.5%
(present study 77.6%). Adding FDG-PET as a third biomarker did not
improve the classification. Kohannim et al. used a limited set of MRI
features. We believe that using both global and regional information
from the entire brain, rather than just medial temporal lobe structures
and ventricular volume adds to the predictive power (Westman et al.,
2011c). Further, using information from the whole brain may also be
more representative when investigating new and unseen data. We also
considered a longer follow up period with full follow-up to 36 months
and a larger dataset.

Predicting MCI conversion

It is of great importance to be able to build models which can
predict conversion from MCI to AD on new and unseen data. Similar
to baseline AD vs. CTL and MCI vs. CTL classification, combining MRI
and CSF measures for MCI predictions gave the best accuracy, 68.5%
compared to 65.4% using either MRI or CSF measures separately
(Table 4). Since the combined model gave the best results predicting
conversion over the investigated follow-up period of 36 months, we
wanted to further investigate how well the AD vs. CTL model could
predict conversion at different time points (12, 18, 24 and 36months).
We hypothesized that conversion could be predicted with a higher
accuracy the closer the follow up time point was to the baseline. As
expected the best results were obtained when predicting conversion
from baseline at 12 and 18 month follow-up, where 82.9% and 86.4%
of the MCIc were correctly predicted respectively. Looking at the
number of subjects who converted up to the 36 month follow-up,
74.1% of the converters were correctly predicted using an AD vs. CTL
model. The inverse pattern was observed for predicting MCIs, with the
best predictions obtained at the later time points (24 and 36 months).
The overall accuracy of predicting both MCIc and MCIs at each time
point reflects this inverse pattern, 58.6%, 65.8%, 66.4% and 66.1% for
12, 18, 24 and 36 months respectively (Table 5). This illustrates the
complex nature of predicting conversion. The likelihood for MCIs
subjects to be predicted as CTL like increases with time. This is because,
for example, some subjects predicted asMCIs at 12 monthswill convert
to AD at a future time point and may already demonstrate an abnormal
pattern at baseline. This pattern of improving performance with
increasing time from baseline is also reflected in the PPV for each time
point (32.2%, 44.7%, 55.1% and 61.8% for 12, 18, 24 and 36 months
respectively).

Davatzikos et al. showed that with a combination of MRI and CSF
measures applied to approximately half the number of subjects
considered here they could classify MCIc vs. MCIs with a sensitivity of
84.2% and a specificity of 51.2% at an average follow-up time of
12 months with a standard deviation of 6 months (Davatzikos et al.,
2011). However they did not apply their approach to the full ADNI
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cohort as we have done here and did not provide results for multiple
future time points. We found similar results for the AD vs. CTL model,
using the MCI subjects as a test set which we believe is an approach of
more practical use. Another recent study also aimed to predict
conversion from MCI to AD, resulting in 71.4% correctly predicted
MCIc, using a similar approach to this present study (Cui et al., 2011).
We found a higher predictive accuracy for the combined MRI+CSF
model than this latter study.

This study demonstrates the value of combining MRI and CSF
measures for baseline AD vs. CTL classification, baseline MCI vs. CTL
classification and predicting MCI to AD conversion using OPLS.
However, the conversion prediction accuracy and positive predictive
value are not as high as would be needed for clinical use currently and
demonstrate the complex nature of MCI predictions. Future areas of
research may allow performance to be further improved. This could
include combining additional biomarkers, using neuropathologically
proven AD cases for the training data and longer term follow up of the
ADNI cohort. Finally, methodological improvements may improve
classification and prediction further.

Conclusion

Different biomarkers provide complementary information, which
have been shown to be useful in AD and MCI diagnoses when used
together (Apostolova et al., 2010; Fjell et al., 2010; Landau et al.,
2010; Zhang et al., 2011). We show that the combination of MRI
and CSF using OPLS as a tool more accurately classifies AD, MCI and
CTL subjects at baseline compared to using either biomarker
separately. At the moment there is no universally agreed gold
standard for prediction accuracy, though in the broader field of
diagnostics an accuracy of >90% could be considered as clinically
relevant. We further show that combining MRI and CSF improves
the prediction of future MCI conversion, though longer follow up
times and further improvements in prediction accuracy are needed.

A potential limitation of combining biomarkers is the increased cost,
so further work is needed to assess the cost-benefits of the improved
accuracy attained. This may be dependent on whether the measures
are to be used to aid diagnosis, as inclusion criteria in a clinical trial, or
as primary or secondary clinical trial outcome measures. The ADNI
dataset represents one of the largest sample sizes to date, but replication
in independent samples is an obvious next step. One drawback of the
ADNI data set is that it is not neuropathologically confirmed, however,
it is very difficult to obtain large neuropathologically confirmed datasets
in practice. Neuropathology as a gold standard in dementia has recently
been questioned (Scheltens and Rockwood, 2011), however, with the
suggestion that it should be considered as another complementary
biomarker rather than the gold standard.

In conclusion this study has shown that combining automated MRI
measures and CSF measures with OPLS improves the classification
accuracy of AD vs. CTL and MCI vs. CTL, as well as the prediction of
MCI to AD conversion when compared to using either MRI or CSF
alone. This technique has the potential to serve as a complement to
clinical assessment of AD, but further methodological improvement is
needed before this is practical for predicting MCI conversion and
helping to target appropriate populations for clinical trials.
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