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Abstract

Volumetric estimates of subcortical and cortical structures, extracted from

T1-weighted MRIs, are widely used in many clinical and research applications. Here,

we investigate the impact of the presence of white matter hyperintensities (WMHs)

on FreeSurfer gray matter (GM) structure volumes and its possible bias on functional

relationships. T1-weighted images from 1,077 participants (4,321 timepoints) from

the Alzheimer's Disease Neuroimaging Initiative were processed with FreeSurfer ver-

sion 6.0.0. WMHs were segmented using a previously validated algorithm on either

T2-weighted or Fluid-attenuated inversion recovery images. Mixed-effects models

were used to assess the relationships between overlapping WMHs and GM structure

volumes and overall WMH burden, as well as to investigate whether such overlaps

impact associations with age, diagnosis, and cognitive performance. Participants with

higher WMH volumes had higher overlaps with GM volumes of bilateral caudate,

cerebral cortex, putamen, thalamus, pallidum, and accumbens areas (p < .0001).

When not corrected for WMHs, caudate volumes increased with age (p < .0001) and

were not different between cognitively healthy individuals and age-matched proba-

ble Alzheimer's disease patients. After correcting for WMHs, caudate volumes

decreased with age (p < .0001), and Alzheimer's disease patients had lower caudate

volumes than cognitively healthy individuals (p < .01). Uncorrected caudate volume

was not associated with ADAS13 scores, whereas corrected lower caudate volumes

were significantly associated with poorer cognitive performance (p < .0001). Pres-

ence of WMHs leads to systematic inaccuracies in GM segmentations, particularly

for the caudate, which can also change clinical associations. While specifically mea-

sured for the Freesurfer toolkit, this problem likely affects other algorithms.
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1 | INTRODUCTION

White matter hyperintensities (WMHs) are defined as areas of

increased signal on T2-weighted (T2w) and Fluid-attenuated inversion

recovery (FLAIR) magnetic resonance images (MRIs) (Raman, Kantarci,

Murray, Jack, & Vemuri, 2016). WMHs are associated with a variety

of underlying pathologies, such as amyloid angiopathy, arteriosclero-

sis, axonal loss, blood–brain barrier leakage, degeneration, demyelin-

ation, gliosis, hypoperfusion, hypoxia, and inflammation (Abraham

et al., 2016). WMHs are commonly present in the otherwise asymp-

tomatic aging population but are at higher prevalence in many dis-

eases such as Alzheimer's disease (AD), diabetes, frontotemporal

dementia, HIV, lewy body dementia, mild cognitive impairment (MCI),

obesity, Parkinson's disease, and vascular dementia (Appelman

et al., 2009; Barber et al., 1999; Caroppo et al., 2014; Dadar

et al., 2018; Debette & Markus, 2010; Gouw et al., 2008; Kandiah

et al., 2013; Sudre et al., 2017).

On T1-weighted (T1w) MRI sequences, WMHs appear hypointense

with respect to the normal-appearing white matter, with intensities that

can be very similar to cortical and subcortical gray matter (GM) (Dadar

et al., 2017). The T1w intensity of WMHs is also associated with sever-

ity of damage to the tissue, with areas of higher damage appearing more

hypointense (Dadar, Maranzano, Ducharme, & Collins, 2019).

As T1w images are the most commonly used structural MRI

sequences in clinical and neuroscience applications, especially for pur-

poses of segmentation and estimation of volumes for all or specific

structures of interest (Mateos-Pérez et al., 2018), the similarity in T1w

intensity profiles of WMHs and GM gives rise to an important meth-

odological question: can T1w MRI-based GM structure segmentation

differentiate between WMHs and GM? If not, how much of WMHs

will be tagged as GM in their segmentation estimates, and if so, is this

error systematic enough to bias results?

In the context of Multiple Sclerosis (MS) patients, the impact of

hypointense MS lesions on tissue classification and GM structure

segmentation is well-established (Chard, Jackson, Miller, & Wheeler-

Kingshott, 2010; Gelineau-Morel et al., 2012; González-Villà

et al., 2016; González-Villà, Oliver, Huo, Lladó, & Landman, 2019).

Simulating lesions with varying volumes and intensity ranges, Chard

et al showed that both GM and WM volumes estimated by SPM

were affected by presence of WM lesions (Chard et al., 2010). Simi-

larly, using both real and simulated data, Gelineau-Morel showed

that presence of WM lesions can influence volume and shape esti-

mations of GM measures in segmentations from FSL FAST

(Gelineau-Morel et al., 2012). In the context of MS, lesion filling

approaches are generally employed before tissue classification and

GM segmentation steps, to avoid the segmentations errors caused

by presence of MS lesions (Battaglini, Jenkinson, & Stefano, 2012;

Chard et al., 2010; Gelineau-Morel et al., 2012; González-Villà

et al., 2019; Prados et al., 2016; Valverde et al., 2015; Valverde,

Oliver, & Lladó, 2014).

To answer this question, we propose our study of WMHs seg-

mentation bias in subcortical and cortical GM structures. More specifi-

cally, we investigated (a) whether there was any systematic overlap

between WMHs and GM segmentations, and therefore volumetric

biases; and (b) whether this overlap affected clinical findings

(i.e., associations with cognitive scores). To these ends we used two

segmentation tools, the first being FreeSurfer, one of the most com-

monly used publicly available brain segmentation tools (Fischl, 2012),

and a previously validated tool for WMHs segmentation on multi-

contrast MRIs (Dadar et al., 2017), both applied on longitudinal data

from the Alzheimer's Disease Neuroimaging Initiative (ADNI)

database.

2 | METHODS

2.1 | Participants

We used longitudinal data from 1,077 participants (4,321 individual

images from various timepoints) from the ADNI-1, ADNI-2, and

ADNI-GO database (adni.loni.usc.edu) that had T1w and either

T2w/PDw or FLAIR MRIs available. The ADNI was launched in 2003

as a public-private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

serial MRI, positron emission tomography, other biological markers,

and clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. The study was

approved by the institutional review board of all participating sites

and written informed consent was obtained from all participants

before inclusion in the study.

2.2 | MRI acquisition and preprocessing

Table 1 summarizes MR imaging parameters for the data used in this

study (for more details, see http://adni.loni.usc.edu/methods/docume

nts/mri-protocols/).

2.3 | GM segmentations

All T1w images were identically processed using FreeSurfer version

6.0.0 (recon-all -all). FreeSurfer is an open source software (https://

surfer.nmr.mgh.harvard.edu/) that provides a full processing stream

for structural T1w data (Fischl, 2012). The final segmentation output

(aseg.mgz) was then used to obtain structure masks and volumes

based on the look up table available at https://surfer.nmr.mgh.

harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT.

2.4 | WMH segmentations

T1w, T2w/PDw, and FLAIR scans were pre-processed as follows:

(a) image denoising (Manjón, Coupé, Martí-Bonmatí, Collins, &

Robles, 2010); (b) intensity inhomogeneity correction; and (c) intensity

normalization to a 0–100 range. For each subject, the T2w, PDw, or
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FLAIR scans were then co-registered to the structural T1w scan of the

same timepoint using a 6-parameter rigid registration and a mutual infor-

mation objective function (Dadar, Fonov, Collins, & Initiative, 2018). We

used a previously validated WMH segmentation method that employs a

set of location and intensity features in combination with a random for-

ests classifier to detect WMHs using either T1w + FLAIR or T1w + T2w/

PDw images. The training library consisted in manual, expert segmenta-

tions of WMHs from 100 subjects from ADNI (not included in the cur-

rent sample) (Dadar, Pascoal, et al., 2017; Dadar, Maranzano, Misquitta,

et al., 2017; Dadar, Maranzano, et al., 2018). WMHs were automatically

segmented at all timepoints and then co-registered to the T1w images

using the obtained rigid registrations, in order to assess overlaps

between WMHs and GM segmentations.

2.5 | Cognitive evaluations

All subjects received a comprehensive battery of clinical assessments

and cognitive testing based on a standardized protocol (adni.loni.usc.

edu) (Petersen et al., 2010). At each visit, participants underwent a

series of assessments including the Alzheimer's Disease Assessment

Scale-13 (ADAS13) (Mohs & Cohen, 1987), which was used to assess

cognitive performance.

2.6 | Statistical analyses

Overlaps between GM and WMH segmentations were calculated

(number of overlapping voxels in mm3) for each subcortical and corti-

cal GM region. The following mixed effects models were used to

assess whether the WMH-GM overlaps were associated with overall

WMH burden, controlling for age and sex.

GM_WMHOverlap�1+WMH+Age+Sex

+ ScannerManufacturer + Field Strength+ 1jSubjectð Þ
ð1Þ

Since both WMHs and GM volumes are highly correlated with age,

and WMHs might have a different prevalence between men and

women, we controlled for age and sex, to account for the likelihood

that (a portion of) the relationships might be driven by intercorrela-

tions between these factors.

TABLE 1 Scanner information and MRI acquisition parameters for ADNI1, and ADNI2/GO datasets

Sequence T1w T2w/PDw or FLAIR

ADNI1 Manufacturer GE Siemens Philips GE Siemens Philips

Number of subjects 331 281 55 331 281 55

Number of

Timepoints

1,342 1,062 155 1,342 1,062 155

Field strength 1.5 T 1.5 T 1.5 T 1.5 T 1.5 T 1.5 T

Slice thickness 1.2 mm 1.2 mm 1.2 mm 3 mm 3 mm 3 mm

No. of slices 160 160 170 56 48 48

Field of view 260 mm 240 mm 240 mm 260 mm 240 mm 240 mm

Scan matrix 192 × 192 cm2 192 × 192 cm2 192 × 192 cm2 256 × 256 cm2 256 × 256 cm2 256 × 256 cm2

Repetition time (TR) 3,000 ms 2,400 ms Shortest 3,000 ms 3,000 ms 3,000 ms

Echo time (TE) Min full 3.5 ms User defined

(3 ms)

Min

full/100 ms

12/97 ms User defined

Flip angle 8 8 8 - 150 90

ADNI2/

GO

Manufacturer GE Siemens Philips GE Siemens Philips

Number of subjects 12 349 134 12 349 134

Number of

Timepoints

24 1,196 455 24 1,196 455

Field strength 3 T 3 T 3 T 3 T 3 T 3 T

Slice thickness 1.2 mm 1.2 mm 1.2 mm 5 mm 5 mm 5 mm

No. of slices 200 176 170 42 35 35

Field of view 260 mm 256 mm 256 mm 220 mm 220 mm 220 mm

Scan matrix 256 × 256 cm2 256 × 256 cm2 256 × 256 cm2 256 × 256 cm2 256 × 256 cm2 256 × 256 cm2

Repetition time (TR) 7.2 ms 2,300 ms Shortest 11,000 ms 9,000 ms User defined

Echo time (TE) Min full 2.98 ms Shortest 147 ms 90 ms User defined

Flip angle 11 9 9 - 150 150

Note: T2w/PDw or FLAIR column presents the parameters for T2w/PDw and FLAIR acquisitions in ADNI1, and ADNI2/GO datasets, respectively.
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Mixed effects models were also used to assess the relationships

between GM volumes and age and diagnostic cohort, and GM vol-

umes and cognition, once using the GM volume estimates obtained

directly from the FreeSurfer segmentation, and once after removing

the regions overlapping with the WMH segmentations.

GMvolume�1+Age+ Sex +Cohort + ScannerManufacturer

+ Field Strength + 1jSubjectð Þ ð2Þ

ADAS13�1 +Age+ Sex +GMvolume+ScannerManufacturer

+ Field Strength + 1jSubjectð Þ ð3Þ

All volumes were normalized by the individual's intracranial volume.

Total WMH loads and WMH_GM overlaps were log-transformed to

obtain normal distributions. All mixed effects models included Subject

as categorical random variables, and Scanner Manufacturer and Field

Strength as categorical fixed effects to account for any potential vari-

abilities caused by contrast differences in the images from different

scanners. Scanner Manufacturer denotes a categorical variable contra-

sting scans from Siemens Healthcare (Erlangen, GER), Philips Medical

Systems (Best, Netherlands), and GE Healthcare (Milwaukee, WI)

manufacturers. The results were corrected for multiple comparisons

using the false discovery rate (FDR) controlling method with a signifi-

cance threshold of p = .05 (Benjamini & Hochberg, 1995).

2.7 | Data and code availability statement

Data used in this article is available at http://adni.loni.usc.edu/.

FreeSurfer and the WMH segmentation pipeline used are also publicly

available at https://surfer.nmr.mgh.harvard.edu/and http://nist.mni.

mcgill.ca/?p=221, respectively.

3 | RESULTS

3.1 | Study participants

Preprocessed and registered images were visually assessed for quality

control (presence of imaging artifacts, failure in registrations). WMH

segmentations were also visually assessed for missing hyperintensities

or over-segmentation. Either failures resulted in the participant being

removed from the analyses. All MRI processing, segmentation and

quality control steps were blinded to clinical outcomes. All cases pas-

sed co-registration QC. Figure 1 summarizes the QC information for

the subjects that were excluded. The final sample included 1,077 par-

ticipants (4,321 timpoints) with WMH and FreeSurfer segmentations.

3.2 | Segmentations

Figure 2 shows an example of a subject with a high degree of overlap

between FreeSurfer caudate segmentations and WMH segmentations.

The first two rows show axials slices of T1w and T2w images, respec-

tively. The third and fourth rows show the FreeSurfer GM and WMH

segmentations overlaid on the T1w images, respectively. The last row

shows overlapping areas between caudate segmentations and WMH

segmentations in red, the areas only segmented as caudate in blue, and

the areas only segmented as WMHs in green. Note the intensity of the

T1w hypointensities (i.e., T2w WMHs), ranging from slightly

hypointense compared with the normal appearing WM, to iso-intense

to cortical and subcortical GM, and finally approaching CSF intensity

ranges. Based solely on T1w images, it would be very challenging to dif-

ferentiate WMHs from GM, particularly in areas where the two tissue

types share a boundary. This is exactly the area where over-

segmentation occurs (i.e., the red regions are always at the border of

caudate and WMH regions), with FreeSurfer segmenting the caudate

more generously, including some of the neighboring WM.

3.3 | Segmentation overlap

Table 2 shows the average amount of overlap between WMHs and

FreeSurfer segmentations for each GM structure, as well as their associ-

ation with the overall WMH burden, controlling for age and sex

(Equation (1)). Caudate segmentations had by far the highest percentage

of overlapping WMHs (6% of the mean caudate volume). The over-

lapping volumes were significantly related to the overall WMH burden

for bilateral caudate, cerebral cortex, putamen, thalamus, pallidum,

accumbens area, and the right hippocampus (p < .0002) (Figure 3).

Figure 2 shows the associations for the top six regions. In addition, we

observed an overall trend of smaller GM and WMH overlaps for mea-

sures driven from 3 T scanners, with left caudate, right cerebral cortex,

and putamen reaching significance (Table S1). GM volumes derived from

Siemens and Philips scanners also had smaller overlaps with WMH seg-

mentations in comparison with GE in general, with bilateral cerebral cor-

tex, putamen, and pallidum passing the significance threshold after

correction for multiple comparisons in both, and caudate only for Philips

versus GE comparisons. GM volumes derived from Philips scanners also

had smaller overlaps with WMH segmentations in comparison with Sie-

mens, with left putamen, bilateral pallidum, and right amygdala and ven-

tral diencephalon passing the threshold for significance.

To better demonstrate how much the misclassification of

WMHs as caudate might increase caudate volume estimates, we

have also plotted volume overlaps for caudate without log-

transformation (i.e., volumes in mm3) in Figure 4. In extreme cases,

for individuals with very high WMH burden (log transformed value

of 11, equivalent to 50,000 mm3), caudate volume can be over-

estimated by more than 1,000 mm3, equivalent to 30% of the aver-

age caudate volume.

3.4 | Associations

Uncorrected caudate volumes increased with age (p < .0001,

Table S3), and MCI and AD groups had slightly higher volumes than
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the normal aging (NA) cohort (although not significant), whereas the

corrected caudate volumes decreased with age (p < .0001), and MCI

and AD groups had slightly lower volumes than the NA group (only

the AD vs. NA difference was significant with p = .009). The

uncorrected and corrected results were similar in terms of effect size

and direction of associations for other regions, with the corrected vol-

umes having slightly larger effects sizes for putamen. Table S2 shows

the associations between GM volumes and age for all regions

(Equation (2)), before and after removing the voxels overlapping with

WMHs (Table 3).

Uncorrected caudate volumes were not significantly associated

with ADAS13 scores (Table 4), whereas lower corrected caudate vol-

umes were significantly associated with higher ADAS13 scores

(i.e., poorer cognitive performance, p < .0001). The uncorrected and

corrected results were similar in terms of effect size and direction of

associations for other regions, with the corrected volumes having

slightly larger effects sizes for putamen. Table S3 shows the associa-

tions between ADAS13 and GM volumes for all regions, before and

after removing the voxels overlapping with WMHs. Figure 5 shows

the associations between uncorrected and corrected caudate volumes

and ADAS13 scores.

4 | DISCUSSION

In this study, we investigated the impact of WMHs on GM seg-

mentations, specifically for the Freesurfer segmentation tool, in

order to determine whether WMHs might lead to systematic seg-

mentation errors in certain GM regions, and whether such errors

might impact associations between GM volumes and clinical out-

comes. We found such errors in a number of regions, and in the

caudate in particular it propagated to the association with clinical

variables.

We found that overlapping voxel volumes between WMH and

GM segmentations were significantly associated with overal WMH

burden (Table 2 and Figure 3), indicating higher error rates for sub-

jects with high WMH loads. This affected both cortical and subcortical

structures, and in particular the caudates bilaterally. Uncorrected, cau-

date volumes showed a significant increase with age, which is highly

unlikely to be a real effect given that all regions, except the caudate,

have been shown to decline in late-life cognitively healthy individuals

(Potvin, Mouiha, Dieumegarde, Duchesne, & Initiative, 2016a, 2016b).

This was further improbable given that the population of this study

consists of not only aging individuals but also patients with MCI and

AD, which are known to have increasing levels of atrophy across cor-

tical areas. In contrast, the corrected caudate volumes significantly

decreased with age, as could be expected. Given that WMHs are

highly prevalent in the periventricular regions (i.e., white matter areas

surrounding the caudate), the significant increase estimate is likely

due to the fact that WMH burden increases with age and AD and

MCI patients tend to have higher WMH loads and faster WMH

progression.

Along the same line, corrected caudate volumes showed signifi-

cant differences between AD and cognitively healthy cohorts, as well

as significant associations with cognitive performance in the expected

directions, whereas the uncorrected volumes were not significantly

different and in the opposite direction (Table 3). This again highlights

the fact that if uncorrected for overlapping WMHs, estimates of cau-

date volumes can lead to incorrect or unreliable findings, particularly

in populations with high prevalence of WMHs.

While other GM regions also had overlaps with WMHs that were

significantly associated with the overal WMH burden (e.g., cerebral

F IGURE 1 Flowchart of subjects in the study
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cortex, putamen), the amount and percentage of these overlaps were

not nearly as high as caudate (17, 22, 80, and 74 mm3 vs. 217 and

223 mm3 or 0.4%, 0.5%, 0.04%, and 0.04% vs. 6.1% and 6.5%), and

therefore, they did not affect their overall estimates and associations

with age, diagnosis, and ADAS13. However, this might not be the case

in other populations, where WMHs are more prevalent, or have differ-

ent distributions. Therefore, WMHs should be accurately segmented

and used to correct GM segmentations wherever such errors occur,

and not only for caudate.

The current analysis has the underlying assumption that any over-

lapping voxels between WMH segmentations (based on T2w/PD and

FLAIR images) and FreeSurfer segmentations (based only on T1w

images) were WMHs that were misclassified as GM by FreeSurfer.

This is a reasonable assumption, since subcortical structures appear

hypointense on T2w and FLAIR images, whereas WMHs appear

hyperintense. The fact that subcortical structures and WMHs

have contrasting intensity profiles in T2w and FLAIR images

(i.e., hypointense vs. hyperintense, respectively) and similar intensity

profiles in T1w images (hypointense for both) makes it unlikely that

they would be incorrectly classified as WMHs, as the WMH segmen-

tations are mainly driven by the intensity profile in T2w and FLAIR

sequences. Additionally, the WMH segmentation method used here

F IGURE 2 Example of a case with high WMH and caudate segmentation overlap. First and second rows: axial slices showing the T1 and T2
images, respectively (note the hyperintense WMH areas on T2 images and the corresponding hypointensities in T1 images). Third row: FreeSurfer
GM segmentations overlaid on T1 images. Fourth row: WMH segmentations overlaid on T1 images. Last row: the overlap between caudate and
WMH segmentations. GM = Gray Matter. WMH = White Matter Hyperintensity. Blue = Caudate. Green = WMHs. Red = The overlapping voxels
between caudate and WMH segmentations
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TABLE 2 Overlaps between WMHs and FreeSurfer GM segmentations, and their associations with overal WMH burden. The regions are
sorted based on effect size. Significant results after FDR correction are indicated in bold font

Structure name
FreeSurfer
label Volume (mm3)

Overlap with
WMH (mm3)

Percentage of
overlap (%)

Association with WMH

T stat p value

Caudate—right 50 3,532.9 ± 596.2 217.2 ± 271.0 6.153 46.57 <.0001

Caudate—left 11 3,395.9 ± 556.4 222.9 ± 283.9 6.565 46.02 <.0001

Cerebral cortex—left 3 202,864 ± 25,017 73.8 ± 240.5 0.036 31.81 <.0001

Cerebral cortex—right 42 203,763 ± 25,182 79.8 ± 218.8 0.039 30.03 <.0001

Putamen—right 51 4,235.6 ± 644.1 21.9 ± 74.4 0.518 23.02 <.0001

Putamen—left 12 4,194.8 ± 648.3 17.4 ± 56.1 0.416 21.20 <.0001

Thalamus—left 10 6,598.1 ± 729.3 1.01 ± 5.72 0.015 12.25 <.0001

Thalamus—right 49 6,499.9 ± 711.3 0.55 ± 4.07 0.008 8.76 <.0001

Pallidum—right 52 1829.0 ± 256.6 0.85 ± 3.50 0.047 8.63 <.0001

Accumbens area—left 26 405.1 ± 86.6 0.23 ± 1.96 0.057 7.80 <.0001

Pallidum—left 13 1863.1 ± 255.1 0.45 ± 2.50 0.024 5.99 <.0001

Accumbens area—right 58 452.7 ± 90.7 0.17 ± 0.88 0.038 4.80 <.0001

Hippocampus—right 53 3,572.6 ± 600.3 0.22 ± 2.24 0.006 3.70 .0002

Ventral diencephalon—right 60 3,754.9 ± 459.5 0.10 ± 1.78 0.003 1.98 .05

Amygdala—right 54 1,469.7 ± 319.3 0.04 ± 0.88 0.003 1.59 .11

Amygdala—left 18 1,275.3 ± 299.1 0.01 ± 0.23 0.0001 0.77 .44

Ventral diencephalon—left 28 3,782.2 ± 473.9 0.06 ± 2.03 0.002 0.74 .45

Hippocampus—left 17 3,476.3 ± 564.9 0.17 ± 4.77 0.005 0.35 .72

F IGURE 3 The association between overlapping GM and WMH volumes and overall WMH burden (Table 2). Subjects with higher WMH
loads also have greater amounts of WMH overlap with FreeSurfer GM segmentations in bilateral caudate, cerebral cortex, and putamen.
GM = Gray Matter. WMH = White Matter Hyperintensity
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has been developed and extensively validated for use in multi-site and

multi-scanner studies, and has been previously used in several multi-

site datasets, including ADNI (Anor, Dadar, Collins, & Tartaglia, 2020;

Dadar et al., 2019; Dadar et al., 2020; Dadar, Camicioli, Duchesne,

Collins, & Initiative, 2020; Dadar, Gee, Shuaib, Duchesne, &

Camicioli, 2020; Misquitta et al., 2018; Sanford et al., 2019). The train-

ing library used consists of manually segmented labels from the same

dataset (ADNI), to ensure optimal classifier performance (Dadar,

Maranzano, Misquitta, et al., 2017). Further, all automatic WMH seg-

mentations were visually assessed by an expert, and cases that failed

this QC step were removed from this analysis.

FreeSurfer is one of the most widely used publicly available brain

segmentation tools. Large databases such as the UK Biobank provide

GM structure volumes derived from FreeSurfer to researchers. In line

with our findings, other researchers have reported a positive associa-

tion between WMH load and FreeSurfer caudate volumes in the UK

biobank participants (Morys, Dadar, & Dagher, 2020) and in another

large sample of cognitively healthy individuals (Potvin, Dieumegarde,

Duchesne, & Initiative, 2017). Studies investigating a larger age range

report a U-shape curve for caudate volumes, decreasing from early

adulthood to the 60s, and then increasing afterwards (Fjell

et al., 2009, 2013; Goodro, Sameti, Patenaude, & Fein, 2012;

Pfefferbaum et al., 2013; Potvin et al., 2016b; Walhovd et al., 2011).

Given that WMHs generally occur in this same age range (i.e., after

60s), these results are also likely due to the segmentation errors cau-

sed by presence of WMHs in older participants.

Specifically for this algorithm, our study emphasizes the need for

correcting FreeSurfer GM volume estimates for WMHs, particularly for

the caudate. However, it is likely that other algorithms exhibit the same

behavior. Evidence can be found in the literature, for example in the

works by Goodro et al. and Pfefferbaum et al. using FSL volumes

(Goodro et al., 2012; Pfefferbaum et al., 2013). Developers and users

F IGURE 4 The association between overlapping Caudate and WMH volumes (in mm3) and overall WMH burden. Subjects with higher WMH
loads also have greater amounts of WMH overlap with FreeSurfer caudate segmentations. WMH, White Matter Hyperintensity

TABLE 3 Associations between
uncorrected and corrected caudate
volumes, age, and diagnostic cohort.
Significant results after FDR correction
are indicated in bold font

Structure name

Age MCI vs NA AD vs NA

T stat p value T stat p value T stat p value

Caudate—right Uncorrected 4.05 <.0001 0.53 .60 0.65 .52

Corrected −5.04 <.0001 −1.23 .21 −2.38 .01

Caudate—left Uncorrected 5.85 <.0001 0.81 .42 0.31 .76

Corrected −7.90 <.0001 −1.43 .15 −2.59 .009

TABLE 4 Associations between uncorrected and corrected
caudate volumes and ADAS13. Significant results after FDR
correction are indicated in bold font

Structure name

Uncorrected Corrected

T stat p value T stat p value

Caudate—right 0.27 .78 −6.47 <.0001

Caudate—left 0.66 .50 −9.27 <.0001
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alike should therefore be aware of the possibility of systematic bias from

not taking into account WMHs in GM segmentation from T1w images.

In addition to the consequences the presence of WMHs might

have on the GM structure borders, depending on the segmentation

segmentation technique, they might also impact gray level distribu-

tion, and could thus lead to an overall bias and a global shift of the

borders in partial volume areas. Previous work by Gelineau-Morel

et al. and also Chard et al. in Multiple Sclerosis patients has demon-

strated this effect on FAST from FSL and SPM5 tissue segmentations,

respectively (Ashburner et al., 2014; Chard et al., 2010; Gelineau-

Morel et al., 2012; Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012). In other words, misclassification of lesions as GM might

lead to an overall increase in the mean GM intensities, causing GM

boundaries to shift toward lighter (WM) regions, further increasing

overall GM volume estimates (Chard et al., 2010; Gelineau-Morel

et al., 2012). In the context of MS, lesion filling approaches are gener-

ally employed before tissue classification and GM segmentation steps,

to avoid the segmentations errors caused by presence of MS lesions

(Battaglini et al., 2012; Chard et al., 2010; Gelineau-Morel et al., 2012;

González-Villà et al., 2019; Prados et al., 2016; Valverde et al., 2014;

Valverde et al., 2015).

The WMHs that are observed in the aging and neurodegenerative

populations have a different pathogenesis from MS lesions. They gen-

erally co-occur with (extensive) atrophy, and have more varying loads

and less well-shaped borders than MS lesions (Caligiuri et al., 2015).

Another important factor in dealing with WMHs in the aging

populations is the fact that the MRI contrast between GM and WM

tissues decreases with age, making the distinction between the

boundaries more challenging. Most lesion filling methods have

assessed the impact of lesion filling in simulated lesions on young

healthy brains. While these results might be generalizable to MS

patients, the presence of extensive atrophy, differences in the inten-

sity ranges and distributions of WMHs, and the lower GM/WM con-

trast in the aging populations, makes their results less likely to

generalize to the aging cohorts. Therefore, further validation is neces-

sary to demonstrate the impact of lesion filling methods in aging and

neurodegenerative populations.

FreeSurfer GM segmentation pipeline performs T1w

hypointensity segmentation simultaneously and tries to capture as

many of the WMHs as possible to avoid misclassifying them as

GM. Therefore, the segmentation errors that occur when using

FreeSurfer might be much more subtle than FSL and SPM, where

F IGURE 5 The association between uncorrected and corrected Caudate volumes ADAS13 scores. Uncorrected volumes were not associated
with ADAS13 scores, whereas lower corrected caudate volumes were significantly associated with higher ADAS13 scores
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lesion filling methods have been applied and proven to be useful in

the context of MS. In fact, a previous study by Guo et al, has assessed

the impact of lesion filling in improving FreeSurfer, FSL-SIENAX, SPM

and SPM-CAT segmentations in MS patients, showing that while

lesion filling changed the output of FSL-SIENAX and SPM, FreeSurfer

output was not affected since it already takes WM hypointensities

into account (Guo, Ferreira, Fink, Westman, & Granberg, 2019).

More recently, certain tissue classification and GM segmentation

tools such as SPM12 (Ashburner et al., 2014, p. 12) and FAST from

FSL (Jenkinson et al., 2012) have provided multi-channel segmenta-

tion options, allowing users to perform segmentations with multiple

MRI sequences (e.g., T2w and PDw). Such multi-channel approaches

might help reduce the segmentation errors caused by WMHs, and fur-

ther studies investigating their performance in presence of WMHs are

warranted.

In conclusion, the presence of WMHs can lead to systematic

errors in GM segmentations in certain regions, particularly in the cau-

date, which, if not corrected, can impact findings in populations with

high WMH prevalence.
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