Taylor & Francis
Taylor & Francis Group

STATISTICS Statistics in Biopharmaceutical Research

BIQPL—:ARMACEUT[CAL
\RESEARCH

(=)

ISSN: (Print) 1946-6315 (Online) Journal homepage: https://www.tandfonline.com/loi/usbr20

High-Dimensional Smoothing Splines and
Application in Alzheimer’s Disease Prediction
Using Magnetic Resonance Imaging

Xiaowu Dai for the Alzheimer’'s Disease Neuroimaging Initiative

To cite this article: Xiaowu Dai for the Alzheimer’s Disease Neuroimaging Initiative (2020)
High-Dimensional Smoothing Splines and Application in Alzheimer’s Disease Prediction Using
Magnetic Resonance Imaging, Statistics in Biopharmaceutical Research, 12:2, 244-252, DOI:
10.1080/19466315.2019.1677492

To link to this article: https://doi.org/10.1080/19466315.2019.1677492

A
h View supplementary material (&'

ﬁ Published online: 22 Nov 2019.

N\
[:J/ Submit your article to this journal &

||I| Article views: 100

A
& View related articles &'

P

() view Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=usbr20


https://www.tandfonline.com/action/journalInformation?journalCode=usbr20
https://www.tandfonline.com/loi/usbr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19466315.2019.1677492
https://doi.org/10.1080/19466315.2019.1677492
https://www.tandfonline.com/doi/suppl/10.1080/19466315.2019.1677492
https://www.tandfonline.com/doi/suppl/10.1080/19466315.2019.1677492
https://www.tandfonline.com/action/authorSubmission?journalCode=usbr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=usbr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19466315.2019.1677492
https://www.tandfonline.com/doi/mlt/10.1080/19466315.2019.1677492
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2019.1677492&domain=pdf&date_stamp=2019-11-22
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2019.1677492&domain=pdf&date_stamp=2019-11-22

STATISTICS IN BIOPHARMACEUTICAL RESEARCH
2020, VOL. 12, NO. 2, 244-252
https://doi.org/10.1080/19466315.2019.1677492

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates

High-Dimensional Smoothing Splines and Application in Alzheimer’s Disease
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ABSTRACT

Recent evidence has shown that structural magnetic resonance imaging (MRI) is an effective tool for
Alzheimer’s disease (AD) prediction. While traditional MRI-based prediction uses images acquired at a single
time point, a longitudinal study is more sensitive and accurate in detecting early pathological changes
of the AD. Two main statistical difficulties arise in the longitudinal MRI-based analysis: (i) the inconsistent
longitudinal scans among subjects (i.e., the different scanning time and the different total number of scans);
(ii) the heterogeneous progressions of high-dimensional regions of interest (ROIs) in MRI. In this work, we
propose a new feature selection and estimation method which can be applied to extract AD-related features
from the heterogeneous longitudinal MRI. A key ingredient of our approach is a hybrid of the smoothing
splines and the /1-penalty. Smoothing splines can integrate information from heterogeneous progressions
of ROIs and adapt to inconsistent scans of MRIs. The selection property of the /1-penalty helps to select
important ROIs related to AD. We introduce an efficient algorithm to perform the proposed method. Real
data experiments on the Alzheimer’s Disease Neuroimaging Initiative database are provided to corroborate
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some advantages of the proposed method for AD prediction in longitudinal studies.

1. Introduction

Alzheimer’s disease (AD) is the most common cause of demen-
tia in the aged population (Prince et al. 2013). It is vital to iden-
tify AD-related pathological biomarkers and diagnose early-
stage AD to prevent disease progression and take treatment in
the earliest stage. A considerable amount of research has been
devoted to the use of structured magnetic resonance imaging
(MRI) for early-stage AD diagnosis (e.g., Jack et al. 2010, 2013).
The structural MRI provides measures of cerebral atrophy, and
it is shown to be closely coupled with clinical symptoms in AD
(Jack et al. 2009).

Most works consider the cross-sectional study with MRI
acquired at one single time point (see, e.g., Tzourio-Mazoyer
et al. 2002; Aguilar et al. 2013; Liu, Zhang, and Shen 2016).
However, the cross-sectional study could be insensitive to early
pathological changes. As an alternative, longitudinal analysis of
structural abnormalities has recently attracted attention (Zhang
and Shen 2012; Yau et al. 2015; Chincarini et al. 2016). Existing
longitudinal studies focus on the atrophy of a few well-known
regions of interest (ROIs) such as the hippocampus, entorhinal
cortex, and ventricular cortex. However, the prespecified ROIs
are insufficient to capture the full morphological abnormality
pattern of the brain MRI. A few other issues also remain as
challenges in the longitudinal analysis. First, longitudinal scans
across subjects are usually inconsistent. For example, subjects
could have different scanning time and the different total num-
ber of scans. Second, the total number of ROIs in the brain is
enormous compared with the number of subjects, which poses
a challenge to select AD-related longitudinal biomarkers from
the whole brain. Third, the rates of longitudinal change of ROIs

are different, and this heterogeneity has not been considered in
the modeling of AD progression.

Our goal is to identify AD-related ROIs in the whole
brain with longitudinal MRI and perform AD prediction
using selected ROIs. Specifically, we consider the varying
coeflicient model (Hastie and Tibshirani 1993) to characterize
the heterogeneous changes of ROIs in the structural MRI. This
model allows the nonlinear functional modeling between MRI
and clinical cognition functions. We propose a novel feature
selection method for high-dimensional varying coefficient
models, where the key idea is combining the smoothing splines
(Wahba 1990) and an /1 -penalty (Tibshirani 1996). Our method
can simultaneously select and estimate AD-related ROIs. We
also provide an efficient algorithm to implement the proposed
feature selection method. Then the prediction is performed
based on the selected longitudinal features and the estimated
varying coefficients. Our approach is robust to the inconsistency
among longitudinal scans and is adaptive to the heterogeneity
of changes in different ROIs. The hypothetical AD dynamic
biomarker curves (Jack et al. 2010, 2013) motivate the use of
varying coefficient models in our approach. In particular, Jack
et al. (2010) suggest that the rates of change over time for MRI
and clinical cognition functions are in a temporally ordered
manner, which implies the functional relationship between
the atrophy of MRI and the change of cognition functions is
nonlinear with time.

To evaluate our method, we conduct experiments using data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
We predict future clinical changes of mild cognitive impairment
(MCI) subjects with longitudinal MRI data. The MCI is a pro-
dromal stage of AD and the prediction of clinical changes helps
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to determine whether an MCI subject will convert into AD at a
future time point, which is vital for early diagnosis of AD.

Main differences between this article and existing longitu-
dinal studies in Zhang and Shen (2012), Yau et al. (2015), and
Chincarini et al. (2016) are listed as follows.

 Different feature representations. We consider the varying
coefficient model to characterize the nonlinear and smooth
progression of longitudinal features, which is motivated by
clinical findings and dynamic biomarker curves in Jack et al.
(2010, 2013). On the contrary, Zhang and Shen (2012), Yau
et al. (2015), and Chincarini et al. (2016) considered only
linear representations for features.

« Different scalability to heterogeneous longitudinal scans.
Our method does not require identical scanning times or
an equal number of scans across samples. However, these
conditions are necessary for Zhang and Shen (2012), Yau
et al. (2015), and Chincarini et al. (2016).

o Different feature selection methods. We proposed a new fea-
ture selection method by combining the smoothing splines
with an [ -penalty, which enables simultaneous feature selec-
tion and varying coefficient estimation. The method is differ-
ent from Zhang and Shen (2012), which performs the feature
selection and estimation separately in a two-step procedure,
and it is also different from Yau et al. (2015) and Chincarini
et al. (2016), which only use prespecified features.

The rest of the article is organized as follows. We introduce
our method in Section 2. We give the experiment results in
Section 3. The concluding remarks and discussions are provided
in Section 4. Additional material and proofs are relegated to
Appendices A-E.

2. Methodology

The varying coefficient model describes time-dependent covari-
ate effects on the response (Hastie and Tibshirani 1993). Given
the scaled time ¢ € [0, 1], the response functional Y (-) is related
to covariates X1 (-), ..., X,(-) through

p
Y() =b+ Y BOX(H) +et), beR,
j=1

(1)
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where the centered noise process &(-) is independent of
covariates X;(-)’s. The model (1) allows a nonlinear functional
relationship between X;(-)’s and Y(-) as the coefficients S;(-)’s
vary over t € [0,1]. Take AD prediction in Section 3 as an
example. The response represents the clinical cognitive test
score, and the covariates include demographic information
(such as age, gender, and education years) and ROIs in the
structural brain MRI. The dependence of Bj(:)’s on ¢ implies
the time-varying effects of covariates on the response. On the
other hand, model (1) has an additive structure on covariates
Xj(+)’s to allow efficient estimation of the coefficients f;(-)’s.

In practice, we observe data for subjects i = 1,...,n at time
tiv, wherev = 1,2,...,mjand 0 < tj7 < tjp < --- < tj,, < L.
Here, m; and t;,’s can be different for different subjects. Let x;;(-)
be the observation of covariate X;(-) for subject i. Let y;, be the
response for the subject i at time t;,. Then model (1) suggests

p
yiv =b+ Y Bita)x;(tn) +(ti), beR.
j=1

2)

The structure of heterogeneous longitudinal data is illustrated in
Figure 1, where some subjects could have missing feature values
at certain time points. The number of covariates p in (2) can
be larger than the sample size #n, where (2) becomes a high-
dimensional model. Since some covariates can be irrelevant with
the response, we want to select relevant covariates X;(-)’s based
on data (2). Then we use the chosen covariates for prediction.

We propose a new method to simultaneously select covari-
ates and estimate their varying coefficients as follows. Assume
that varying coefficients B1 (), B2(-), . . ., Bp(-) reside in a repro-
ducing kernel Hilbert space (RKHS), (Hk, || - [174x)> where the
reproducing kernel is denoted by K (-, -) (Wahba 1990). We want
to find B1(-), B2(-)s ..., Bp(-) € Hx and b € R to minimize

p
+ 2D 1Bl

j=1
(3)
where N = Y m;and || - |7, denotes the RKHS norm. Note
that the measurements for the same covariate at different time
points: x;i(ti1), . . ., Xij(tim;), are highly correlated since they are
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Figure 1. lllustration of heterogeneous longitudinal data with n subjects, p features, and m time points.
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observed from the same random function x;;(:),j = 1,...,p.
The proposed method (3) allows such correlation among mea-
surements for the same covariate. The first term in (3) mea-
sures the goodness of data fitting and the second term merits
the selection property by the [;-like penalty Zle 1Bjll#5- We
first provide the following theorem to justify the existence of
minimizer for (3).

Theorem 2.1. There exists a minimizer of (3) that is in the
domain B1(-),...,Bp(-) € Hxand b € R.

We give the proof of this theorem in Appendix C. The vari-
able selection method (3) is new in the literature, and it is
efficient for optimization due to the convexity in B;(-)’s and
having only one tuning parameter 1. We provide an algorithm
for giving a minimizer of (3) in Appendix D.

The following theorem gives further insights into (3), which
is actually a combination of the smoothing splines (Wahba 1990)
and the Lasso (Tibshirani 1996).

Theorem 2.2. Consider the following optimization problem.

Find B1(), ..., Bp(-) € Hk and 0,...,6y, b € R to minimize
2
= Z Z Yiv —b— Z ﬂ](tw)xz](tw)
i=1 v=1
+ 10 Zej—lnﬁjuéﬁ +17 Za,
j=0 j=0
st.6;>0,j=0,1,...,p, (4)

where 7 is a constant and 7; is a tuning parameter. Let 17 =

1*/(41p). The following equivalence holds.

L If (Bo, Bi(), ..
01 1/2||,3]||HK, we have that (0y,...
B},( ) mlnlleES (4).

2. If there exists (01,. ..

then (Bo, B1(), - . -,

B;,( )) minimizes (3), by letting é; =
)ep;ﬂO)ﬂl(')’- ce

03 Bo, B1(), ., Bp(+)) minimizes (4),
By (-)) minimizes (3).

We give the proof of this theorem in Appendix E. The first
two terms in (4):

- Z Z[yw b— Z ﬂ](tﬂ))xlj(tll))] + 70 Z 0. ||/3]||’;-[K

zlul

amount to the smoothlng splines in nonparametrlc statistics
(Wahba 1990), which integrate information from heterogeneous
progressions of ROIs through the varying coefficients f;(-)’s
and adapt to inconsistent scans of MRIs with different m;’s.
The last term in (4): 7; Zf:o 0 is the same as the I; Lasso
penalty (Tibshirani 1996) with weights 6;’s, which helps to select
features.

Now we consider to use the selected covariates for prediction.
Let Xj),Xj,,...,Xj, bes ofielecteii features Ey (3), where 1 <
J1 <ja < - Zjs < p.Let B (#), Bj, (1), . . ., Bj;(t) be the corre-
sponding varying coefficients estimated by (3). The prediction
for a new subject with features X’k (o), X* (1), . X]’Z (t) at time ¢
is given by

YE(1) = B, (DX} (1) + B, (D)

X5(6) + -+ B (DX (D).

Note that the prediction for subjecti = 1,. .., n of the model (2)
at a future time point ¢ can also be performed. Here, the selected
features x;j, (£), xij, (1), . . ., Xi (t) of subject 7 in the future time
t are usually unknown. There are two methods to estimate the
values of x;j, (), xij, (1), . . ., X, (£). The first method is to apply
nonparametric statistical approaches such as the smoothing
splines (Wahba 1990). Assume that the covariates X;(-)’s are
smooth and belong to the RKHS (Hk, || - [|#4)- We find z(+) €
Hk to minimize

1 < 2 >
p > [at) = x5, )] + Aallzl,
L

where the smoothing parameter A can be chosen by general-
ized cross-validation (GCV) (Wahba 1990). The feature x;;, (¢)
at time t is then estimated by evaluating z(-) at t. That is,

EE,jl (t) = =z(t). Similarly, the smoothing splines can also be

used to estimate other features: x;j, (t), . . ., x;, (£). The second
method to estimate the values of xj (t), x, (), ..., x;; () is
using the selected features of subject i at an observed time 7
which is closest to time t: f € {ti1,ti2,. .., tim,} and |t — t| =
min{|ti, — t|,...,|tim — t|}. That is, Xjj, (1) = x5, (D), X3, (1) =
Xij, (B), . . ., X4j, (t) = xij,(£). With the estimated covariates values
Xij, (1), X4j, (1), . . ., X, (1), we give the prediction for subject i in
the future time ¢ by

Fi(H) = Bj, ()%, (D) + By, (DR (1) + - - - + B, (DX, (1)

The experiments in Section 3 have known features in the future
time f such as age, gender, and education years. However, the
brain MRI data are unknown in future time. We consider
the second method above to estimate the values of covariates
Xijy (£), Xij, (1), - . ., xjj, (1), that is, using the feature values of
subject i at an observed time 7 which is closest to time ¢. The
reasons are that the changes of MRI features are generally
monotone and the variations of MRI features within subjects
(i.e., longitudinal variations) are significantly smaller compared
to that across subjects.

3. Experiment Results

In this section, we predict future clinical changes of MCI sub-
jects with real data from the ADNI database. A detailed descrip-
tion of the ADNI database is relegated to Appendix A. The
MCl is a prodromal stage of AD. Generally, some MCI subjects
will convert into AD after a certain time (i.e., MCI converters,
MCI-C for short), while others will not convert (i.e., MCI non-
converters, MCI-NC for short) (Zhang and Shen 2012). The pre-
diction of clinical change for an MCI subject helps to determine
whether the subject will convert into AD at a future time, and
it is a central task for the early diagnosis of AD. We summarize
the baseline demographic information of ADNI subjects studied
here in Table 1.

The preprocessing steps of brain MR imaging are described
in Appendix B. Specifically, we have a total of 324 ROIs for each
imaging. For MCI subjects, MRI scans were taken at baseline
(bl), 6 months (M06), 1 year (M12), 18 months (M18), 2 years
(M24), 3 years (M36), and 4 years (M48). However, some sub-
jects may miss a few visits, and they do not have MRI scans at
these missed time points. We choose n = 172 MCI subjects



Table 1. Demographics of ADNI subjects studied here.

MCI-C (n = 74) MCI-NC (n = 98)
Male/female 44/30 61/37
Age (years) 73.03 £+ 6.65 7435+ 7.47
Edu. (years) 15.51 + 3.05 15.59 + 3.07

Table 2. Distribution of visit times for ADNI subjects studied here.

MCI-C (n = 74) MCI-NC (n = 98)
<3scans 6 6
4 scans 8 14
5scans 15 33
6 scans 45 45
Table 3. ADAS-Cog scores of ADNI subjects studied here.

MCI-C (n = 74) MCI-NC (n = 98)

ADAS-Cog (baseline) 20.12 +3.79 16.01 + 3.91
ADAS-Cog (M48) 25.73 +4.22 17.14 £ 4.16
p-value 0.0031 0.2188

who have M48 imaging data. Table 2 lists the distributions of
visit times for these 172 MCI subjects, where, for example, six of
MCI-C subjects make at most three visits among the scheduled
six times (bl, M06, M12, M18, M24, M36) such that they have
at most three longitudinal MRI scans.

Our goal is to use longitudinal information (from bl up to
M36) to predict the clinical changes of MCI subjects at M48.
Empirical evidence suggests that the rates of change over time
for structural MRI and clinical cognition functions are in a
temporally ordered manner (Jack et al. 2010, 2013). Hence, we
consider the varying coeflicient model (1) for the nonlinear
modeling of the functional relationship between the atrophy
of MRI and the change in clinical cognition functions. The
Alzheimer’s Disease Assessment Scale—Cognitive Subscale
(ADAS-Cog) is used as the response clinical cognitive test
score Y(-). The ADAS-Cog score ranges from 70 (severe
cognitive impairment) to 0 (no cognitive impairment) and
it measures disturbances of memory, language, and other
cognitive abilities. The prediction of future clinical scores based
on the information at previous time points helps monitor
the disease progression. We provide in Table 3 the average
ADAS-Cog scores at baseline and M48 time point together
with the p-value for the difference. There exists a significant
difference between ADAS-Cog scores of baseline and M48
for MCI-C group while no significant difference for MCI-NC
group, which indicates that ADAS-Cog scores for MCI-NC
subjects increase much slower than that of the MCI-C subjects.
In other words, Table 3 suggests that for an MCI subject if
there is a significant increase in the prediction of ADAS-Cog
score at M48 compared to ADAS-Cog score at baseline, the
MCI subject is likely to be an MCI converter. Furthermore,
a statistical classification model such as the support vector
machines can also be built to classify MCI-C and MCI-NC
subjects based on the predicted ADAS-Cog scores and selected
features.

The covariates X;(-)’s in the varying coefficient model (1)
consist of 324 MR imaging ROIs and three demographic
covariates: age, gender, and education years. We let ¢ in (1) be
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the scaled time relative to subjects entering the ADNI study.
Hence, t is identifiable. Figure 2 gives the flowchart of our
approach, where the selected features (e.g., cortical thickness
of the right parahippocampal cortex and cortical thickness of
the right entorhinal cortex) shown in the middle panel exhibit
the abnormal shrinkages with time for the MCI-C. We build six
models based on six different levels of longitudinal information
in the training.

o Model 1 (p = 327,max;jm; =
observations at bl.

o Model 2 (p = 327,max;m; =
observations at bl or M06.

o Model 3 (p = 327, max;m; =
observations at bl or M06 or M12.

o Model 4 (p = 327,max;m; = 4): All subjects that have
observations at bl or M06 or M12 or M18.

o Model 5 (p = 327,max;m; = 5): All subjects that have
observations at bl or M06 or M12 or M18 or M24.

o Model 6 (p = 327,max;m; = 6): All subjects that have
observations at bl or M06 or M12 or M18 or M24 or M36.

1): All subjects that have
2): All subjects that have

3): All subjects that have

In each of these six models, we allow the training subjects to
have missing. For example, Model 3 includes subjects that only
have observations at bl and M12 but missed M06.

Following the flowchart in Figure 2, we perform the feature
selection method (3) and prediction as discussed in Section 2 for
each of the six models. Take the training and testing for Model
3 as an example. The MCI-C and MCI-NC subjects are trained
and tested separately. First, we randomly leave out half samples
of both MCI-C and MCI-NC subjects, respectively, for testing in
each experiment. For the training of Model 3, we choose subjects
that have data at bl or M06 or M12 and use the longitudinal
data in (3) and (4) to select features and estimate the varying
coeflicients. Here, n = 172, p = 327, and max; m; = 3. Tuning
parameters including the A in (3) and the 7 in (4) are selected by
10-fold cross-validation with the criteria that minimizes the pre-
dictive root MSE of ADAS-Cog scores of subjects at bl, M06, and
M12. With the selected features and estimated coefficients, we
estimate the values of covariates at M48 as discussed in Section 2
and predict the ADAS-Cog scores at M48 for both MCI-C and
MCI-NC subjects. The experiment of training and testing for
Model 3 is replicated 100 times. We summarized the averaged
predictive root MSE for ADAS-Cog scores at M48 in Figure 3.
Similarly, we train and test all other five models besides Model
3. It is evident in Figure 3 that the longitudinal information
can significantly improve the prediction results compared with
only using baseline information. And the more longitudinal data
included, the better prediction results are obtained. We also
observe that prediction results for MCI-NC are better than those
for MCI-C. This observation is expected since MCI-NC subjects
have more stable clinical status and less varied clinical scores.

We show in Figure 4 the four features that are consistently
selected in 100 experiments in training Model 6. These learned
features agree with the existing medical discoveries on AD-
related features; see Lin et al. (2015) for gender, Tognin et al.
(2014) for the cortical thickness of the right parahippocampal
cortex, Panizzon et al. (2009) for the surface area of the left
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Figure 3. The prediction comparisons of our method using six levels of longitudinal
data. The predictive root MSEs of ADAS-Cog scores for both MCI-C and MCI-NC
subjects at M48 are reported.

parahippocampal cortex, and Velayudhan et al. (2013) for the
cortical thickness of the right entorhinal cortex. Figure 4 also
illustrates the varying coeflicients of these selected features. The
maximum effect of each MRI ROI varies throughout disease
progression, which suggests that different MRI ROIs have differ-
ent functional relations with the clinical ADAS-Cog score. This
observation confirms the evidence and hypothesis in Sabuncu
et al. (2011) and Schuft et al. (2012) that atrophy does not
affect all regions of the brain simultaneously, but in a sequential
manner.

Now we compare our method (3) with other two state-of-the-
art methods:

o The longitudinal analysis in Chincarini et al. (2016), which
only uses the hippocampal volume shrinkage rate as the
feature and assumes the longitudinal trend being a linear
map. This method is different from our proposed method (3)
that uses all MRI ROIs, including the hippocampal volume
shrinkage as features and assumes the nonlinear longitudinal
trend.

o The longitudinal analysis in Zhang and Shen (2012), which
depends on linear feature representations and a group Lasso
for variable selection (Yuan and Lin 2006). This is different
from our proposed method (3) that uses nonlinear feature
representations in the varying coefficient model (1).

Since the methods in Chincarini et al. (2016) and Zhang
and Shen (2012) require identical scanning times and an equal
number of scans across samples, we perform Models 1-6 for
AD prediction with data of subjects having no missing visits.
In each experiment, we randomly leave out half of the samples
in both MCI-C and MCI-NC for prediction. For the training of
each model, we use the 10-fold cross-validation to select tuning
parameters in (3) and also for the methods in Chincarini et al.
(2016) and Zhang and Shen (2012). We replicate each experi-
ment for 100 times. The prediction comparison results for MCI-
C are shown in Figure 5 and the prediction comparison results
for MCI-NC are summarized in Figure 6, where the predictive
root MSEs for ADAS-Cog at M48 are reported. It is clear that our
method consistently achieves better prediction performances
for both MCI-C and MCI-NC. The reasons are that our method
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root MSEs of ADAS-Cog scores for MCI-C subjects at M48 are reported.
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Figure 6. The prediction comparisons of three methods for MCI-NC. The predictive
root MSEs of ADAS-Cog scores for MCI-NC subjects at M48 are reported.

models the nonlinear progression of longitudinal features and it
selects AD-related features from the whole brain MRI instead of
using only prespecified features for prediction.

4. Discussion

We study a framework to integrate longitudinal features from
the structural MR images for AD prediction based on varying
coefficient models. We propose a novel variable selection
method by combining smoothing splines and Lasso, which
enables simultaneous selection and estimation and is adaptive
to heterogeneous longitudinal data. Our work is the first in
the literature to model nonlinear progressions of longitudinal
features in the high-dimensional setting. For validating our
method, we conduct experiments with the ADNI dataset and

show that the proposed method outperforms the state-of-the-
art longitudinal analysis methods. It is promising and easy to
implement the proposed method in other longitudinal data
analysis examples.

It would be interesting to use the predicted ADAS-Cog scores
in a statistical classification model to predict whether a new
MCI subject will become a converter or not. Here, the MCI-
C and MCI-NC subjects need to be trained together, which is
slightly different from experiments in Section 3. Furthermore,
we only use MR images for AD prediction in this article. It would
be of great interest to apply the proposed method to integrate
multimodal data, including MRI, PET, and functional MRI.
We expect the integration of multimodal information would
further improve the accuracy of the AD prediction. Another
important future direction is to understand whether incorpo-
rating the known or estimated correlation structure between
measurements at the same covariate, x;j(ti1), . . ., Xij(tim,), into
our method (3) and (4) can improve the selection or estimation
results for varying coefficients B (-), ..., B(").

Appendix A: ADNI Database Description

The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and early AD.

Clinical diagnosed AD patients must have had mild AD and had to
meet the National Institute of Neurological and Communicative Disor-
ders and Stroke-Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) criteria for probable AD in McKhann et al. (1984).
The mild cognitive impairment subjects should have largely intact general
cognition as well as functional performance. Study subjects should have
been given written informed consent at the time of enrollment for imaging
and genetic sample collection and completed questionnaires approved by
each participating sites Institutional Review Board (IRB).

Appendix B: Preprocessing of the Brain MRI Used Here

The structural MRI used in this study are cortical gray matter volumes
processed using FreeSurfer software version 4.4 longitudinal image
processing framework (https://surfer.nmr.mgh.harvard.edu/) (“ucsffsl” file).
This dataset has been used in, for example, Tosun et al. (2011), Toledo
et al. (2014), and Dai (2018). Specifically, subjects with a 1.5-T MRI were
included in the dataset where the scans were preprocessed by certain
correction methods including gradwarp, Bl calibration, N3 correction,
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and skull-stripping (see, e.g., Jack et al. 2008 for detail), and the FreeSurfer
4.4 implements the symmetric registration (Reuter, Rosas, and Fischl 2010)
and unbiased robust template estimation (Reuter et al. 2012). Only MRIs
which passed the quality control for all the areas were included in our study.
There are total 393 ROIs of brain MRI created by FreeSurfer 4.4 and they
consist of volumes of brain regions obtained after cortical parcellation and
white matter parcellation, surface area of the brain regions and cortical
thickness of the brain regions. However, some ROIs are missing more than
90% across all samples due to the preprocessing. In Section 3, we use 324
ROIs with at most 20% missing values across the preprocessed samples.

Appendix C: Proof of Theorem 2.1

Denote by A(b, B1(-) ..., By()) the functional to be minimized in (3).
It is clear that A(b, B1(:),...,By()) is convex and continuous in B;(-)’s.

Denote by J(B1(-),...,Bp()) = )»21;1 IBll#x> and without loss of

generality, we assume A = 1. Denote by cx = max;, KY2(ty, tiy) and
¢x = max;,; |x;(tiy)|. By Cauchy-Schwarz inequality, for any i = 1,...,n,

V= 1, ce,my,
P p
D Bilta)xii(t)| = <Z ﬂ,-(-)xi,-(tiv),K(tw,~>>
j=1 j=1 He

P P (C1)
< D2 BiOxitn) | Kt t) < ck | Y Bi()xii(ta)
=1 Hi =1 Hk
< k] (by. .., Bp).
Denote p = max,-,‘,{yizv + |yiv| + 1}. Consider the set

Q={B1()....Bp() € HK, b € R:J(B1(),.... Bp()) < p,
|b] < p'/? + (ckex + Do)

Since 2 is closed, convex, and bounded set, ~the~re exists a minimizer
for (3) in Q. Denote the minimizer by Bo,B1(-),...,By(-). Then,
Ao BL(), .., Bp()) < A(0,0,...,0) < p.On the other hand, for any
B1()s. .., Bp(-) € H satisfying J(B1(), ..., By(-)) > p. It is clear that
A, B1(C) .., Bp()) Z J(B1()s - .5 Bp(-)) > p.Forany Bi(-),...,Bp() €
Hi with J(B1()s ..., p(-)) < pand |b] > p'/? + (ckex + Dp, (C.1)
implies that forany i = 1,...,n,v=1,...,m;,

P
b+ Z Bj(tiv)xij(tiv) — Yiv
j=1
> p'/2 + (ckex + 1)p — ckexp — p = p/%
Hence, A(b, B1(-), ..., Bp(-)) > p. Therefore, for any b, B1(-), ..., By(") &
Q, we have that A(b, B1(-),.... () > A(Bo, Bi()s..., Bp(")), where
Bo> B1()s - - ., Bp(+) is the minimizer of (3). We complete the proof.

Appendix D: Algorithm for Solving the Minimizer of (3)

We provide an algorithm for solving the minimizer of (3). The algorithm
is based on Theorem 2.2, whose proof will be given later in Appendix 4.
Consider for any fixed 6y, . .. ,0p > 0. If 0 =0 for some j, then B =0
in the optimization (4). Without less of generality, let 61,...,6, > 0.
Then (4) is equivalent to the smoothing spline type problem: find b €
R, B1(-), ..., Bp(-) € Hk to minimize

n  mi P p
D0 i = b= Y B+ 3 awdy DI
i=1 v=1 j=1 j=1
D.1)
By the representer lemma (Wahba 1990), B1(-),...,Bp(-) have a closed
form expression:

n  m;

Bity=>"

i=1 v=1

d K(tw, 1), Vj=1,...,p.

Define a m;, x m;, matrix Ej(il’m by

xiyj (ti DK (ty15 £y 1) Xiyj (tiy DK (Eiymyy » tiy1)
(ini2) __ . .
Y= ; :
Xiyj (tiymi VK (tiy 15 tiymy, ) Xiyj (tiymi VK (biymiy > tiymy))
andlet ZjbeaNx N (N = Z?:l m;) matrix where the (i1, iy)th m;; x m;,
matrix is ):J.(”"Z) . Define kernel matrix X by

Y = ( 21 22 EP ) € RNXN'P.

Let the unknown coefficient vector ¢ be

, . , , , T
J= ( di o A Ay Chm, ) e RN,
and
c=( {7 (AT ()7 ) eRM.
Write the response vector y as
y=(yu Yim o Ym Ynmy )T e RN

Let 1y be the column vector consisting of N 1I’s. Then (D.1) becomes

p
1 T o .
N /= Ze—bly) " (y— Be—bly) + Y (@b HidY 556,
j=1
which has the unique solution given as follows:
b=1ny — TN (v — ZE7IE Ty, 02)
E:i’IZT(y—lN@), .
where = = £ 7% + Ndiag{(tof; ) Z1,. .., (106, ) Zp).
Note that when 6, .. ., 6, are fixed, (4) is equivalent to find b € R,c €
RM to minimize

p p
1 . .
N0~ by - Do) (= by = ) 6%id)
j=0 j=0
, (D.3)
+ ) (rotpid} Tzl
j=0

The minimizer of (D.3) is

b=Db and cjzejflﬁj, ji=0,1,...,p,

where b and ¢ are given by (D.2).
On the other hand, consider when c is fixed, then the minimization of
(4) is equivalent to

P P P
min [y — > 6%d — bIn|? + N Y 6{d) Bid + N1y y_ 6,
’ j=0 j=0 j=0
st.6,>0,j=0,1,....,p,

which can be written as

p p
. i 2 NT .
rg,lbn lly — ;GJEJCJ — bln|” + N1o ;Gj{cj} z;d,
J=! J=

P
StO=0,j=01,..,p) 6 <M,
j=0
(D.4)
for some M > 0.

Therefore, we propose an algorithm to iterate (D.3) and (D.4) to give the
minimizer of (4). We observe in experiments that the objective function
in optimization (4) decreases quickly in the first iteration and after the
first iteration the objective function is close to the objective function at
convergence. It motivates us to consider the following one-step update
algorithm:

1. Initialization: fix 0 =1 forj=0,1,...,p.
2. Solve for cand b in (D.3) and tune 7j according to the generalized cross-
validation (GCV). Fix 7y at the chosen value in all later steps.



3. For c and b obtained in Step 2, solve for 6 in (D.4) with a fixed M.
4. With 6 obtained in Step 3, solve for c and b in (D.3).

We choose the best M in Step 3 according to the 5-fold cross-validation in
the experiments.

Appendix E: Proof of Theorem 2.2

Recall that we introduce A(b, 81 (), . .
functional to be minimized in (3). Let B(0y,. .
the functional in (4). Note

. Bp(+)) in Appendix C to denote the
0y b, B (s Bp(-) be

- 2_1/2
w00, 18134, + 116 = 275272 1B 91 = 321 Bjllaexs VO = 0,
and the equality in the above formula holds if and only if 6; =

~1/2

1:01 2 7, "“11Bjll 3 Therefore,

O b BLC) e Bp()) = A, B1 (s s Bp()), VO = 0,

and the equality holds if and only if §; = _[01 / 2‘51_ 12

1,...,p. We complete the proof.

B, ..
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