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Abstract: Diffusion imaging can assess the white matter connections within the brain, revealing how
neural pathways break down in Alzheimer’s disease (AD). We analyzed 3-Tesla whole-brain diffusion-
weighted images from 202 participants scanned by the Alzheimer’s Disease Neuroimaging Initiative—
50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain
tractography, we reconstructed structural brain connectivity networks to map connections between
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cortical regions. We tested whether AD disrupts the “rich club” — a network property where high-degree
network nodes are more interconnected than expected by chance. We calculated the rich club properties
at a range of degree thresholds, as well as other network topology measures including global degree,
clustering coefficient, path length, and efficiency. Network disruptions predominated in the low-degree
regions of the connectome in patients, relative to controls. The other metrics also showed alterations,
suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain con-
nectivity, and focusing on more remotely connected nodes rather than the central core of the network.
AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points
to disruptions predominantly in the peripheral network components; other modalities of data are needed
to know if this indicates impaired communication among non rich club regions. The highly connected
core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive

decline. Hum Brain Mapp 36:3087-3103, 2015.

© 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Studies of the human connectome are increasingly pop-
ular for investigating the patterns of disruption in the
structure and function of the diseased brain. At macro-
scopic level, the field of “connectomics” [Toga et al., 2013;
Engel et al., 2013] employs data from structural imaging,
such as diffusion weighted imaging (DWI), or functional
imaging, including resting state functional MRI (rs-fMRI),
and analysis methods from graph theory — a branch of
mathematics that models the topological organization of
the brain’s networks [Rubinov and Sporns, 2010]. These
forms of analysis are beginning to be applied to neurologi-
cal diseases [Daianu et al., 2012; van den Heuvel et al.,
2013; Daianu et al., 2013, 2014a, 2014b, 2014c] based on the
notion that brain dysfunction may originate from abnor-
mal overall organization of the brain network [van den
Heuvel et al., 2013].

Alzheimer’s Disease (AD) is a progressive, degenerative
neurological disease and is the 6th leading cause of death
in the US [Alzheimer’s Association, 2014]. In the U.S.

alone, over 5 million people live with the disease and this
number is expected to triple by 2050 [Alzheimer’s Associa-
tion, 2014] increasing health care costs by as much as 85%
[Bruner and Jacobs, 2013]. Worldwide, 44 million people
have the disease [Alzheimer’s Association, 2014]. As the
elderly population increases, over 115 million people may
have AD by 2050 [Alzheimer’s Association, 2014]. AD
leads to a severe decline in multiple cognitive domains,
particularly memory [Filippi et al., 2012]. This may occur
due to progressive deposition of beta-amyloid and tau
proteins in the brain that lead to inflammation, neural
atrophy and cell death [Wang et al., 2012]. These processes
affect the brain’s gray matter, leading to extensive cortical
and subcortical gray matter atrophy.

Recent studies with DWI reveal widespread disease
effects on the brain’s white matter [Clerx et al., 2012; Nir
et al.,, 2013; Jahanshad et al.,, 2012]. The spread of white
matter degeneration may be due in part to Wallerian or
“backward”neurodegeneration, in which gray matter atro-
phy leads to axonal degeneration [Coleman, 2005; Ewers
et al, 2012]. White matter changes such as myelin

Abbreviations
AD Alzheimer’s disease IMCI Late mild cognitive impairment
ADNI Alzheimer’s Disease Neuroimaging Initiative MEG Magnetoencephalography
Cg Global clustering coefficient MMSE Mini Mental State Examination
DTI Diffusion tensor imaging MRI Magnetic resonance imaging
DWI Diffusion weighted image NS Not significant
E Number of edges in network N Number of nodes in network
eMCI Early mild cognitive impairment PET Positron emission tomography
EEG Electroencephalography R Rich club coefficient
F Efficiency Rn Normalized rich club
FDR False discovery rate Rr Randomized rich club
fMRI Functional MRI RH Right hemisphere
IR-FSPGR  Inverse recovery fast spoiled gradient recalled echo ROIL Regions of interest
k Nodal degree rs-fMRI Resting state functional magnetic resonance imaging
kg Global degree SNR Signal-to-noise ratio
L Characteristic path length SPGR Spoiled gradient echo
LH Left hemisphere WB Whole brain
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TABLE I. Demographic information about study participants

Controls eMCI IMCI AD Total
N 50 72 38 42 202
Age 72.6 6.1 SD 72.4+79 SD 72.6 5.6 SD 75.5+8.9 SD 73.1+7.4SD
MMSE 289+ 1.4 SD 28.1 1.5 SD 269 +2.1SD 23.3+19SD 27.1+2.7SD
Sex 22M/28F 45M/27F 25M/13F 28M/14F 120M/82F
N sites 10 16 12 12 16

Demographic information from 50 controls, 72 eMCI, 38 IMCI, and 42 AD participants scanned with diffusion MRI as part of the ADNI
project. Their ages ranged from 55.2 to 90.4 years. The mean age and Mini Mental State Exam (MMSE) scores are listed for each diag-

nostic group. Participants were scanned at 16 different sites.

degeneration [Braak and Braak, 1996], neuroinflammation
and abnormal axonal transport are found in AD patients
[Rowley et al., 2013]. As white matter fiber tracts lose
axons and myelin degenerates, T2-weighted MRI scans are
often used to evaluate white matter hyperintensities — a
sign of cerebrovascular disease. The breakdown of the
brain’s fiber networks in AD has been demonstrated in
brain connectivity studies [Stam et al., 2007; Buckner et al,,
2009; Brown et al, 2011; Daianu et al., 2012; Nir et al.,
2012a, 2012b; Daianu et al.,, 2013; Li et al.,, 2013; Prasad
et al., 2013a; Daianu et al.,, 2014a, 2014b, 2014c, 2015a,
2015b], and can help understand how AD progresses.

DWI is increasingly used [Mori and van Zijl, 2002;
Basser and Jones, 2002] to study fiber integrity and micro-
structure, based on indices such as the mean diffusivity
and fractional anisotropy of local water diffusion [Clerx
et al, 2012]. Furthermore, diffusion-based tractography
can infer patterns of structural connectivity and is one of
the primary quantitative methods to study the 3D course
of long fibers (i.e., neural pathways) in the human brain
[Axer et al., 2010; Jin et al., 2013, 2014, 2015]. Cortical con-
nectivity networks, reflecting the extent and degree to
which various cortical regions are connected to each other,
may be represented as a graph of nodes describing cortical
regions and the neural pathways (or “edges”) that connect
them [Sporns, 2011; van den Heuvel et al., 2013]; the same
data may be stored in a 2D matrix. This allows mathemati-
cal metrics to be used to describe the topology of the
brain’s networks, and the connectedness of key nodes.

DWI has been added to several large-scale neuroimag-
ing studies, including the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [Jack et al., 2010], to monitor white
matter deterioration using metrics not obtainable from
standard anatomical MRI. Here, we analyzed brain net-
works in 50 healthy controls, 110 people with mild cogni-
tive impairment (early MCI, or eMCI, and late MCI, or
IMCI), and 42 AD participants using recently proposed
mathematical metrics, such as the rich club coefficient; the
rich club is a phenomenon that is present when highly
connected nodes (also called hubs) in the brain are more
connected among themselves than predicted by chance
[van den Heuvel and Sporns, 2011; van den Heuvel et al.,
2013]. To the best of our knowledge, this is the first study
to assess the structural rich club effect in MCI and AD as

compared to healthy elderly. To complement our analysis,
we evaluated additional metrics: nodal degree, clustering
coefficient, characteristic path length, and efficiency. The
motivation for the study was to detect unique connectome
changes that distinguish AD brains from cognitively
healthy brains by examining the wiring of the white mat-
ter bundles using network measures. The rich club coeffi-
cient, among other connectivity metrics, may become
potential biomarkers of AD, complementing standard,
more widely accepted measures.

Here, we showed that using brain connectivity tools, we
could describe specific connectome changes in AD as indi-
cated by the disrupted rich club coefficient and abnormal
network effects (assessed with measures nodal degree,
clustering coefficient, characteristic path length, and effi-
ciency) suggesting an overall, or global, reduced brain net-
work connectivity. These findings distinguish AD from
other disorders reporting on connectome disruptions. As
described by van den Heuvel and colleagues in a rich club
analysis on schizophrenia, the severe psychiatric disorder
was associated with characteristic hub (or nodal) changes
in connectivity [van den Heuvel et al., 2013], as opposed
to global changes as seen here in AD. We ranked the rich
club coefficients and its directly related terms, to see
which measures had the largest effect size in distinguish-
ing disease vs. healthy elderly white matter differences.
These measures, computed at a wide range of nodal
degree thresholds, reveal the altered brain dynamics and
potentially disrupted communication among non rich club
(low-degree) cortical regions of the brain, as well as a rela-
tively preserved densely interconnected rich club core in
patients with MCI and AD.

METHODS

Participants and Diffusion-Weighted Imaging of
the Brain

We analyzed DWIs from 202 participants scanned as
part of the ADNIL. ADNI is a large multisite longitudinal
study to evaluate biomarkers of AD. Table I shows the
demographics of the participants we studied including
age, sex, and the Mini Mental State Exam (MMSE) scores,
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broken down by diagnosis. All 202 participants underwent
whole-brain MRI on 3-Tesla GE Medical Systems scanners,
at 16 sites across North America. Standard anatomical T1-
weighted IR-FSPGR (inverse recovery fast spoiled gradient
recalled echo) sequences were collected (256 x 256 matrix;
voxel size=1.2 x 1.0 x 1.0 mm3; TI =400 ms, TR = 6.984
ms; TE =2.848 ms; flip angle = 11°) in the same session as
the DWI (128 x 128 matrix; voxel size: 2.7 x 2.7 x 2.7 mm?;
scan time =9 min). 46 separate images were acquired for
each scan: 5 T2-weighted images with no diffusion sensiti-
zation (by images) and 41 DWIs (b= 1000 s/mm?). This
protocol was chosen after comparing several different
DWTI protocols for ADNI, to optimize the signal-to-noise
ratio in a fixed scan time [Jahanshad et al., 2010; Zhan
et al., 2013; Zhan et al., 2014a, 2014b].

Image Analysis and Structural Connectivity

Tractography based on DWIs may be used in conjunc-
tion with an automatically labeled set of cortical or sub-
cortical regions from anatomical MRI to map connectivity
and perform network analysis of the brain’s fiber connec-
tions [Jahanshad et al., 2012; Jahanshad et al., 2011; Ingal-
halikar et al, 2013; Zhan et al, 2013]. Connectivity
matrices were compiled using a processing pipeline
described previously [Jahanshad et al., 2011; Braskie et al.,
2012; Jahanshad et al., 2012; Nir et al., 2012a; Nir et al.,
2012b]; this is detailed in the Supporting Information
section.

Briefly, we calculated orientation distribution functions
(ODFs) reconstructed using the constant-solid angle
method [Aganj et al., 2010] and performed tractography as
described in [Aganj et al., 2011] on the sets of linearly reg-
istered DWI volumes. Each subject’s dataset contained
~10,000 useable curves corresponding to fiber estimates
after filtering short fibers <15 mm which may correspond
to noise. In parallel, 34 cortical labels per hemisphere,
from the Desikan-Killiany atlas [Desikan et al., 2006]
(Table SI), were automatically extracted from all aligned
T1-weighted structural MRI scans using FreeSurfer version
5.0 (http://surfernmr.mgh.harvard.edu/) [Fischl et al.,
2004]. The resulting T1-weighted images and cortical mod-
els were linearly aligned to the space of the DWIs and the
DWIs (and resulting tracts) were further elastically regis-
tered to the T1-weighted image to account for susceptibil-
ity artifacts (we assume that the T1-weighted scan serves
as a relatively undistorted anatomical reference).

Combining the white matter tractography and the corti-
cal parcellations, fiber bundles connecting each pair of
regions of interest (ROIs) were detected. From this, a
68X68 connectivity matrix was created, 34 ROIs in each
hemisphere (Table SI), for each subject. Each element
described the estimated proportion of the overall set of
detected fibers in that subject, passing through each pair
of ROIs. In this article, we use the word fiber to denote a
single curve, or streamline extracted via tractography; as

not all cortical regions are connected to each other, if no
participants had detected fibers connecting two regions
(i.e., all participants had a 0 count at a specific matrix ele-
ment), then that connection was considered invalid and
was not included in the analysis.

Brain Network Measures

Topological changes in the brain networks may be ana-
lyzed using graph theory, which represents the brain con-
nections as a set of nodes and edges. The network nodes
are typically defined as ROIs, in our case on the cortex,
segmented from anatomical MRI. In DWI studies, these
network nodes are linked by edges [Sporns, 2011] that can
be either binary (1 if connection exists and 0 otherwise) or
weighted, with weights denoting some measure of connec-
tivity between the two regions, such as the density or
integrity of fiber tracts connecting the regions. Here, we
used binary matrices to compute all network measures. In
graph theory, an NxN connection matrix can be compiled
to describe the network. A square matrix can represent
any network of connections, and may also be displayed as
a graph, i.e., a discrete set of nodes and edges [Sporns,
2011].

The most basic measure to describe the connectedness
of the connectivity matrix is the nodal degree, k — the num-
ber of edges that connect to a node. Here, the nodal
degree was averaged over all cortical areas to output the
global degree. The nodal degree is one factor involved in
calculating the k-core network and rich club coefficient,
and is important to consider when interpreting other
measures that depend on it [Prasad et al.,, 2013a, 2013b].
The nodal degree serves as a threshold for defining the
largest subgraph with mutually and highly interconnected
central structural cores as part of the brain network, using
a k-core decomposition algorithm (for a detailed definition,
please see Supporting Information). For example, to com-
pute the “16-core” (k=16) of the connectivity matrix, all
nodes contained in a subgraph with a degree 16 or higher
would be retained while all other connections with degree
lower than 16 would be removed (set to zero). To explain
further, this indicates that at k =16, nodes in the subgraph
are connected to at least 24% of the other 67 nodes from
the original network (16/67 =24%, while at 100% one
node connects to all 67 other nodes in the network). These
degree thresholded nodes can be saved under a 68X68
matrix (the same size as the whole brain’s connectivity
matrix); it is expected that nodes that participate in high-
degree subgraphs in the network are resistant to the ero-
sive k-core decomposition method [Alvarez-Hamelin et al.,
2006; Hagmann et al., 2008].

Next, we computed the rich club coefficient, R, for each
subject’s anatomical network at a range of k-value thresh-
olds (i.e., k =1-22 or 1-33%); we explain the choice of the
cutoff in the next paragraphs. R is the ratio of the number
of connections among nodes of degree k or higher versus
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Figure I.

Rich club organization. Average rich club (R), randomized rich
club (R, and normalized rich club (R,) coefficients computed in
the brain networks of a. healthy controls and b. AD participants
across a wide range of nodal degree k-value thresholds (k= 1—
22). R is assessed on the brain networks of all participants at
each k, and normalized (to obtain R,) using R, computed from

the total possible number of connections if those nodes
were fully connected. This is defined as the fraction of
edges, E, that connect nodes, N, of degree k or higher over
a range of k-values:

E>k

R = N e tND)

1)

As higher-degree nodes are more likely to be intercon-
nected with each other than simply by chance, R is typi-
cally normalized. Here, the rich club coefficient, R,, was
also calculated in 100 randomized networks of equal size
and similar connectivity distribution and was used to nor-
malize our true networks and obtain the normalized rich
club coefficient, R,, (Fig. 1):

Ru(k) 1’;((’2) @)

Random networks are constructed from a disconnected
set of nodes [Sporns, 2011] with the same size and similar
nodal degree as the true brain network being randomized.
Tests of the rich club effect use randomized networks to
create a reference null distribution [van den Heuvel and

random networks of the same size and similar degree distribution
as the original brain networks. Light blue nodes in the 3D net-
works represent the rich club hubs discussed throughout this
study, also included in Figure 2. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Sporns, 2011]. It is important to do this as the absolute
value of the coefficient varies greatly with the size and
density of individual graphs, so it provides only limited
information on network integration [Sporns, 2011]. In this
dataset, R, must be greater than 1 to indicate the presence
of a rich club organization in the brain networks. These
networks are known to form small-world organizations
defined by high levels of clustering and low path length
[van den Heuvel and Sporns, 2011; Nir et al., 2012a;
Daianu et al.,, 2013]; whereas the random networks,
although of the same size and similar nodal distribution,
tend to have a low clustering coefficient and short path
lengths [Sporns, 2011]. Therefore, these are expected to
lead to a lower R than in the brain networks of either
healthy or diseased participants — hence the expectation
for R, >1.

Here, we analyzed the whole-brain networks in all par-
ticipants. We included similar analyses for the left and
right hemispheric networks in Supporting Information.
Rich club subnetworks, as described throughout the study,
were set at a high-degree k-value level (k>15), as previ-
ously reported [van den Heuvel et al., 2013]. In our study,
this threshold indicates that each node in the subnetwork
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must be connected to more than 22% nodes from the
whole brain network. We only reported k levels at which
the rich club effect was detected in all diagnostic groups
across most participants; for <4% of participants, the R,
was not detectable at high-degree k> 22 levels in the whole
brain networks, and therefore, was marked as zero, which
eventually decreased the average R,, below 1, and hence,
defined our cutoff of k =22 for observation. A rich club can
be undetectable at high levels of k due to a low number of
connections or noisy data, which is a phenomenon
observed in diseased participants [Daianu et al., 2013].

First, we tested for diagnostic group differences (AD vs.
controls and MCI vs. controls) for R at each nodal degree
k-value in the whole brain networks. The same analyses
were performed for R,. The individual components com-
prising the rich club — N and E, were also evaluated for
specificity. To compute the group differences, we used a
random effects regression, with controls coded as 0 and
the diagnostic groups, each assessed individually (i.e.,
MCI or AD) coded as 1, controlling for age, sex, and brain
volume and used scanning site as the random grouping
variable (as was done in previous ADNI-DTI works to
remove biases due to site-dependent covariance). We used
the false discovery rate procedure (FDR) to correct for the
multiple tests performed across all k-levels. We report the
critical FDR P-value, or the highest P-value that ensures
control of the false discoveries at 0.05. The higher the criti-
cal P-value (the closer to 0.05), the greater the effect of the
test as a whole, and often the more tests can be reported
as significant. The rich club effect detected network differ-
ences among healthy and diseased participants, so we also
tested if it was sensitive enough to detect network differ-
ences between MCI subtypes — 72 eMCI and 38 IMCI com-
pared to healthy elderly. Also, we tested for more subtle
differences, between IMCI and eMCI, AD and eMCI and
finally, AD and IMCI across the whole brain, left and right
hemisphere brain networks. We included these results in
the Supporting Information.

Second, we assessed R with relation to the MMSE scores
and age to test if we were better powered to predict a
more quantitative score in the whole group of 202 partici-
pants (rather than just a binary diagnosis), and to test
whether the rich club differed with age. For age associa-
tion tests, we covaried for sex, brain volume, and diagno-
sis as a fixed effect and used imaging site as a random-
effects variable; Diagnosis (D) was coded using 2 dummy
variables: AD were coded as “1” for both Disease (D1)
and Dementia (D2); MCI were coded as “1” for D1 and
“0” for D2; Controls were coded as “0” for D1 and D2. For
the associations with MMSE scores, we also a ran random
effects regression and covaried for age, sex, and brain vol-
ume. R, was analyzed in similar fashion. Using a similar
set up, we tested for any association of age and MMSE
scores with the global degree at k-values k=1-22 in the
whole brain of all participants.

To better understand the alterations in the cognitively
impaired individuals as determined by the rich club evalu-

ation, we also computed more standard network measures
including global degree, normalized clustering coefficient,
characteristic path length, and efficiency. We reported the
added measures on the same range of k-values for which
the rich club coefficients were evaluated (k = 1-22) to com-
plement the rich club effect at all cutoffs. By doing so, we
could compare and rank the global measures across the
entire k-value range (as described below), and detect if the
supporting standard metrics were altered across select k-
levels or the entire regime. At a particular k-level, the
global degree, k;, averaged across all n (68) nodes is com-
puted as:

1 1
kg =10 D icnki = ;ZieM]_EZM ai 3)

where k; is the degree of a node i, and a;; is a connections
status between nodes i and j (a; =1 if nodes i and j are
connected and a; =0 otherwise) [Sporns, 2011; Daianu
et al., 2012]. Here, M is the set of all nodes in the network.

The unnormalized clustering coefficient (C) of a network
is a measure of segregation and describes how densely
interconnected a node’s neighboring nodes are; this is
computed as the fraction of a node’s nearest neighbors
that are neighbors of each other:

-1y e - 12% e B4 W
ginieM l 7nieM ki(ki—1)

where C; is the clustering coefficient of node i (C; =0,
ki < 2) [Watts and Strogatz 1998; Sporns, 2011]. C was
averaged over all 68 nodes to output a global value (Cyg).

The characteristic path length (L) is a measure of net-
work integration, computed as the total number of edges
that need to be traversed to get from one node to the
other:

1 12 jemjzitis
L= enli =70 ©)

where L; is the average distance between node i and all
other nodes, d;; is the shortest path length [Watts and Stro-
gatz 1998; Sporns, 2011].

Global efficiency (F) is computed as the inverse of the
average of the path length:

1 D iem ';Aid;'l
F—_= jEM j#i%ij
n %\; n-1 ©)

To normalize the measures, we compared the observed
values to an average calculated from 50 randomized net-
works of equal size and similar connectivity distribution;
we determined that 50 random networks were enough to
stabilize the metrics (the outputs had the same distribu-

tion to when we used 100 random networks). It can help
to normalize these rather unstable graph theory metrics,
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Figure 2.

Average brain networks thresholded at nodal degree k=0, 8,
16, and 20 showing common connections in 90% of healthy con-
trols (CTL) (top row), MCI (middle row), and AD (bottom row)
participants. At k=0, where no nodal degree thresholding is
applied, the original brain networks include all non rich club and
rich club components of the connectome. As the nodal thresh-
olding levels increase, edges (connections between ROlIs), and
individual nodes (ROlIs) are removed. The diseased networks

such as C, L, and R, as their absolute value provides lim-
ited information on network integration in the brain
[Sporns, 2011]. Statistically, we performed the same anal-
yses as described above for the rich club effect and its
factors, N and E. We ran random effects regression to test
for differences for each graph theory metric between
healthy elderly and the diagnostic groups; analyses
between eMCI and healthy elderly, IMCI and healthy

are less resistant to the erosive thresholding decomposition of
the network’s components, and the centrally positioned hubs
(light blue nodes) are preserved in the diagnostic groups. These
hubs are the superior frontal (SF), insula (I), posterior cingulate
(PC), precuneus (P), and superior parietal region (SP). [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

elderly, IMCI and eMCI, AD and eMCI and AD and
IMCI participants are included in the Supporting Infor-
mation, as the results from left and right hemispheric
networks.

Finally, we ranked all 8 global measures (R,, R, N, E, kg,
L, F, Cp) in order of their effect size as a function of the t-
values, as output by the random effects regression run
between the diagnostic groups, and the degrees of
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freedom computed as the total number of participants
within each test minus 2:

tZ
"= \evay. @)

Here, r is the effect size correlation coefficient computed
with the t-values obtained from a between diagnostic
group random effects regression and the degrees of free-
dom (d.f.).

At each k-level, we computed the average P-values and
effect sizes for all 8 measures and selected the k with the
minimum average P-value and effect size to further rank
all 8 global measures at that particular threshold.

RESULTS

Effect of Normalizing the Rich Club
Coefficient, R

The rich club effect was assessed across a wide range of
nodal degree thresholds, k, to define the densely intercon-
nected subnetworks of the brain in healthy controls and
patients. These subnetworks included both intra- and
interhemispheric' connections among which the intrahemi-
spheric connections made up most of the edges analyzed
in this study. In Figure 2, we illustrate the average brain
networks in each diagnostic group and how the edges
interconnecting cortical regions of the brain are peeled off
more readily in patients (MCI and AD participants), than
in healthy elderly at incremental k-levels (k=0, 8, 16, and
20). This phenomenon led to an increase in R over an
increasing range of k-values in the whole brain of all par-
ticipants (Fig. 3) and this is explained in detail in the Dis-
cussion section. Also, R, was increasingly greater than 1
for a stable range of k levels, which indicates that a rich
club organization was detectable in most participants. R,
is plotted for all values of the nodal degree threshold, k,
including at the first k-value where a rich club effect was
no longer detectable (R, <1). All significant P-values are
listed in Table II.

In the whole brain network, R was significantly lower
in AD, than in controls, at low-degree k levels, k =1-15
(Fig. 3, Table II), but no significant differences were
detected for R between controls and MCI participants at
any k-levels. At high-degree values of k (k> 15), where a
rich club exists, there is a large reduction of nodal

"The rich club effect was also computed separately on the inter-
hemispheric connections within each diagnostic group. Due to the
low number of detected edges connecting the two hemispheres, the
rich club coefficient was only computable in the low-degree k-value
regime and did not exceed k = 7 in controls and k = 4 in MCl and AD
participants. Therefore, we did not detect a rich club effect among
the interhemispheric connections of the brain (only detectable at
k>15).

connections in the network, so properties can greatly dif-
fer from those seen in the lower regime. The main terms
involved in the rich club coefficient formula, N and E,
also showed group differences. N declined and was lower
in AD, than in controls, in the whole brain across the
entire k-value regime, at k =1-22, and at k=4 in MCL E
declined and was lower in AD participants, than in con-
trols, in the whole brain networks at k =1-22. As shown
in Figure 3, R,, was significantly higher in AD partici-
pants, relative to controls, but mostly at low-degree k-lev-
els, k=1-9, 11, 14, and 16 in the whole brain (Table II).
R, was also higher in MCI participants versus controls at
k=3, 4.

Rich Club Changes With Age and Cognitive
Decline

Age and MMSE scores were associated with the rich
club coefficients, for both R and R,. R decreased with age,
while R, increased with age at particular k-values in the
low-degree regime (k <16) for the whole brain. FDR criti-
cal P-values are listed in Table III. Among the high-degree
k-values that pertain to the rich club network (k>15), R
increased with age but only at select k-values in the whole
brain (Table III, Fig. 4). As MMSE scores declined, R also
declined, but R, increased, again, among the low-degree
nodes in the k-value range.

As the rich club effect depends on the network degree
(i.e., number of edges that connect to a node), we also
assessed if there was a general trajectory of the association
with age and MMSE scores on k, at all corresponding k-
values. We found that k; decreased with age and declining
MMSE scores across the entire k-value regime (Table III).
These findings support the trajectory of association
between R and MMSE scores, indicating a lower number
of edges in low-degree nodes in patients, which ultimately
affects the rich club coefficient.

Other Global Brain Metrics, kg, C,, L and F
Applied at a Range of Nodal Degree
Thresholding Levels, k

To interpret the rich club effects in the diagnostic
groups, we computed some of the most commonly used,
more basic graph theory metrics across the entire k-value
regime of each subject, in the whole brain networks. In
Figure 5, we illustrate the nodes and edges that the sup-
porting metrics were computed on. These were assessed
across the entire k-core regime to observe how they change
during the erosive decomposition process. Furthermore,
measures computed for each diagnostic group, MCI and
AD, were compared to measures in healthy elderly at each
k (Fig. 5). Differences in measures not reported below did
not significantly differ among diagnostic groups and are
marked ‘not significant’ in Tables II. More results are
reported in Supporting Information.
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Figure 3.

Average unnormalized and normalized rich club coefficients, R
and R,, average number of nodes, N, and average number of
edges, E, in the whole brain networks of healthy controls (CTL),
MCI and AD participants. R is significantly lower in AD partici-
pants (red), relative to controls (blue), in the low-degree k-value
regime (k < 16). R, increased in AD, relative to controls, mostly
in the low-degree regime (red). Similarly, R, was higher in MCI
(green), relative to controls. N and E were lower and declining
in MCl and AD participants, relative to controls, as plotted.

kg: As the network threshold (k) increased and more
low-degree nodes were removed, k, declined in both AD
and MCI across the entire k-value regime in the whole
brain, relative to healthy elderly. This is expected and has
been previously shown in a study by Daianu and col-
leagues [Daianu et al., 2014a].

Normalized Cg: The normalized C, also showed indica-
tions of disease differences in the network architecture of
the whole brain. This measure is expected to be lower in
disease when unnormalized and greater when normal-
ized (using random networks), relative to healthy partici-
pants, as the nodal connections in the network drop
drastically. Note that random networks are known to
have short path length and lower levels of clustering

These suggest that the low-degree k-value regime is more
affected than the high-degree regime in patients, so overall — the
rich club networks may be relatively spared in disease. Colored
dots show where significant differences were found. Error bars
are the standard error computed at each k level for all partici-
pants. FDR corrected P-values are listed in Table Il. [Color figure
can be viewed in the online issue, which is available at wiley
onlinelibrary.com.]

than observed in human networks (oftentimes C from
random networks < 1) [Sporns, 2011]; C from random net-
works are used to normalized C computed on brain net-
works, therefore, leading to an increased in the
normalized C,. A recent study supports this hypothesis
and showed a decreased C in structural networks of 32
AD participants, relative to 50 healthy elderly [Reijmer
et al., 2013]. Normalized C, was higher in MCI at k=1~
22 and AD participants at k=1-20 in the whole brain,
relative to controls.

Normalized L: Normalized L is expected to be greater in
disease, relative to controls, as the diseased networks of
the brain lose complexity (i.e., significant drop in the num-
ber of edges detected in patients). A higher normalized L
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TABLE Il. Diagnostic group differences for global
network measures

FDR critical P-values

Network measures MCI vs. CTL AD vs. CTL
R NS 0.01
k=1-15
N 1.8x 1073 1.9 x 1073
k=4 k=1-22
E NS 2.7 x 1073
k=1-22
R, 3.8x1073 0.020
k=34 k=1-9,11, 14, 16
kg 0.049 6.5x107°
k=1-22 k=1-22
Normalized C, 0.035 1.0 x 107°
k=1-16 k=1-20
Normalized L 0.039 4.7 x 1073
k=1-20 k=1-20
F 0.049 51x107°
k=1-22 k=1-22

FDR critical P-values (in bold) are shown after fitting a random
effects regression model to these network measures: rich club
coefficient (R), normalized rich club coefficient (R,,), total number
of nodes (N), and edges (E), global degree (kg), global normalized
clustering coefficient (C,), normalized characteristic path length
(L) and efficiency (F), computed at nodal degree thresholds, k = 1-
22, in the whole brain to test for diagnostic group differences
between controls (CTL) and MCI, and separately AD participants
(with controls coded at 0 and disease coded at 1). We covaried for
sex, age, and brain volume and used site as a random regression
variable. k levels where significant differences were found are
included or are marked as not significant (NS).

means that a greater number of edges must be traversed
to get from one node to another. Presumably, shorter
paths are advantageous, along with high levels of cluster-
ing, to form small-world networks that characterize the
topology of the brain [Sporns, 2011]. Here, the normalized
L was significantly higher in MCI and AD participants at
k =1-20, relative to controls.

F: With disease progression, a decline in F is expected,
as L increases (efficiency is an approximate inverse of the
network path length). This is in line with recent studies
that showed decreased local efficiency in structural net-
works of 32 AD participants, relative to 50 healthy elderly
participants, however, no significant patterns were found
for global efficiency [Reijmer et al., 2013]. Here, F declined
(as the network threshold, k, increased) in all diagnostic
groups and was significantly lower in the whole brain at
k =1-22 in MCI and AD, relative to controls.

Ranking the 8 Brain Network Measures

We ranked the 8 brain global network measures in the
order of largest effect size at a k-level, k =4, to indicate the

sensitivity of each measure for detecting brain network
alterations between diagnostic groups (Fig. 6). At k =4, we
determined that the average P-value and r computed
across all 8 global measures were the lowest in diagnostic
comparisons between AD and controls, as well as MCI
and controls. By analyzing the subnetworks of the brain
thresholded at degree k=4, we were able to assess a less
sparse network (where nodes must have a nodal
degree > 4) that includes both low- and high-degree nodes.
The largest effect size for these measures was detected in
AD vs. controls comparisons, while for MCI vs. controls
comparisons, the effects dropped by more than half. Effect
sizes were categorized based on large (r=0.5), medium
(r=0.3), and small effect size coefficients (» =0.1). For all
other diagnostic group comparisons, including left and
right hemisphere analyses, please see Supporting
Information.

E, kg, and F gave the largest effect size in the AD vs.
controls comparisons (r = 0.52) followed by L (r = 0.50), C,,
and R, (r=0.47). Medium to large effect sizes were com-
puted for R (r=0.45) and N (r=0.39) (Fig. 6). As illus-
trated in Figure 2, a significant number of connections are
lost in the AD brain networks; hence, measures sensitive
to the number of edges (e.g., E) are expected to show
greatest effects in detecting disease-related differences.

For diagnostic group comparisons between all MCI par-
ticipants and controls, small to medium effects were
detected by R, and N (r=0.25 and 0.24) followed by C,
and L (r=0.20 and 0.19) and finally k;, and F (r=0.18)
(Fig. 6). No significant differences were detected for R and
E between MCI participants and controls. During this
stage of the disease, it appears that fewer connections are
lost than in AD patients (Fig. 2), as indicated by E — a
measure that did not detect differences between the two
diagnostic groups, unlike what we observed in the group
comparisons between AD and controls.

DISCUSSION

Here, we analyzed structural brain connectivity in cog-
nitively healthy elderly, MCI and AD participants as part
of ADNIL We assessed disruptions in the rich club organi-
zation in MCI and AD, and to help interpret our results,
we analyzed a range of supporting and widely-used brain
connectivity measures: the global degree, global normal-
ized clustering coefficient, normalized characteristic path
length and efficiency, in the same diagnostic groups. We
ranked the brain network metrics based on their effect
sizes for distinguishing structural differences between
healthy and diseased participants. Our study had 3 main
findings: (1) AD tends to affect the low-degree brain
regions in the network, rather than the high-degree nodes
that form the rich club; (2) supporting measures confirm
this phenomenon and show altered binary connectivity
across the entire range of network thresholding, k (both
low- and high-degree), suggesting that AD is a disease
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Figure 4.

Age and MMSE score associations with the rich club effect.
Change in the unnormalized and normalized coefficients, R (blue)
and R, (red), with age and MMSE scores using a random effects
regression in the whole brain in all 202 participants. We
covaried for sex, brain volume and diagnosis as a fixed effect for
the age associations; and sex, age, and brain volume for the
associations with MMSE scores; we used site as a grouping vari-
able for the random effects regression. Change is defined as the

that disrupts the overall (global) connectivity of the brain; (3)
the normalized rich club coefficient, R,,, was found to have
one of the largest effect sizes for detecting MCI vs. controls,
as well as AD vs. controls network differences within the
low-degree k-value regime (non rich club networks); this
measure may constitute a potentially powerful metric in
studying AD that reveals the mechanisms of altered connec-
tivity in disease and could be used to monitor these newly
discovered patterns of disruption specific to AD.

The rich club phenomenon in AD and MCI (Figs. 2, 3)
accompanies a global decrease in connectivity and altera-
tions in all supporting metrics (k;, F, L, and C,) across
most of the k-value regime (Fig. 5). There are decreases in
the supporting metrics in AD and MCI, relative to con-
trols, so not all connections contributing to the highly
interconnected nodes of the rich club are kept intact dur-
ing disease. In fact, many low-degree nodes in AD are
more vulnerable to the erosive k-core decomposition than

slope of the regression at each k (k< 16 defined the non rich
club network and k >15 defined the rich club). Colored circles
indicate k-levels where R and R, significantly decreased (negative
slope) and increased (positive slope) with age and MMSE scores.
Gray circles indicate k-values where no significant association
was found. FDR critical P-values are in Table Ill. [Color figure
can be viewed in the online issue, which is available at wiley
onlinelibrary.com.]

seen in healthy controls (Fig. 2). Nonetheless, as described
by R and R,, the AD network may have a relatively pre-
served connectivity between edges that link high-degree
nodes to other high-degree nodes that form the rich club.
These findings are described in two key points below.
First, in our diagnostic group comparisons, we found a
lower R in the diseased groups (Fig. 3), relative to healthy
or less impaired participants, in the lower k-value regime.
The drop in R among impaired participants may be intui-
tive and is only observed across low-degree k-levels where
less strongly interconnected brain regions are present to
contribute to this effect (i.e., global degree is lower in dis-
eased than healthy elderly). As the k-levels increase, the
low-degree nodes are peeled off (Fig. 2), and the primary
cores of the network are maintained and form a rich club
(k>15). During this process, the rich club effect increases,
even in disease (Fig. 3). Defined as the ratio of the total
number of edges, E, to the total number of nodes, N(N—1),
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TABLE Ill. FDR critical P-values (bold) for Age and MMSE score associations with the rich club effect
and global degree.

R, ke

Age associations

0.032 1.8 x 1073
agef), Ry, for k=1-11, 13, 14

ageft, Ry, for k=18-22

agefl, R,1, for k=1-7, 9-12

7.0 x1078
agef, kgl}, for k=1-22

MMSE Score Associations

0.031
MMSE |, R, for k=1-13

0.018

MMSE U}, R, for k= 1-5, 7-9

2.5 x 107°
MMSEJ, kl}, for k = 1-22

Statistically significant associations at select k-levels for the unnormalized and normalized coefficients, R and R, and global degree, kg,
with age and MMSE scores using a random effects regression in the whole brain in all 202 participants as shown in Figure 4. In the
rich club, R increased with age and decreased with declining MMSE scores in the non rich club network; R also increased with age,
independent of disease, in the rich club. R, increased with age and declining MMSE scores in the non rich club network; finally, kg
decreased with age and with increasing MMSE scores. {} indicates an increase, while |} indicates a decrease.

this property of the rich club effect is explained by its rap-
idly decreasing denominator, N(N—1). Although the brain
networks lose approximately more edges than nodes
throughout the thresholding process (Figs. 2 and 3), the
denominator, N(N—1), decreased approximately at double
the rate relative to the nodal degree, N, leading to a
greater loss in the denominator than numerator — hence an
increase in R. On the other hand, we observed a higher R,
in the impaired groups, relative to the coefficients in
healthy or less impaired participants, also in the lower k-
value regime. If in particular the total number of low-
degree node edges is lower in patients, it is expected that
from normalization (when the edges are equally distrib-
uted over the network), the rich club density as described
in Eq. (2) would go up (as observed), rather than down.
The higher R, in patients within the low-degree regime
further indicates that the integrity of the rich club net-
works may be spared in disease.

Second, among the low-degree k-value regime (k <16), R
decreased with age and with declining MMSE scores in all
participants (Fig. 4 and Table III), indicating a decrease
with age and separately, with disease progression, in the
interconnectedness of low-degree nodes in the subnet-
works of the brain. As explained in the first key finding,
the rich club curve tends to increase as nodes of the net-
work are peeled off and we also found this to be the case
as a function of time - R significantly increased with age
(independent of disease) in the rich club networks of all
202 participants (k =18—22). This does not indicate a more
interconnected rich club in aging participants; with age,
connections between nodes are more vulnerable to the net-
work decomposition process exposing a rich club network
comprised of a reduced E and N. We also found an
increase in R,, with increasing age and declining MMSE
scores, across the low-degree k-value regime. Only propor-
tionally to the rest of the brain did R, increase with age
and with declining MMSE scores among non rich club net-
works. No associations with MMSE scores were detected

among the rich club networks (k>15), so the rich club
may be relatively preserved as disease progresses.

These patterns of disruption in the rich club coefficients
may be AD specific. To our knowledge, there are no prior
studies to have analyzed the rich club effect in AD struc-
tural binary brain networks compared to controls, but van
den Heuvel and colleagues studied the structural rich club
organization in schizophrenic patients and reported a dis-
tinctly different rich club effect than healthy controls. They
found significant decreases in the diseased rich club net-
works in 48 patients (rich club range k = 16 to k =28 across
68 cortical and 14 subcortical regions), relative to 45
healthy controls. This indicates that the disruption of the
rich club may depend on disease pathology and may
describe a distinct and unique pattern of disruption in the
overall organization of the brain’s connectome. Prior stud-
ies have also shown that the overall structural connectivity
of the brain networks in AD is reduced [Daianu et al.,
2013], while the left hemisphere in AD may have greater
disruptions in connectivity than the right, possibly leading
to more left than right hemisphere cortical atrophy
[Thompson et al., 2003; Daianu et al., 2013]. In addition,
rich club network metrics (R, E, N) were among the most
sensitive (had largest effect sizes) at detecting AD vs. con-
trols and separately, MCI vs. controls differences (Figs. 6
and S5) among low-degree nodes. Supplementary analyses
on left and right hemispheric networks indicate similar
patterns of disruption as observed in the whole brain net-
works and further suggest that the right hemisphere may
be less disrupted than the left (Supporting Information).

In prior studies, the brain’s rich club includes the most
densely interconnected cortical regions, including the precu-
neus, posterior cingulate, superior parietal, and superior
frontal regions, and the insula [Sporns et al., 2007; Zamora-
Lopez et al., 2010; van den Heuvel et al., 2012]. Van den
Heuvel and colleagues found these regions to form the cen-
tral backbone in a rich club analysis using DWI data from
40 healthy participants. Some of these studies used 1,170
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Other network measures. a. Brain networks indicated by thick
edges used to compute all supporting graph measures; removed
connections (thin edges) are not included in the computation of
the network measures as nodal k-levels increase; b. average
global degree (k;), normalized clustering coefficient (Cg), normal-
ized characteristic path length (L), and efficiency (F) computed in
controls (CTL, blue), MCI (green), and AD participants (red)
over the entire k-value regime (k= 1-22) in the whole brain
networks. As expected, all network measures declined as a func-
tion of k in AD and MCI, relative to controls at most k-levels.

cortical parcels [van den Heuvel et al., 2012], and although
we used 68 cortical parcels, we also found that the main
brain regions to remain relatively unaffected in AD, as part
of the rich club, included most of the ones listed above.

Assessed over the entire k-value regime, these indicate that AD
may involve a disruption in the global connectivity of the brain,
rather than network topology. Colored dots on the curves indi-
cate that a group difference between CTL and diseased partici-
pants was detectable at that value of k. Error bars are the
standard error computed at each k level for all group partici-
pants. FDR critical P-values are listed in Table Il. [Color figure
can be viewed in the online issue, which is available at wileyonli-
nelibrary.com.]

Supporting this, non human studies of macaque and cat
cortex reported the same regions within the top hierarchical
module of the densely interconnected brain hub [Sporns
et al., 2007; Zamora-Lopez et al., 2010].
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Figure 6.

Network measures in order of their effect size for detecting dif-
ferences in AD vs. controls (CTL), and MCI vs. CTL compari-
sons. 8 global network measures were ranked: unnormalized
and normalized rich club coefficient (R and R,), total number of
nodes (N) and edges (E), global degree (kg), normalized cluster-
ing coefficient (C;) and path length (L) and efficiency (F). Effect
sizes were assessed using an effect size correlation coefficient, r,
at nodal degree level k=4, where the lowest P-values and
highest r were found for all 8 measures across the entire P-value

Although we claim that AD shows a global pattern of
disruption of the white matter connections with a rela-
tively preserved pattern of connectivity among the most
central nodes, this does not mean that some of the hub
nodes are not affected at regional level. It has been previ-
ously shown, in nodal analyses using weighted measures,
that the left hemisphere precuneus, left and right supe-
rior parietal, superior frontal, posterior cingulate among
other non hub regions had a significantly lower fiber
density in AD than controls [Daianu et al. 2013, 2014a,
2014b, 2014c]. Furthermore, a recent study by Crossley
and colleagues linked gray matter deficits in MRI data
from more than 20,000 subjects and 26 distinct diseases
to the topological centrality of the nodes in DWI data
from 56 healthy participants. Unlike in our study, they
defined their hubs using 401 ROIs delineated on the nor-
mal connectome and replicated them using a meta-
analysis of 1,500 task-related functional studies of healthy
participants. They showed that in AD, the hubs of the
brain network (e.g., parietal regions) are more likely to
be anatomically altered than the non hub regions [Cross-
ley et al., 2014]. Although at local level some of the hubs
that constitute the rich club are affected in AD, here, we
showed that they are not eliminated from the richly
interconnected network as seen, for instance, in fronto-
temporal dementia (where hub nodes turn into non-hub
nodes due to a very large loss of connections) [Daianu
et al., 2014a, 2014b, 2014c].

regime in a. the AD vs. controls and, b. MCI vs. controls com-
parisons. c. One of the network components with largest effect
size in the AD vs. controls comparisons was E due to the loss
in edges in the low-degree k-value regime in AD patients; d. in
contrast, global measures detected approximately half as large
effect sizes in the MCI vs. controls comparisons. Gray bars indi-
cate that measures did not detect significant differences. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Structural alterations in the brain network may be more
concentrated on hubs due to their higher topological value
(larger nodal degree), which is possibly when diseases
become symptomatic [Crossley et al., 2014] and more eas-
ily detectable with neuroimaging approaches. Hub vulner-
ability may be caused by a hub-focused biology of the
disease; or some diseases might start in the peripheral
nodes and propagate to the central core, causing hubs to
become symptomatic [Crossley et al., 2014]. It is not yet
clear if hubs are altered due to disease processes that
affect the brain globally (i.e., uniformly), or locally — per-
haps starting within a hub or in the peripheral nodes (i.e.,
non rich club nodes) [Crossley et al.,, 2014]. In AD, there
may be a globally propagating white matter disorder that
causes structural and functional damage and this may be
more readily detectable in studies focused on regional, or
nodal interpretations of the connectome [Daianu et al,
2013; Crossley et al, 2014; Daianu et al., 2014a, 2014b,
2014c], especially later in the disease. More central regions
of the rich club (Fig. 2), which connect to remote nodes
[van den Heuvel et al., 2012], may be relatively resistant to
the neurodegenerative process.

Some of the limitations of our study may involve the rela-
tively low number of tractography fibers (~10,000) detected
in each brain; but despite the relatively lower fiber counts,
this method of network creation has been proven stable. In
addition, it could be that expanding the cortical parcellation
paradigm to include more regional components can help

¢ 3100 «


http://wileyonlinelibrary.com

# Relatively Undisturbed Structural Core Network in Alzheimer’s Disease ¢

better home in on the specific disrupted connections and
better differentiate core and peripheral nodes. However, as
expected, additional regions would redefine the network
organization and the rich club may rewire around the sub-
cortical regions (if most connections go through them) and
therefore, we may not be able to distinguish between sub-
cortical vs. cortical (or whole brain) network connectivity.

AD may be a disorder best characterized by an overall,
or global, underlying change in connectivity that distin-
guishes the disease from other disorders reporting on
connectome changes [van den Heuvel et al., 2013; Daianu
et al., 2014a, 2014b, 2014c]. An overall reduced connectiv-
ity is seen in the network effects for kg, F, L, and C,, that
were affected across (in most cases) the entire range of k,
not only in the lower or higher regime. Most frequently,
these network metrics are computed across the complete
network (i.e., k =0), however, assessing these across the
entire range of k enforces the global connectivity disrup-
tion phenomenon specific to AD. Reduced connectivity
was also detected among the MCI groups, relative to
healthy elderly, but predominantly in the whole brain
networks that contain a large set of nodes, possibly neces-
sary for detecting subtle changes in white matter altera-
tions. Effect sizes for measures detecting MCI vs. healthy
elderly comparisons were relatively small, so detecting
structural alterations among MCI participants remains a
challenge.

CONCLUSION

The rich club phenomenon takes into account the fiber
density for the densely interconnected white matter connec-
tions in the brain’s network [van den Heuvel and Sporns,
2011] and has not previously been assessed in people with
AD and MCI, compared to healthy elderly. Here, we
showed that disease effects were prevalent in the low-
degree nodes, and not so much in the high-degree nodes
forming the core of the rich club organization. This indicates
that AD may have a strong impact on lower degree brain
regions and might spare some of the subnetworks in the
rich club. The binary rich club analysis of the AD connec-
tome is a strong indicator of the global network disruption
among cortical regions of the brain and has the potential to
reveal information that we did not previously know about
the AD brain. In particular, we found that the core of the
brain network remains relatively undisturbed throughout
the disease. These findings may possibly set apart AD from
some other disorders associated with connectome changes.
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