504

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 2, FEBRUARY 2019 EMB N IEEE
—o—

uv%,«m
Slgral Processing Soclely ®

P33

Medical Image Imputation From
Image Collections

Adrian V. Dalca™, Katherine L. Bouman

, William T. Freeman™, Natalia S. Rost,

Mert R. Sabuncu™, and Polina Golland for the Alzheimer’s Disease Neuroimaging Initiative

Abstract—We present an algorithm for creating high-
resolution anatomically plausible images consistent with
acquired clinical brain MRI scans with large inter-slice spac-
ing. Although large data sets of clinical images contain a
wealth of information, time constraints during acquisition
result in sparse scans that fail to capture much of the
anatomy. These characteristics often render computational
analysis impractical as many image analysis algorithms
tend to fail when applied to such images. Highly specialized
algorithms that explicitly handle sparse slice spacing do not
generalize well across problem domains. In contrast, we aim
to enable the application of existing algorithms that were
originally developed for high-resolution research scans to
significantly undersampled scans. We introduce a genera-
tive model that captures a fine-scale anatomical structure
across subjects in clinical image collections and derives an
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algorithm for filling in the missing data in scans with large
inter-slice spacing. Our experimental results demonstrate
that the resulting method outperforms the state-of-the-art
upsampling super-resolution techniques, and promises to
facilitate subsequent analysis not previously possible with
scans of this quality. Our implementation is freely available
at https://github.com/adalca/papago.

Index Terms—Imputation, super-resolution, clinical

scans, MRI, sparse slices, thick slices, brain scans.

I. INTRODUCTION

NCREASINGLY open image acquisition efforts in clinical

practice are driving dramatic increases in the number and
size of patient cohorts in clinical archives. Unfortunately, clin-
ical scans are typically of dramatically lower resolution than
the research scans that motivate most methodological devel-
opment. Specifically, while slice thickness can vary depending
on the clinical study or scan, inter-slice spacing is often
significantly larger than the in-plane resolution of individual
slices. This results in missing voxels that are typically filled
via interpolation.

Our work is motivated by a study that includes brain
MRI scans of thousands of stroke patients acquired
within 48 hours of stroke onset. The study aims to quantify
white matter disease burden [23], necessitating skull strip-
ping and deformable registration into a common coordinate
frame [27], [31], [32]. The volumes are severely under-
sampled (0.85mm x 0.85mm x 6mm) due to constraints of
acute stroke care (Fig. 1). Such undersampling is typical of
modalities, such as T2-FLAIR, that aim to characterize tissue
properties, even in research studies like ADNI [15].

In undersampled scans, the image is no longer smooth, and
the anatomical structure may change substantially between
consecutive slices (Fig. 1). Since such clinically acquired
scans violate underlying assumptions of many algorithms, even
basic tasks such as skull stripping and deformable registration
present significant challenges, yet are often necessary for
downstream analysis [4], [7], [12], [15], [23], [30], [31].

We present a novel method for constructing high reso-
lution anatomically plausible volumetric images consistent
with the available slices in sparsely sampled clinical scans.
Importantly, our method does not require any high resolution
scans or expert annotations for training. It instead imputes
the missing structure by learning solely from the available
collection of sparsely sampled clinical scans. The restored
images represent plausible anatomy. They promise to act as a
medium for enabling computational analysis of clinical scans
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Fig. 1. An example scan from our clinical dataset. The three panels
display axial, sagittal and coronal slices, respectively. While axial in-plane
resolution can be similar to that of a research scan, slice spacing is
significantly larger. We visualize the saggital and coronal views using
nearest neighbor interpolation.

with existing techniques originally developed for high resolu-
tion, isotropic research scans. For example, although imputed
data should not be used in clinical evaluation, the brain mask
obtained through skull stripping of the restored scan can be
applied to the original clinical scan to improve subsequent
analyses.

A. Prior Work

Many image restoration techniques depend on having
enough information in a single image to synthesize data.
Traditional interpolation methods, such as linear, cubic
or spline [28], assume a functional representation of the image.
They treat the low resolution voxels as samples, or observa-
tions, and estimate function parameters to infer missing voxel
values. Patch-based super resolution algorithms use fine-scale
redundancy within a single scan [10], [11], [19], [20], [22].
The key idea is to fill in the missing details by identifying
similar image patches in the same image that might contain
relevant detail [19], [22]. This approach depends on having
enough repetitive detail in a scan to capture and re-synthesize
high frequency information. Unfortunately, clinical images are
often characterized by sampling that is too sparse to adequately
fit functional representations or provide enough fine-scale
information to recover the lost detail. For example, 6mm
slice spacing, typical of many clinical scans including our
motivating example, is far too high to accurately estimate
approximating functions without prior knowledge. In such
cases, a single image is unlikely to contain enough fine-scale
information to provide anatomically plausible reconstructions
in the direction of slice acquisition, as we demonstrate later
in the paper.

Alternatively, one can use additional data to synthesize
better images. Many superresolution algorithms use multiple
scans of the same subject, such as multiple low resolution
acquisitions with small shift differences to synthesize a single
volume [2], [16], [22]. However, such acquisitions are not
commonly available in the clinical setting.

Nonparametric and convolutional neural-network (CNN)
based upsampling methods that tackle the problem of super-
resolution often rely on an external dataset of high resolution
data or cannot handle extreme undersampling present in clin-
ical scans. For example, some methods fill in missing data
by matching a low resolution image patch from the input
scan with a high resolution image patch from the training
dataset [3], [13], [16], [17], [24], [25]. Similarly, CNN-based
upsampling methods approximate completion functions, but

require high resolution scans for training [8], [21]. A recent
approach to improve resolution from a collection of
scans with sparse slices jointly upsamples all images using
non-local means [26]. However this method has only been
demonstrated on slice spacing of roughly three times the
in-plane resolution, and in our experience similar non-
parametric methods fail to upsample clinical scans with more
significant undersampling.

Our work relies on a low dimensional embedding of
image patches with missing voxels. Parametric patch meth-
ods and low dimensional embeddings have been used to
model the common structure of image patches from full
resolution images, but are typically not designed to handle
missing data. Specifically, priors [33] and Gaussian Mixture
Models [35], [36] have been used in both medical and natural
images for classification [1] and denoising [9], [36]. The pro-
cedures used for training of these models rely on having full
resolution patches with no missing data in the training phase.

Unfortunately, high (full) resolution training datasets are not
readily available for many image contrasts and scanners, and
may not adequately represent pathology or other properties of
clinical populations. Acquiring the appropriate high resolution
training image data is often infeasible, and here we explicitly
focus on the realistic clinical scenario where only sparsely
sampled images are available.

B. Method Overview

We take advantage of the fact that local fine scale structure
is shared in a population of medical images, and each scan
with sparse slices captures some partial aspect of this structure.
We borrow ideas from Gaussian Mixture Model (GMM) for
image patch priors [36], low dimensional Gaussian embed-
dings [14], [34], and missing data models [14], [18] to
develop a probabilistic generative model for sparse 3D image
patches around a particular location using a low-dimensional
GMM with partial observations. We derive the EM algorithm
for maximum likelihood estimation of the model parameters
and discuss related modeling choices. Given a new sparsely
sampled scan, the maximum a posteriori estimate of the
latent structure yields the imputed high resolution image.
We evaluate our algorithm using scans from the ADNI cohort,
and demonstrate its utility in the context of the motivating
stroke study. We investigate the behaviour of our model
under different parameter settings, and illustrate an example
of potential improvements in the downstream analysis using
an example task of skull stripping.

This paper extends the preliminary version of the method
presented at the 2017 Conference on Information Processing
in Medical Imaging [5]. Here, we improve model inference
by removing parameter co-dependency between iterations and
providing new parameter initialization. We provide detailed
derivations and discuss an alternative related model. Finally,
we provide an analysis of important model parameters, present
results for more subjects, and illustrate more example recon-
structions. The paper is organized as follows. Section II
introduces the model and learning algorithm. Section III
discusses implementation details. We present experiments and
analysis of the algorithm’s behavior in Section IV. We discuss
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planes acquired in clinical scans. (c) During learning, we train a GMM that captures the low dimensional nature of patch variability in a region around
a particular location (white dot). (d) Given a sparsely sampled scan, we infer the most likely cluster for each 3D patch, and restore the missing data
using the learned model and the observed voxels. We form the final volume from overlapping restored patches. 2D images are shown for illustration

only, the algorithms operate fully in 3D.

important modeling aspects and related models in Section V.
We include an Appendix and Supplementary Material with
detailed derivations of the EM algorithm for the proposed
models.

Il. METHOD

In this section, we construct a generative model for sparse
image patches, present the resulting learning algorithm, and
describe our image restoration procedure.

Let {Y7,...,Yn} be a collection of scans with large
inter-slice spaces, roughly aligned into a common atlas space
(we use affine transformations in our experiments). For each
image Y; in the collection, only a few slices are observed.
We seek to restore an anatomically plausible high resolution
volume by imputing the missing voxel values.

We capture local structure using image patches. We assume
a constant patch shape, and in our experiments use a 3D 11 x
11 x 11 shape. We use y; to denote a D-length vector that
contains voxels of the image patch centered at a certain
location in image Y;. We perform inference at each location
independently and stitch the results into the final image as
described later in this section. Fig. 2 provides an overview of
the method.

A. Generative Model

We treat an image patch as a high dimensional manifestation
of a low dimensional representation, with the intuition that the
covariation within image patches has small intrinsic dimen-
sionality relative to the number of voxels in the patch. To cap-
ture the anatomical variability across subjects, we employ a
Gaussian Mixture Model (GMM) to represent local structure
of 3D patches in the vicinity of a particular location across
the entire collection. We then explicitly model the observed
and missing information. Fig 3 presents the corresponding
graphical model.

a
@
N

Fig. 3. Graphical representation of our model. Circles indicate
random variables and rounded squares represent parameters. Shading
represents observed quantities and the plate indicates replication. The
observed patch voxels yio’ form a subset of patch y; extracted by the
mask O; and are generated from a multivariate Gaussian distribution
conditioned on the latent cluster k; and the latent patch representation Xx;.

Parameters u and W define the mean and the variance of the Gaussian
components of the mixture, and o2 is the image noise variance.

We model the latent low dimensional patch representation x;
of length d < D as a normal random variable
xi ~ N, lixa), (1)
where N (1, £) denotes the multivariate Gaussian distribution
with mean x and covariance X. We draw latent cluster
assignment k from a categorical distribution defined by a
length-K vector = of cluster probabilities, and treat image
patch y; as a high dimensional observation of x; drawn from
a K-component multivariate GMM. Specifically, conditioned
on the drawn cluster &,

where
and €l x;.

yi = ur+ Wixi + €, (2)

& ~ N, Ipxp),
Vector ui is the patch mean of cluster k, matrix Wj

shapes the covariance structure of y;, and sz is the variance
of image noise. This model implies E[y;|k] = ux and

A
Cr = E[(i — u0) ) — w) T 1K) = Wi W[ + 62 Ipyp.
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Defining 0 = {ux, Wk, o2, mx}e_, the likelihood of all
patches ) = {y;} at this location under the mixture model is

pQ;0) =[] D mNGis ks Co). 3)
k

1

In our clinical images, only a few slices are known. To model
sparse observations, we let O; be the set of observed voxels
in patch y;, and yl-O ! be the corresponding vector of their
intensity values:

O; O O

yi = ag W l

xite “4)
where WkO i comprises rows of Wi that correspond to the
observed voxel set (O;. The likelihood of the observed

data yO = {yiO 1Y is therefore
P00 = [ mNe w09, )
ik

where matrix Cko iOi extracts the rows and columns of Cy
that correspond to the observed voxel subset O;.

We do not explicitly model slice thickness, as in many
clinical datasets this thickness is unknown or varies by site,
scanner or acquisition. Instead, we simply treat the original
data as high resolution thin planes and analyze the effects
of varying slice thickness on the results in the experimental
evaluation of the method.

We also investigated an alternative modeling choice where
each missing voxel of patch y; is modelled as a latent
variable. This assumption can optionally be combined with
the latent low-dimensional patch representation. We discuss
this alternative choice in Section V, and provide parameter
updates in the Supplementary Material, in the supplementary
files/multimedia tab. Unfortunately, the resulting algorithm is
prohibitively slow.

B. Learning

Given a collection of observed patches yO, we seek
the maximum likelihood estimates of the model parame-
ters {uk, Wk, akz} and 7 under the likelihood (5). We derive the
Expectation Maximization algorithm [6] in Appendix VI, and
present the update equations and their interpretations below.

The expectation step updates the class memberships:

A O;
vik = plkly;”";0)

3 a NGO 8, P19 ©)
> meN O 1, D10

and the statistics of the low dimensional representation x; for

each image patch y, i as “explained” by cluster k:

Tik 2 Elx k]
= (WO WO 4 otaa) WO GO -,
(7)
Si 2 Elxix! k] - Tuxh
= o} ((W,?i)T(WkOi) + 0'1{2]d><d)71 . ®)

We let P; be the set of patches in which voxel j is observed,
and form the following normalized mean statistics:
Vik

ik = —=———— ©)
Zi/er Vitk

bj = > uElxilkl= > dufuc (10)
ieP;j i€P;j

Aj = ouBlux] kKl= D" ouGuXy +Sw). (1)
ier ier

The maximization step uses the observed voxels to update
the model parameters. We let yij be the j™ element of
vector y;, and update the cluster mean as a convex combination
of observed voxels:

Z,p; (=% A7 b))y

=7 1 .
zi’EPj y,-/k(l—xl,T,Aj bj)

J
My <

(12)

The covariance factors and image noise variance are updated
based on the statistics of the low dimensional representation
from (10) and (11):

Wi e S oxs] - udyeha,
iepj
2. 2icP; Vik [(yi]—/li—Wk jf\ik)z'f‘Wk]Sik(Wk])T]
<« .

13)

(14)

where ij is the j™ row of matrix Wy. Finally, we update the

cluster proportions:
1
T = N Zl: Vik-

Intuitively, learning our model with sparse data is possible
because each image patch provides a slightly different subset
of voxel observations that contribute to the parameter estima-
tion (Fig. 2). In our experiments, all subject scans have the
same acquisition direction. Despite different affine transfor-
mations to the atlas space for each subject, some voxel pairs
are still never observed in the same patch, resulting in missing
entries of the covariance matrix. Using a low-rank approxima-
tion for the covariance matrix regularized the estimates.

Upon convergence of the EM updates, we compute the
cluster covariance Cy = Wy WkT + akzl pxp for each k.

5)

C. Imputation
To restore an individual patch y;, we compute the maximum-
a-posteriori (MAP) estimate of the image patch:

A

$i = arg max p(yily,-o"; 0)
=g 3 pits™) | POttty
= argmax 3 7uc | pCslpCalk, 57
k i
= argmax Zk: yieN (i pik + WiZie, Zik)s

where X = akz Ipxp + Wi(Six + i}kk\la)WkT. Due to the
high-dimensional nature of the data, most cluster membership
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Representative restorations in the ADNI dataset. Reconstruction by NLM, linear interpolation, and our method, and the original high

resolution images for two representative subjects in the study. Our method reconstructs more anatomically plausible substructures as can be
especially seen in the close-up panels of the skull, ventricles, and temporal lobe. Additional examples are available in the Supplementary Materials

(supplementary files / multimedia tab).

estimates are very close to 0 or 1. We therefore first esti-
mate the most likely cluster % for patch y; by selecting the
cluster with the highest membership y;x. We estimate the low
dimensional representation X;; given the observed voxels y; i
using (7), which yields the high resolution imputed patch:

Vi = up+ Wexg. (16)

By restoring the scans using this MAP solution, we perform
conditional mean imputation (c.f. 17, Sec.4.2.2), and demon-
strate the reconstructions in our experiments. In addition, our
model enables imputation of each patch by sampling the
posterior p(~|yi0i; 0) ~ N(;up + Wixg, L), providing
a better estimation of the residual noise. Depending on the
desired downstream application, sampling-based imputation
may be desired.

We average overlapping restored patches using standard
techniques [18] to form the restored volume.

I11. IMPLEMENTATION

We work in the atlas space, and approximate voxels as either
observed or missing in this space by thresholding interpolation
weights. To limit interpolation effects due to affine alignment
on the results, we set a higher threshold for regions with high
image gradients than in regions with low gradients. Parameter
estimation could be implemented to include transformation
of the model parameters into the subject-specific space in
order to optimally use the observed voxels, but this leads to
computationally prohibitive updates.

We stack together the affinely registered sparse images
from the entire collection. We learn a single set of mixture
model parameters within overlapping subvolumes of 21 x 21 x
21 voxels in the isotropically sampled common atlas space.
Subvolumes are centered 11 voxels apart in each direction.
We use a cubic patch of size 11 x 11 x 11 voxels, and
instead of selecting just one patch from each volume at a
given location, we collect all overlapping patches within the
subvolume centered at that location. This aggregation provides
more data for each model, which is crucial when working with
severely undersampled volumes. Moreover, including nearby
voxels offers robustness in the face of image misalignment.
Given the learned parameters at each location, we restore all
overlapping patches within a subvolume.

While learning is performed in the common atlas space,
we restore each volume in its original image space to limit
the effects of interpolation. Specifically, we apply the inverse
of the estimated subject-specific affine transformation to the
cluster statistics prior to performing subject-specific inference.

Our implementation is freely available at https://github.com/
adalca/papago.

IV. EXPERIMENTS

We demonstrate the proposed imputation algorithm on two
datasets and evaluate the results both visually and quantita-
tively. We also include an example of how imputation can aid
in a skull stripping task.
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image restoration methods (top), and improvement over nearest neighbor
interpolation using MSE (bottom). All statistics were computed over
50 scans randomly chosen from the ADNI dataset. Image intensities
are scaled to a [0,1] range.

A. Data: ADNI Dataset

We evaluate our algorithm using 826 T1-weighted brain
MR images from ADNI [15].! We downsample the isotropic
Imm? images to slice separation of 6mm (Imm x Imm
in-plane) in the axial direction to be of comparable quality
with the clinical dataset. We use these low resolution images
as input. All downsampled scans are affinely registered to
a T1 atlas. The original images serve as the ground truth
for quantitative comparisons. After learning model parameters
using the data set, we evaluate the quality of the resulting
imputations.

B. Evaluation
We compare our algorithm to three upsampling methods:
nearest neighbour (NN) interpolation, non-local means (NLM)

IData used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

subvolume 2 subvolume 3 subvolume 4

subvolume 1

coronal saggital

axial

Fig. 6. Regions used for hyper-parameter analysis. Representative
example of four subvolumes used in analyses, shown in saggital, coronal
and axial views.

upsampling, and linear interpolation [19]. We compare the
reconstructed images to the original isotropic volumes both
visually and quantitatively. We use the mean squared error,

1
MSE (2, Zo) = D 1Z = ZoII%, (17)

of the reconstructed image Z relative to the original high
resolution scan Z,. We also compute the related peak signal
to noise ratio,

max(Z,)
MSE(Z,Z,)’
Both metrics are commonly used in measuring the quality of
reconstruction of compressed or noisy signals.

PSNR = log, (18)

C. Results

Fig. 4 illustrates representative restored images for subjects
in the ADNI dataset. Our method produces more plausible
structure. The method restores anatomical structures that are
almost entirely missing in the other reconstructions, such
as the dura or the sulci of the temporal lobe by learning
about these structures from the image collection. We provide
additional example results in the Supplementary Materials in
the supplementary files / multimedia tab.

Fig. 5 reports the error statistics in the ADNI data. Due
to high variability of MSE among subject scans, we report
improvements of each method over the nearest neighbor inter-
polation baseline in the same scan. Our algorithm offers signif-
icant improvement compared to nearest neighbor, NLM, and
linear interpolation (p < 105 s 10742, 10727, respectively).
Our method performs significantly better on all subjects.
The improvement in MSE is observed in every single scan.
Similarly, our method performs consistently better using the
PSNR metric (not shown), with mean improvements of up
to 1.4 £ 0.44 compared to the next best restored scan.

D. Parameter Setting

We analyze the performance of our algorithm while varying
the values of the parameters, and the sparsity patterns of the
observed voxels. For these experiments, we use four distinct
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shown in the saggital plane. The first experiment reflects the limited
variability of axial-only acquisitions, whereas the second and third exper-
iments represent increasingly more varied patterns of observed voxels.
Bottom: imputation errors. More varied masks leads to improved
reconstructions.

subvolumes that encompass diverse anatomy from ADNI data,
as illustrated in Fig. 6. We start with isotropic data and use
different observation masks as described in each experiment.

1) Hyper-Parameters: We evaluate the sensitivity of our
method under different hyper parameters: the number of
clusters, k € [1,2,5,10,15] and the number of dimensions
of the low dimensional embedding d € [10, 20, 30, 40, 50].
While different regions give optimal results with different
settings, overall our algorithm produces comparable results
for the middle range of these parameters. We run all of our
experiments with £ =5 and d = 30.

2) Sparsity Patterns: First, we evaluate how our algorithm
performs under three different mask patterns, all of which
allow for the same number of observed voxels. Specifically,
we (i) use the true sparsely observed planes as in the first
experiment; (ii) simulate random rotations of the observation
planes mimicking acquisitions in different directions; and
(iii) simulate random mask patterns. The latter setup is useful
for denoising or similar tasks, and is instructive of the perfor-
mance of our algorithm. Fig. 7 demonstrates that our algorithm
performs better under acquisition with different directions, and
similarly under truly random observations as more entries
of the cluster covariance matrices are directly observed.
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Fig. 8.  Slice thickness simulation. Top: saggital close-up of a
region where axial slices were blurred in the direction perpendicular
to the acquisition direction; followed by respective imputed results.
Bottom: performance of our algorithm under different slice thick-
ness simulations are shown MSE (solid line) and standard deviation
interval (shaded region).

This demonstrates a promising application of this model to
other settings where different patterns of image voxels are
observed.

3) Slice Thickness: We also investigate the effects of slice
thickness on the results. The model treats the original data as
high resolution planes. Here, we simulate varying slice thick-
ness by blurring isotropic data in the direction perpendicular
to the slice acquisition direction. We then use the sampling
masks of the scans used in the main experiments to identify
observed, albeit blurred, voxels. Fig. 8 shows that although the
algorithm performs worse with larger slice thickness, it pro-
vides plausible imputation results. For example, results show
minimal noticeable differences, even for a blur kernel of ¢ =
Imm, simulating a slice with significant signal contribution
from 4mm away. Our method, which treats observed slices as
thin, is nevertheless robust to slice thicknesses variations.

E. Skull Stripping

We also illustrate how imputed data might facilitate down-
stream image analysis. Specifically, the first step in many
analysis pipelines is brain extraction — isolating the brain from
the rest of the anatomy. Typical algorithms assume that the
brain consists of a single connected component separated from
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Linear interpolation

Our method Ground truth

Fig. 9. Skull Stripping Example. Example of a skull stripping failure for linear and NLM interpolation. Skull stripping dramatically improves when

applied to the imputed image for this example.

the skull and dura by cerebral spinal fluid [29]. Thus, they
often fail on sparsely sampled scans that no longer include
a clear contrast between these regions. Fig. 9 provides an
example where the brain extraction fails on the original subject
scan but succeeds on our reconstructed image.

F. Clinical Dataset

We also demonstrate our algorithm on a clinical set of
766 T2-FLAIR brain MR scans in a stroke patient cohort.
These scans are severely anisotropic (0.85 x 0.85mm in-plane,
slice separation of 6mm). All subjects are affinely registered
to an atlas and the intensity is normalized.

Fig. 10 illustrates representative restoration improvements
in T2-FLAIR scans from a clinical population. Our method
produces more plausible structure, as can be especially seen in
the close-up panels focusing on anatomical details. We provide
additional example results in the Supplementary Materials in
the supplementary files/multimedia tab.

V. DISCUSSION

A. Modeling Choices

We explicitly model and estimate a latent low-dimensional
embedding for each patch. The likelihood model (5) does not
include the latent patch representation x;, leading to observed
patch covariance C,?i’oi = W,?i(W,?i)T + akz I. Since the
set of observed voxels O; varies across subjects, the resulting
Expectation Maximization algorithm [6] becomes intractable if
we marginalize the latent representation out before estimation.
Introducing the latent structure simplifies the optimization
problem.

We investigated an alternative modeling choice that instead
treats each missing voxel as a latent variable. In particu-
lar we consider the missing values of patch y; as latent
variables, which can be optionally combined with the latent
low-dimensional patch representation. These assumptions lead
to an Expectation Conditional Maximization (ECM) [14], [18],
a variant of the Generalized Expectation Maximization where
parameter updates depend on the previous parameter estimates.
The resulting algorithm estimates the expected missing voxel
mean and covariance directly, and then updates the clus-
ter parameters (see Supplementary Materials for a complete
derivation). The most notable difference between this formu-
lation and simpler algorithms that iteratively fill in missing

voxels and then estimate GMM model parameters is in the
estimation of the expected data covariance, which captures
the covariance of the missing and observed data ( [18], Ch.8).
We found that compared to the method presented in Section II,
this variant often got stuck in local minima, had difficulty
moving away from the initial missing voxel estimates, and
was an order of magnitude slower than the presented method.
We provide both implementations in our code.

B. Restoration

Our restoration method assumes that the observed voxels are
noisy manifestations of the low dimensional patch representa-
tion, and reconstructs the entire patch, including the observed
voxels, leading to smoother images. This formulation assumes
the original observed voxels are noisy observations of the
true data. Depending on the downstream analyses, the original
voxels could be kept in the reconstruction. In addition, we also
investigated an alternative reconstruction method of filling in
the missing voxels given the observed voxels as noiseless
ground truth (not shown). This formulation leads to sharper
but noisier results. The two restoration methods therefore
yield images with different characteristics. This tradeoff is
a function of the noise in the original acquisition: higher
noise in the clinical acquisition leads to noisier reconstructions
using the alternative method, whereas in the ADNI dataset the
two methods perform similarly. In addition, imputation can
be achieved by sampling the posterior distribution rather than
using conditional mean estimation, enabling a better estimate
of the residual noise for downstream analysis.

C. Usability

Our model assumes that whether a voxel is observed is
independent of the intensity of that voxel. Although the voxels
missing in the sparsely sampled images clearly form a spatial
pattern, we assume there is no correlation with the actual
intensity of the voxels. The model can therefore be learned
from data with varying sparseness patterns, including restoring
data in all acquisition directions simultaneously.

The proposed method can be used for general image
imputation using datasets of varying resolution. For example,
although acquiring a large high resolution dataset for a clinical
study is often infeasible, our algorithm will naturally make use
of any additional image data available. Even a small number of
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Fig. 10. Representative restorations in the clinical dataset. Reconstruction using NLM, linear interpolation and our method for two representative
subjects. Our method reconstructs more plausible substructures, as can be especially seen in the close-up panels of the skull and the periventricular
region. Additional examples are available in the Supplementary Materials in the supplementary files / multimedia tab.

acquisitions in different directions or higher resolution than the
study scans promise to improve the accuracy of the resulting
reconstruction.

The presented model depends on the image collection
containing similar anatomical structures roughly aligned, such
as affinely aligned brain or cardiac MR scans. Smaller datasets
that contain vastly different scans, such as traumatic brain
injuries or tumors, may not contain enough consistency to
enable the model to learn meaningful covariation. However,
a wide range of clinical datasets contain the anatomical con-
sistency required, and can benefit from the proposed method.
D. Initialization

We experimented with several initialization schemes, and
provide them in our implementation. A natural initialization
is to first learn a simple GMM from the linearly interpolated
volumes, and use the resulting parameter values as initializa-
tions for our method. This leads to results that improve on the
linear interpolation but still maintain somewhat blocky effects
caused by interpolation. More agnostic initializations, such
as random parameter values, lead to more realistic anatomy
but noisier final estimates. Different methods perform well in
different regions of the brain. The experimental results are
initialized by first learning a simple GMM from the linearly

interpolated volumes, and using the resulting means with
diagonal covariances as an initial setting of the parameters.
We start with a low dimensional representation to be of
dimension 1, and grow it with every iteration up to the desired
dimension. We found that this approach outperforms all other
strategies.

VI. CONCLUSIONS

We propose an image imputation method that employs a
large collection of low-resolution images to infer fine-scale
anatomy of a particular subject. We introduce a model that
captures anatomical similarity across subjects in large clinical
image collections, and imputes, or fills in, the missing data
in low resolution scans. The method produces anatomically
plausible volumetric images consistent with sparsely sampled
input scans.

Our approach does not require high resolution scans or
expert annotations for training. We demonstrate that our
algorithm is robust to many data variations, including varying
slice thickness. The resulting method enables the use of
untapped clinical data for large scale scientific studies and
promises to facilitate novel clinical analyses.
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