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Abstract 

Background Mild cognitive impairment (MCI) has been thought of as the transitional stage between normal ageing 
and Alzheimer’s disease, involving substantial changes in brain grey matter structures. As most previous studies have 
focused on single regions (e.g. the hippocampus) and their changes during MCI development and reversion, the rela-
tionship between grey matter covariance among distributed brain regions and clinical development and reversion of 
MCI remains unclear.

Methods With samples from two independent studies (155 from the Beijing Aging Brain Rejuvenation Initiative 
and 286 from the Alzheimer’s Disease Neuroimaging Initiative), grey matter covariance of default, frontoparietal, and 
hippocampal networks were identified by seed-based partial least square analyses, and random forest models were 
applied to predict the progression from normal cognition to MCI (N-t-M) and the reversion from MCI to normal cogni-
tion (M-t-N).

Results With varying degrees, the grey matter covariance in the three networks could predict N-t-M progression 
(AUC = 0.692–0.792) and M-t-N reversion (AUC = 0.701–0.809). Further analyses indicated that the hippocampus 
has emerged as an important region in reversion prediction within all three brain networks, and even though the 
hippocampus itself could predict the clinical reversion of M-t-N, the grey matter covariance showed higher prediction 
accuracy for early progression of N-t-M.

Conclusions Our findings are the first to report grey matter covariance changes in MCI development and reversion 
and highlight the necessity of including grey matter covariance changes along with hippocampal degeneration in 
the early detection of MCI and Alzheimer’s disease.
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Background
Mild cognitive impairment (MCI) is considered to be 
the transitional stage between normal ageing and clini-
cal dementia [1], and patients with MCI have substantial 
increases in the risk of progression to dementia [2]. With 
the many clinical treatment failures for Alzheimer’s dis-
ease (AD) [3, 4], MCI has gradually become regarded as a 
critical time window for disease treatment and interven-
tion [5–8].

Over the past few decades, much research has focused 
on the clinical and cognitive characteristics of MCI, and 
these studies have found that MCI is a heterogeneous 
at-risk state that does not necessarily lead to AD [9, 10]. 
Furthermore, studies with longitudinal design also found 
that clinically defined MCI was not a stable population 
[11–14]. Although most studies have focused on the pro-
gression of MCI to AD, some have found that up to 24 to 
50% of MCI individuals would revert to normal cognition 
(NC) status [15, 16]. This evidence suggests the need to 
explore the mechanisms underlying MCI reversion and 
to identify the key biomarkers based on longitudinal clin-
ical diagnosis.

With applications of neuroimaging methods like mag-
netic resonance imaging (MRI), previous studies have 
reported structural changes in grey matter (GM) in 
patients with MCI. For example, several studies have 
identified significant reductions in local GM volume in 
the hippocampus, entorhinal cortex, medial temporal 
lobe, insula, and thalamus in patients with MCI com-
pared to cognitively normal older adults [17–19]. By 
contrast, as far as we know, limited studies have explored 
the brain structural basis of MCI reversion, and available 
evidence indicated that MCI individuals who reverted 
to NC have larger hippocampal and amygdala volumes 
than those who maintain stable MCI over the same time 
period [20, 21].

Furthermore, recent studies have also found that in 
a series of neurodegenerative diseases related to AD, 
patients have not only represented local GM degenera-
tion, but also showed loss of synchronous GM changes 
among distributed brain regions, a phenomenon known 
as structural covariance [22], that is, interindividual dif-
ferences in the structure of brain regions often covary 
with interindividual differences in other brain regions 
[23]. Compared with healthy individuals, AD patients 
have a significant decrease in the structural association 
between the entorhinal cortex and the medial prefron-
tal cortex, the posterior cingulate cortex, the inferior 
orbitofrontal gyrus, the right superior parietal lob-
ule, and the left superior occipital gyrus [24, 25], which 
are key regions of the default network (DMN) and the 
frontoparietal network (FPN). In addition, another 
study found that decreased structural covariance in the 

frontotemporal regions and other regions was associated 
with cognitive decline among MCI patients [26]. How-
ever, to our knowledge, no evidence has focused on how 
the structural covariance network is related to the devel-
opment and reversion of MCI.

In the current research, we aimed to (1) focus earlier 
on the GM covariance characteristics of NC individuals 
who progressed to MCI (N-t-M progression), (2) explore 
the GM covariance characteristics of MCI patients who 
reverted to the NC state (M-t-N reversion), and (3) vali-
date the results using two independent longitudinal 
samples. Based on previous evidence, we hypothesized 
that reversed MCI patients presented a stronger covari-
ance pattern of brain structure than non-reversed MCI 
patients, and progressive NC individuals showed a loss 
of structural covariance compared with NC individuals 
who maintained normal clinical status. Our study would 
assess the feasibility of using MRI biomarkers as a way to 
predict the development and reversion of MCI and pro-
vide more accurate biomarkers for the early diagnosis 
and effective intervention for MCI.

Methods
Sample characteristics
The participants were from the Beijing Aging Brain Reju-
venation Initiative (BABRI) [27] and the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) [28]. All par-
ticipants were classified as NC or MCI at baseline using 
the Petersen criterion [29]. Briefly, the diagnostic cri-
teria for MCI included subjective memory complaints, 
impairment in at least one cognitive domain (1.5 stand-
ard deviations or more), relatively preserved general cog-
nitive function, and intact ability to perform activities 
of daily living. The criteria for normal cognition were 
no cognitive complaints, a Mini-Mental State Examina-
tion (MMSE) score of no less than 24, and being able to 
perform the normal activities of daily life. A total of 155 
eligible participants from the BABRI and a total of 286 
eligible participants from the ADNI were included in this 
study.

All participants from both cohorts underwent baseline 
MRI scans and had at least one clinical diagnosis during 
follow-ups. They were divided into four groups based on 
their clinical diagnosis at baseline and follow-ups: sta-
ble NC (sNC, NC at baseline and maintained cognitively 
normal until the last visit), progressed NC (pNC, NC 
at baseline, progressed to MCI during follow-ups, and 
maintained cognitively impaired until the last visit), non-
reversed MCI (non-rMCI, MCI at baseline and main-
tained cognitive impairment or progressed to AD until 
the last visit), and reversed MCI (rMCI, MCI at base-
line, reverted to NC during follow-up and maintained 
cognitively normal until the last visit). Participants with 
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multiple (> 2) state fluctuations between NC and MCI 
were excluded.

MRI data acquisition and processing
High-resolution T1-weighted MRI data were collected 
from each participant from the BABRI and ADNI using 
either 1.5-T scanners (participants from ADNI-1) or 3-T 
scanners (participants from BABRI and ADNI-GO&2); 
the acquisition parameters for each study have been pub-
lished previously [27, 30–32]. Only baseline T1-weighted 
MRI data were used in the current study.

All T1-weighted images were preprocessed using the 
Computational Anatomy Toolbox (CAT12, http:// dbm. 
neuro. uni- jena. de/ cat12/) implemented in MATLAB 
(R2015a). First, the raw image was spatially registered 
to the tissue probability maps and then segmented into 
GM, white matter, and cerebrospinal fluid. Subsequently, 
we smoothed the GM image with a Gaussian kernel of 
8 mm full-width-half-maximum (FWHW). Moreover, we 
assessed the processed image quality by visual inspection 
and the weighted average image quality index using the 
quality assurance (QA) framework in CAT12, and only 
participants with a QA better than C were included.

Construction of the structural covariance network
As cognitive impairment might cause changes in the 
correlation between seeds and other brain regions [33], 
we established standard structural covariance networks 
based on 65 sNC from the BABRI and 47 sNC from the 
ADNI (“Template sNC” in Table 1).

Seed-based partial least squares (seed-PLS) (PLSgui 
version 5.07 run on MATLAB 2015a) were used to con-
struct the structural covariance network [34]. Seed-PLS 
is a data-driven multivariate statistical technique that 
reveals the covariance patterns of the GM structure 
throughout the brain and is methodologically applicable 
to large-scale structural covariance networks [35]. Briefly, 
we first identified the seed regions of each network and 
then carried out PLS regression with the GM density of 
the voxels in the GM map to obtain the voxel group with 
the strongest correlation with the seed regions (Fig. 1A). 
The between-participant correlation matrix of the struc-
tural integrity between the seed and the other voxels in 
the whole brain is decomposed into latent variables (LVs) 
that can identify patterns of structural correlation. The 
significance of the LVs was determined by 1000 non-
parametric permutation tests using non-replacement 
resampling. The robustness and reliability of each voxel’s 
contribution to the LV were provided by a bootstrap that 
resampled the data 1000 times with replacement to esti-
mate the standard error of the weight of each voxel on 
the LV. A bootstrap ratio (BSR), calculated as the ratio of 
each weight to its standard error and the threshold, was 
set to the top 3% of reliable voxels for display purposes 
and the calculation of the subsequent covariance network 
scores.

Finally, we calculated a score map of the struc-
tural covariance network for each participant, which 
is mathematically expressed as the dot product of the 
GM density in each individual’s preprocessed image 

Table 1 Demographic information of the BABRI and ADNI samples

“Template sNC” is used only to establish a structural covariance network, independent of the sNC participating in statistical and predictive analysis

Abbreviations: sNC stable normal cognition, pNC progressive normal cognition, Non-rMCI non-reversed mild cognitive impairment, rMCI reversed mild cognitive 
impairment, y years, N number of participants

Template sNC sNC pNC T/χ2 p Non-rMCI rMCI T/χ2 p

BABRI sample (N = 155)
 No. of participants 65 28 18 – – 20 24 – –

 Age, y 64.0 ± 6.8 65.8 ± 5.0 66.2 ± 5.8 − 0.25 0.804 68.0 ± 6.8 63.5 ± 6.4 2.253 0.030
 Male, % 31 (47.7%) 13 (46.4%) 7 (38.9%) 0.253 0.615 11 (55%) 10 (41.7%) 0.777 0.378

 Education, y 11.4 ± 2.9 11.8 ± 2.8 10.9 ± 3.4 0.963 0.341 11.5 ± 4.1 10.1 ± 2.7 1.249 0.221

 MMSE 28.0 ± 1.6 28.5 ± 1.1 26.6 ± 1.8 17.563 < 0.001 25.3 ± 2.8 27.1 ± 1.6 3.585 0.066

ADNI sample (N = 286)
 No. Participants 47 47 54 – – 65 73 – –

 Age, y 69.3 ± 4.5 73.9 ± 4.3 73.8 ± 3.7 0.134 0.894 74.2 ± 7.7 70.1 ± 8.3 1.663 0.099

 Male, % 23 (48.9%) 23 (48.9%) 26 (48.1%) 0.006 0.937 34 (52.3%) 40 (54.8%) 0.086 0.770

 Education, y 16.5 ± 2.7 15.7 ± 2.9 16.3 ± 2.4 − 1.204 0.231 16.0 ± 2.8 16.7 ± 2.4 − 1.477 0.142

 APOE4 carrier status, % 4.478 0.107 14.331 0.001
  APOE4 heterozygotes 17 (35.4%) 8 (17.0%) 19 (35.2%) – – 24 (36.9%) 27 (37.0%) – –

  APOE4 homozygotes 1 (2.1%) 2 (4.3%) 1 (1.9%) – – 15 (23.1%) 2 (2.7%) – –

 MMSE 29.1 ± 1.1 29.2 ± 0.9 28.9 ± 1.2 1.255 0.213 27.0 ± 1.6 28.6 ± 1.5 − 5.911 < 0.001

http://dbm.neuro.uni-jena.de/cat12/
http://dbm.neuro.uni-jena.de/cat12/
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and the corresponding voxel significance (i.e. weight) 
in the spatial pattern derived from the threshold PLS 
group result image (Fig.  1A). Then, we added up the 
scores of each voxel to obtain the composite score of 
each participant to represent the structural integrity of 
the GM. Pearson correlation is used to investigate the 
relationship between the composite score of the struc-
tural covariance network and the GM density of the 
hippocampus, a region well known to be affected in AD 
[21]. In the subsequent analyses, the composite scores 
and the score maps of the structural covariance net-
work were used for intergroup analyses and individual-
level prediction, respectively.

In this study, we focused on the DMN, FPN, and hip-
pocampal network (HN), which have been reported to 
be the most sensitive to cognitive impairment and ageing 
[36–38]. The seed regions used to construct each network 
were defined based on a previous human brain atlas: for 
the DMN, the posterior inferior parietal lobule (X = − 41, 
Y = − 60, Z = 29) and posterior cingulate cortex (X = − 7, 
Y = − 52, Z = 26) [35]; for the FPN, the left anterior pre-
frontal cortex (X = − 36, Y = 57, Z = 9) and right anterior 
prefrontal cortex (X = 34, Y = 52, Z = 10) [39]; and for 
the HN, the left hippocampal cortex (X = − 25, Y = − 21, 

Z = − 10) and right hippocampal cortex (X =29, Y = − 20, 
Z = − 10).

Statistical analyses
Differences in the demographic information and vascu-
lar risk factors between the sNC and pNC groups and 
between the non-rMCI and rMCI groups were examined 
by two-sample t-tests or χ2 tests. Then, we performed a 
covariance analysis of composite scores of structural 
covariance networks controlling for age, gender, educa-
tion level, and total intracranial volume (TIV) to explore 
the differences in the structural integrity between the 
groups.

To test whether the structural covariance networks 
could predict the MCI development and reversion at the 
individual level, we established random forest predic-
tion models (Fig. 1B). Random forest algorithm has been 
proven to have important advantages in terms of robust-
ness to overfitting, ability to handle highly non-linear 
data, stability in the presence of outliers, and has shown 
good performance in the processing of neuroimaging 
data of Alzheimer’s disease [40]. As predictors of random 
forest, the baseline score maps of the structural covari-
ance network provide information on multiple voxels and 

Fig. 1 Schematic illustration of the structural covariance network and prediction model. A PLS regression was first conducted between the 
selected seed region and the remaining voxels throughout the whole brain, and the top 3% of voxels with the largest correlation (weight) with the 
seed region were retained to build a grey matter structural covariance network. Then, the structural covariance network score of each individual 
was calculated. B The prediction models of RF were established based on the baseline score maps of the covariance network. Abbreviations: SCN, 
structural covariance network; PLS, partial least squares; RF, random forest; sNC, stable normal cognition; pNC, progressive normal cognition; ROC, 
receiver operating characteristic curves
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the correlation information between voxels, which is an 
advantage of machine learning in processing high-dimen-
sional and multiple-feature data compared with tradi-
tional statistical methods. Fivefold cross-validation and 
receiver operating characteristic (ROC) analyses were 
conducted, and the area under the curve (AUC), sensitiv-
ity, and specificity were used to evaluate the prediction 
accuracy. The random forest model was implemented in 
Python version 3.6.

For random forest classification, measures of the 
importance of each feature can be calculated based on 
the reduction in the accuracy of the model when the fea-
ture in question (i.e. voxel score) is not included in the 
subset of features within a tree [41]. We obtained the 
feature weight distribution based on the random forest 
model to identify the brain voxels that played a key role 
in the prediction. The feature weight represents the pre-
dicted contribution of a given region to the change in the 
individual clinical status.

Additionally, we examined whether the GM density of 
individual brain regions or the atrophy synchronization 
of brain regions was more sensitive to the early stages 
of MCI development and reversion. Based on the auto-
mated anatomical atlas (http:// www. gin. cnrs. fr/ AAL), 
we identified the clusters of voxels that play a key role in 
the above prediction model as key brain regions. Using 
the same methodology, we built prediction models and 
evaluated their prediction accuracy based on the baseline 
GM density of key brain regions.

We used SPSS version 21 (IBM) to complete the basic 
statistical analysis and the sklearn package in Python 
(3.6) for prediction analysis.

Results
Clinical characteristics of the participants
Demographic and follow-up information of the partici-
pants included in this study are summarized in Table  1 
and Additional file  1: Table  S1. Longitudinal samples 
from the BABRI included 65 sNC to build structural 
covariance networks and 28 sNC, 18 pNC, 20 non-rMCI 
(containing only the MCI who maintained MCI), and 24 
rMCI to conduct predictive analyses. The NC and MCI 
participants were followed up with a mean duration of 37 
and 27 months, respectively.

Another longitudinal sample from the ADNI included 
47 sNC to build structural covariance networks and 47 
sNC, 54 pNC, 65 non-rMCI, and 73 rMCI to conduct 
predictive analyses. The NC and MCI participants were 
followed up with a mean duration of 44 and 49 months, 
respectively.

Overall, there were no significant differences in age, 
sex, or education levels between participants with sNC 
and pNC in both samples, while non-rMCI was relatively 

older (p = 0.030 in BABRI and p = 0.099 in ADNI) and 
more homozygous carriers of ε4 Allele of Apolipoprotein 
E (APOE4) (p = 0.001 in ADNI) than rMCI. For general 
cognitive function as measured by MMSE at baseline, 
while sNC participants from BABRI presented better 
cognition than pNC (p < 0.001), the pNC showed quite 
similar cognition with sNC in ADNI (p = 0.213). rMCI 
in both samples were cognitively better than non-rMCI 
(p = 0.066 in the BABRI and p < 0.001 in the ADNI). For 
vascular risk factors (i.e. hypertension, diabetes, hyper-
lipidemia, smoking history, and BMI-measured obesity), 
rMCI was more likely to occur in non-smoking indi-
viduals in the ADNI sample (p =0.009, Additional file 1: 
Table S2), and no difference in vascular risk factors was 
found between pNC and sNC.

Structural covariance networks
Seed-PLS analyses were performed on the independ-
ent sNC data within the BABRI and ADNI (Fig. 2, Addi-
tional file 1: Tables S3-S4). In both the BABRI and ADNI 
samples, the GM density of the DMN seed regions was 
mainly covaried with the extended posterior cingulate 
cortex, superior and middle temporal lobe, middle fron-
tal lobe, and insula. The GM density of the FPN seed 
regions was mainly covaried with the middle frontal lobe, 
middle occipital lobe, middle cingulum gyrus, middle 
temporal lobe, and cuneus. The GM density of the HN 
seed regions covaried with the extended hippocampal 
lobe, middle and superior frontal lobe, middle temporal 
lobe, and other regions.

In the BABRI sample, compared with sNC, pNC had 
a lower composite score of structural covariance of the 
FPN (scFN, p = 0.030, Table 2) and the HN (scHN, p = 
0.035), and compared with non-rMCI, rMCI had a higher 
composite score of scFN (p = 0.018) and scHN (p = 
0.007). The composite score of the structural covariance 
of the DMN (scDN) also showed a higher trend in rMCI, 
but it was not significant (p = 0.061).

In the ADNI sample, the baseline scores of scDN, scFN, 
and scHN of sNC and rMCI were higher than those of 
pNC and non-rMCI (all p ≤ 0.001, Table 2). Of note, 34 of 
65 (63%) non-rMCI were progressed to AD (pMCI) dur-
ing the follow-up, and pMCI had lower structural covari-
ation scores than rMCI (Fig. S1, p < 0.001) and non-rMCI 
who maintained MCI (sMCI, p < 0.05), adjusted for age, 
sex, education level, and TIV.

We also examined whether the differences in struc-
tural covariation scores were associated with APOE4 
carrier status, the strongest known genetic risk factor 
for late-onset AD cases [42]. We found that APOE4 
homozygotes had lower structural covariation scores 
than non-carriers (Fig. S2, scDN, p = 0.017; scFN, p 
= 0.056; scHN, p = 0.009) and APOE4 heterozygotes 

http://www.gin.cnrs.fr/AAL
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(scDN, p = 0.03; scFN, p = 0.063; scHN, p = 0.025). 
In addition, the effect of disease duration on MCI 
reversion was explored in the supplementary analysis 

(Fig. S3). The longer the disease course of rMCI, the 
lower the composite score of the structural covari-
ant network (scDN, r = − 0.555, p = 0.049; scFN, r = 
− 0.513, p = 0.073; scHN, r = − 0.475, p = 0.101).

Fig. 2 Structural covariance network based on independent cognitively normal elderly from the BABRI. BSR, bootstrap ratio, representing the 
covariance degree with the seed regions

Table 2 The differences in structural covariance scores between the groups of the BABRI and ADNI samples

Abbreviations: sNC stable normal cognition, pNC progressed normal cognition, Non-rMCI non-reversed mild cognitive impairment, rMCI reversed mild cognitive 
impairment, scDN structural covariance of the default network, scFN structural covariance of the frontoparietal control network, scHN structural covariance of the 
hippocampal network

Network sNC, mean ± SD pNC, mean ± SD Non-rMCI, mean ± SD rMCI, mean ± SD sNC vs. pNC Non-rMCI vs. 
rMCI

F p F p

BABRI sample

 scDN 1268.2 ± 103.9 1232.8 ± 113.6 1188.3 ± 126.6 1256.6 ± 114.1 2.684 0.109 3.736 0.061

 scFN 1679.7 ± 128.2 1614.6 ± 162.2 1562.8 ± 156.3 1660.1 ± 150.5 5.035 0.030 6.101 0.018

 scHN 1423.8 ± 117.3 1367.6 ± 125.1 1315.4 ± 129.6 1408.4 ± 130.4 4.741 0.035 8.011 0.007

ADNI sample

 scDN 1595.4 ± 158.9 1476.0 ± 142.1 1491.4 ± 156.2 1569.9 ± 150.0 18.254 < 0.001 20.128 < 0.001

 scFN 1323.1 ± 137.5 1239.8 ± 130.3 1253.4 ± 136.2 1300.9 ± 133.3 11.455 0.001 13.309 < 0.001

 scHN 1701.4 ± 173.0 1563.9 ± 156.1 1553.5 ± 161.1 1667.9 ± 149.5 18.981 < 0.001 32.399 < 0.001
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Predicting normal-to-MCI progression and MCI-to-normal 
reversion
The above analyses indicated the possibility to use GM 
covariance patterns to predict MCI development and 
reversion several years later at the group level. To inves-
tigate whether GM covariance patterns could be useful 
for predicting MCI development and reversion at the 
individual level, random forest models were used to con-
struct predictive models for changes in future clinical 
status.

For N-t-M progression, all structural covariance net-
works were able to classify cognitively normal elderly 
people into sNC and pNC based on the BABRI sample 
(AUC = 0.692–0.792, Table 3). It is worth noting that the 
hippocampal covariance network achieved the best per-
formance (AUC = 0.792). In addition, based on the ADNI 
sample, the baseline scores of scDN (AUC = 0.766), scFN 
(AUC=0.765), and scHN (AUC = 0.785) could also accu-
rately distinguish pNC from sNC (Table 3).

For M-t-N reversion, the baseline scores of scDN, 
scFN, and scHN also showed good predictive perfor-
mance based on the BABRI sample (Table  3, AUC = 
0.722–0.745). In the ADNI sample, the baseline scores of 
scHN achieved the best prediction effect (AUC = 0.809), 
and the AUCs of the other two prediction models were 
above 0.701 (Table 3).

To further identify the brain regions that play 
a key role in predicting N-t-M progression and 
M-t-N reversion, feature weight distributions were 
depicted in Fig.  3A for the BABRI sample and Fig. 
S4A for the ADNI sample. We found that for both 
samples, the superior temporal gyrus of the DMN, 
and the middle frontal gyrus of the FPN and HN, 
played a key role in the N-t-M prediction. Nota-
bly, the hippocampus and parahippocampal regions 
played a key role in the M-t-N prediction of all three 
networks (Fig. 3B, Fig. S4B).

Supplementary analyses were also conducted to clarify 
the potential impacts of field strength and scanner sites 
for the ADNI sample, and it turned out that, by includ-
ing the two factors as covariate variables in the predic-
tive models or only using data with single field strength, 
all three networks maintained good performance for 
predictive N-to-M progression and M-to-N reversion 
(Additional file  1: Tables S6-S9). The prediction of MCI 
progression and reversion in ADNI samples was also 
conducted (Additional file 1: Table S5). For MCI progres-
sion and reversion, both the structural covariant net-
work and the hippocampus and parahippocampal region 
showed excellent predictive performance (all AUC > 0.8), 
especially for scDN (AUC = 0.874) and scHN (AUC = 
0.868). More details could be found in the supplementary 
materials.

Prediction based on the key brain regions
To explore which of the structural covariance networks 
and the key brain regions were more sensitive to the 
development and reversion of MCI, we evaluated the 
predictive accuracy of key brain regions, that is, regions 
that emerged as having key roles in the structural covari-
ance networks and hippocampal region (Table 4).

For N-to-M progression, the predictive accuracy of the 
middle frontal gyrus, superior temporal gyrus, and hip-
pocampus (AUC = 0.607–0.717) was lower than that of 
the hippocampus covariance network (AUC = 0.792) 
based on the BABRI sample, while the predictive accu-
racy of the hippocampus (AUC = 0.803) was similar to 
that of the covariance networks based on the ADNI 
sample.

For M-t-N reversion, the predictive accuracy of indi-
vidual hippocampal regions (AUC = 0.759) was better 
than that of the covariance networks based on the BABRI 
sample, while the predictive accuracy of the hippocam-
pal region (AUC = 0.780) and parahippocampal region 

Table 3 The prediction results of the development and reversion of MCI based on a structural covariance network

Abbreviations: AUC  area under the curve, SEN sensitivity, SPE specificity, scDN structural covariance of the default network, scFN structural covariance of the 
frontoparietal control network, scHN structural covariance of the hippocampal network

Predictor variable Normal-to-MCI progression MCI-to-normal reversion

AUC SEN SPE AUC SEN SPE

BABRI sample
 scDN 0.767 (± 0.109) 0.726 0.747 0.722 (± 0.182) 0.500 0.990

 scFN 0.692 (± 0.080) 0.960 0.394 0.745 (± 0.128) 0.440 0.990

 scHN 0.792 (± 0.087) 0.860 0.707 0.736 (± 0.151) 0.480 0.990

ADNI sample
 scDN 0.766 (± 0.090) 0.774 0.667 0.750 (± 0.089) 0.796 0.636

 scFN 0.765 (± 0.096) 0.897 0.556 0.701 (± 0.075) 0.751 0.636

 scHN 0.785 (± 0.092) 0.827 0.667 0.809 (± 0.093) 0.679 0.818
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(AUC = 0.769) was worse than that of the hippocampus 
covariance network (AUC = 0.809) based on the ADNI 
sample.

In addition, we evaluated the GM covariance relation-
ship between these key brain regions. By regressing out 
the effects of age, sex, education, and TIV, we found that 

Fig. 3 Feature weight distribution of the random forest prediction model of the BABRI sample. The contribution of voxels from the default network, 
frontoparietal network, and hippocampal network for prediction of the progression of normal cognition (A) and the reversion of mild cognitive 
impairment (B). The bar diagram on the right is the cluster with the top 10 feature weights in each network, and the horizontal axis is the weight 
value. Abbreviations: L, left; R, right; Mid, middle; Sup, superior; Ant, anterior; Inf, inferior; Orb, orbital

Table 4 The prediction results of the development and reversion of MCI based on key brain regions

Abbreviations: AUC  area under the curve, SEN sensitivity, SPE specificity, scDN structural covariance of the default network, scFN structural covariance of the 
frontoparietal network, scHN structural covariance of the hippocampal network

Normal-to-MCI progression MCI-to-normal reversion

Predictor variable AUC SEN SPE Predictor variable AUC SEN SPE

BABRI sample
 Frontal_Mid 0.660 (± 0.111) 0.513 0.798 Hippocampus 0.759 (± 0.160) 0.440 0.990

 Temproal_Sup 0.607 (± 0.102) 0.256 0.990 Parahippocampus 0.731 (± 0.182) 0.520 0.990

 Hippocampus 0.717 (± 0.129) 0.843 0.566

ADNI sample
 Frontal_Mid 0.655 (± 0.080) 0.465 0.848 Hippocampus 0.780 (± 0.117) 0.530 0.939

 Temproal_Sup 0.730 (± 0.128) 0.533 0.848 Parahippocampus 0.769 (± 0.143) 0.676 0.808

 Hippocampus 0.803 (± 0.113) 0.587 0.889



Page 9 of 13Dang et al. Alzheimer’s Research & Therapy           (2023) 15:27  

for the N-to-M progression, sNC from BABRI presented 
a marginally significant positive correlation between the 
GM density of the superior temporal gyrus and that of 
the hippocampus (r = 0.400, p = 0.053), while this cor-
relation disappeared in pNC (r = 0.218, p = 0.455) in the 
BABRI sample. Similar results were also identified in the 
ADNI sample, with sNC (r = 0.503, p = 0.001), not pNC 
(r = 0.225, p = 0.117), having significant GM covariation 
between the middle frontal gyrus and hippocampus.

And for M-t-N reversion, the GM density of the hip-
pocampal and parahippocampal regions was correlated 
in both sNC and pNC (p < 0.01) in BABRI and ADNI 
samples.

Discussion
In the present study, we proposed a prediction frame-
work for the development and reversion of MCI indi-
viduals based on the GM structural covariance network. 
The baseline covariance network scores of DMN, FPN, 
and HN all predicted N-to-M progression and M-to-N 
reversion, and HN achieved the optimal prediction per-
formance. These results were replicated in an independ-
ent sample from the ADNI.

The GM covariance network is a good biomarker of MCI 
development
As the treatment window for AD continues to be 
advanced, some studies have examined the risk of pro-
gression from NC to MCI at the group level [43–45]. 
However, it is not clear which biomarkers may help pre-
dict disease progression at the individual level. An Amer-
ican study was the first to demonstrate on an individual 
level that cerebrospinal fluid (CSF), MRI, and APOE 
biomarkers obtained from cognitively normal individu-
als can be used to predict which individuals will develop 
clinical symptoms 5, 7, or 10 years after baseline [46]. 
Similarly, a recent study found that plasma phospho-
tau, in combination with brief cognitive tests and APOE 
genotyping, greatly improves the diagnostic prediction of 
AD [47].

However, these papers have not focused on the role of 
interregional synchronization of atrophy (i.e. structural 
covariation) in the onset of cognitive impairment, either 
at the group level or at the individual level. In contrast, 
we found that the hippocampal covariance network score 
achieved a better predictive outcome (AUC = 0.79, sen-
sitivity = 0.86, specificity = 0.71) in the BABRI sample. 
This finding has important implications for screening 
high-risk populations with clinical progression. In the 
past, we tended to focus on the hippocampus during the 
development of cognitive impairment [48, 49], but the 
current study suggests that we also need to consider the 

synchronization of GM atrophy between the hippocam-
pus and other regions.

Although individual hippocampal regions achieved 
similar predictive accuracy to the covariance network 
in ADNI samples, individual brain regions (sensitivity 
= 0.456–0.587) were less sensitive for predicting MCI 
development than the covariance network (sensitivity = 
0.774–0.897), representing the potential for early identifi-
cation of individuals at risk of developing MCI.

The hippocampus is a key area for cognitive improvement 
in patients with MCI
MCI has often been studied due to its association with 
dementia, yet higher rates of reversion to normal cogni-
tion than progression to dementia suggest that MCI does 
not necessarily lead to dementia [15, 50]. Although rMCI 
has received increasing attention in recent years, almost 
all relevant studies have been limited to describing the 
rMCI rate and influencing factors, such as higher levels 
of complex mental activity (e.g. reading books), better 
vision/smelling ability, and lower diastolic blood pres-
sure [20]. However, these works are far from sufficient to 
understand the pathological mechanism and to achieve 
early detection of rMCI. Our study is the first to establish 
models for predicting future cognitive improvement in 
MCI at the individual level and the first to explore rMCI 
at the network scale.

A longitudinal study of MCI reversion to cognitively 
normal status showed that MCI reverters exhibited less 
severely decreased functional connectivity in the DMN 
and executive control networks than non-reverters [51]. 
From the perspective of structural networks, the cur-
rent research also shows that the FPN and HN of rMCI 
have better structural integrity than non-rMCI (Table 2). 
Other evidence suggests that cognitive improvement in 
MCI is associated with greater cortical thickness in the 
right parahippocampal gyrus and greater density in the 
left hippocampus at baseline [21, 51]. These findings sup-
port the results of the current study: the hippocampal 
region plays a leading role in the early prediction of MCI 
reversion. Therefore, improvement of the function of the 
hippocampal region is the key to intervention training 
and early treatment of MCI [52].

Brain mechanisms of MCI development and reversion
The N-to-M progression in normal older adults and 
M-to-N reversion in MCI patients seem to involve differ-
ent brain mechanisms (Fig. 4). For N-to-M progression, 
the predictive performance of the structural covariance 
network is better than that of the GM density of any 
single brain region in the BABRI sample, which may be 
due to the correlation between multiple features (brain 
regions) providing additional predictive information. 



Page 10 of 13Dang et al. Alzheimer’s Research & Therapy           (2023) 15:27 

In other words, the synchronous loss of GM atrophy in 
the hippocampus and other regions (such as the frontal 
and lateral temporal lobes) may precede the atrophy of 
individual regions (e.g. hippocampus, medial temporal 
lobe) before MCI development (that is, N-to-M progres-
sion). However, when cognitive impairment has already 
occurred, the hippocampus plays a leading role in influ-
encing cognition, as both the GM covariance network 
score of HM and the GM density of the hippocampus are 
good predictors of M-t-N reversion.

Factors associated with reversion from MCI to NC status
Current studies showed that non-APOE4 homozygotes 
and non-smokers are more likely to reverse the MCI to 
the NC state. For APOE4 carrier status and GM covari-
ance network, we found that the GM structural integ-
rity of APOE4 homozygous, not APOE4 heterozygous, 
was worse than that of non-carriers (Fig. S2). Similarly, 
previous studies show accelerated cognitive decline in 
APOE4 homozygotes but not heterozygotes [53–55]. 
Furthermore, the association between APOE4 and cog-
nition and AD risk is thought to be modified by age and 
family history of dementia. A recent 20-year follow-up 
study supported a complex antagonist pleiotropic effect 

of APOE4 heterozygosity over the adult life course, 
characterized by cognitive advantage in midlife [56]. 
Another study showed an increased risk of early-onset 
AD in APOE4 heterozygotes only in participants with 
a positive family history [57]. Future studies need to 
further explore the association between APOE4 carrier 
status and the structural integrity of GM, considering 
the age and family history of the participants.

In addition, we found that rMCI was more likely to 
occur in non-smoking individuals in the ADNI sample 
(Additional file  1: Table  S3). Two other recent studies 
have reached the same conclusion that non-smoking is 
a beneficial factor in reversing from MCI to NC state 
[58, 59]. However, another study found no differences in 
vascular risk factors between the MCI reversion, stabi-
lization, and progression groups, with low white matter 
hyperintensity grades characteristic of MCI reversion 
[60]. Taken altogether, the findings on cerebrovascular 
factors related to MCI development and reversion are 
few, and no consistent conclusions have been reached.

Fig. 4 Possible brain mechanisms underlying the development and reversion of mild cognitive impairment. For the development of mild cognitive 
impairment, the disappearance of atrophy synchronism between the hippocampal region and the frontal and lateral temporal lobes played a key 
role, while the reversion of mild cognitive impairment was mainly due to accelerated atrophy in the hippocampus. Abbreviations: DMN, default 
mode network; FPN, frontoparietal network; Hipp, hippocampal; sNC, stable normal cognition; pNC, progressive normal cognition; non-rMCI, 
non-reversed mild cognitive impairment; rMCI, reversed mild cognitive impairment
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Limitations
This study has several limitations. First, the observed 
sample size of the current study was small, although the 
reliability of the study results was confirmed by a cross-
validation strategy and the use of independent samples. 
Second, this study only focused on the measurement of 
structural covariance and lacked a comparison or combi-
nation with other biomarkers that have been proven to be 
related to the development or reversion of MCI, such as 
CSF amyloid-β 1 to 42 peptide and CSF total tau [11, 21, 
46]. Finally, only baseline data were used in the current 
study, and the predictive performance could be boosted 
if longitudinal data were incorporated into the model. 
These questions that have not been verified in the current 
study need to be further explored in future studies.

Conclusion
The present study first demonstrated, at the individual 
level, that structural covariance networks could serve 
as biomarkers for MCI development and reversion. The 
baseline scores of GM covariance among DMN, FPN, 
and HN accurately predicted normal-to-MCI progres-
sion (AUC = 0.692–0.792) and MCI-to-normal reversion 
(AUC=0.701-0.809). In addition, the synchronous loss of 
GM atrophy in the hippocampus and other regions may 
be more sensitive to MCI development and reversion 
than GM atrophy in individual brain regions. These find-
ings provide more evidence about the mechanism under-
lying MCI development and new neuroimaging targets 
for the early screening of individuals at high risk of devel-
oping MCI.
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