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A B S T R A C T

Automated classification of Alzheimer’s disease (AD) plays a key role in the diagnosis of dementia. In this
paper, we solve for the first time a direct four-class classification problem, namely, AD, Normal Control (CN),
Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) by processing Diffusion
Tensor Imaging (DTI) in 3D. DTI provides information on brain anatomy in form of Fractional Anisotropy (FA)
and Mean Diffusivity (MD) along with Echo Planar Imaging (EPI) intensities. We separately train CNNs, more
specifically, VoxCNNs on FA values, MD values, and EPI intensities on 3D DTI scan volumes. In addition,
we feed average FA and MD values for each brain region, derived according to the Colin27 brain atlas,
into a random forest classifier (RFC). These four (three separately trained VoxCNNs and one RFC) models
are first applied in isolation for the above four-class classification problem. Individual classification results
are then fused at the decision level using a modulated rank averaging strategy leading to a classification
accuracy of 92.6%. Comprehensive experimentation on publicly available ADNI database clearly demonstrates
the effectiveness of the proposed solution.
1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia
accounting for about 60% to 70% of the total number of dementia
cases in the World. This deadly disease is caused by the damage and
destruction of nerve cells in the brain regions related to memory and
its most common symptoms are memory loss and cognitive decline.
Worldwide, around 50 million people have dementia, and there are
nearly 10 million new cases every year. Globally, the total deaths due
to Alzheimer’s and other minor types of dementia is 2 382 129 and the
total number of prevailing cases are as large as 43 835 665 as reported
in the year 2016 (Nichols, Szoeke, Vollset, & Abbasi, 2019). According
to data from World population prospects (2019), the number of older
persons – those aged 65 years or over – is expected to more than double
by 2050 and to more than triple by 2100, rising from about 700 million
globally in 2019 to 1.8 billion in 2050 and 2.45 billion in 2100 as
shown in Fig. 1. Currently, there is no treatment available to cure AD
or to alter its progressive course. However, in order to support and
improve the quality of lives of AD patients, the treatment process has
a big scope of improvement. Early detection and diagnosis is a major
goal for dementia and AD care. AD has generally three major stages of
progression-

1. Early Mild Cognitive Impairment (EMCI)
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2. Late Mild Cognitive Impairment (LMCI)
3. Alzheimer’s Disease (AD)

Along with the above three AD stages, we have one more class —
Normal Control (CN), i.e., those who have no symptoms of AD, LMCI
or EMCI. So the main task is to classify a brain scan into one of the
four major AD classes. Previous efforts of classification was mainly
focused on binary classification, i.e., to develop algorithms to classify
between any two classes, for example, between AD and CN, between
LMCI and CN, between EMCI and CN, and so on. Although it was
easy to differentiate among only two types of data, it was still time-
consuming to determine the actual class as one would have to eliminate
each class by making multiple binary comparisons until the final class
is reached. In this work, we for the first time address a direct four-class
classification problem related to AD. Clearly, this task is significantly
more challenging than single or multiple binary classification(s) as the
differences among all four classes is not very distinct.

For the diagnosis of dementia, use of Magnetic Resonance Imaging
(MRI) has been quite common. MRI can create a 3D representation of
the internal brain structure through magnetic fields and radio waves.
It offers the possibility of in-vivo study of pathological brain changes
associated with AD. Currently, Diffusion weighted MRI (DWI or DW-
MRI) is the standard version of MRI which is used in clinical diagnosis
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Fig. 1. Estimates and probabilistic projections of population of people aged 65 years
and above in the world.

worldwide. It uses the diffusion of water molecules to generate contrast
in MR images. Building upon DWI, DTI has gained popularity as it is
able to capture the directions of water molecule diffusion thereby pro-
viding a lot more data about brain tissue structure than conventional
MRI (Le Bihan et al., 2001). This extra information from DTI scans have
opened avenues for a wide range of neurological applications, detecting
AD is one of them.

Over the past decades, neuroimaging data have been used to char-
acterize AD by exploiting machine learning (ML) methods, offering
valuable tools for diagnosis and prognosis (Falahati, Westman, & Sim-
mons, 2014; Rathore, Habes, Iftikhar, Shacklett, & Davatzikos, 2017).
Many studies have proposed the use of predefined features (including
regional and voxel-based measurements) obtained from image prepro-
cessing pipelines along with different types of classifiers like support
vector machines (SVM) and random forests. In recent times, deep
learning (DL), a more advanced and complex ML methodology, has
created a compelling effect in the domain of medical imaging. The main
advantage of DL over ML is that it allows the automatic abstraction of
low-to-high level latent feature representations (e.g. lines, dots or edges
for low level features, and objects or complex shapes for high level
features). Compared with 2D convolutions on slices, 3D convolutions
on a whole MRI can capture potential 3D structural information which
may be essential for discrimination and has proved to be advantageous
on AD vs. Mild Cognitive Impairment (MCI) classification (Gao, Hui,
& Tian, 2017). Also, it is important to note that datasets collected in
neuroimaging studies are generally very small, compared to the large
number of images available in datasets for image classification which
are currently used to train neural networks for object classification and
detection in 2D image analysis. This leads to relatively lower accuracies
as there are not enough training examples for the network to learn
the required features. This is mitigated by various techniques like data
augmentation, feature fusion and decision fusion.

In this paper, we present a solution for the above four-class AD
classification problem by combining DL and ML models on 3D DTI
scan volumes. The DTI data is publicly available at the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) website which has been discussed
elaborately in Section 5.1. As we demonstrate in the paper, different
types of data existing in DTI can be efficiently utilized when separate
DL and ML models are applied. We use 3D-CNN, specifically VoxCNN,
as the DL model in this work as it has shown good performance on
MRI data (Korolev, Safiullin, Belyaev, & Dodonova, 2017). We employ
three VoxCNNs to train three types of 3D volumetric data, namely,
Echo Planar Imaging, Fractional Anisotropy and Mean Diffusivity in
each DTI scan. For the ML part, we apply a random forest classifier
2

to classify derived metadata in form of region-averaged Fractional
Anisotropy and Mean Diffusivity values. Outputs from all the four
models, i.e., three VoxCNNs and the random forest classifier are finally
combined with a modulated rank averaging decision fusion approach.
Our main contributions are now summarized below:

1. We address for the first time a direct four-class classification
problem in AD, which is significantly more challenging than the
pre-existing single or multiple binary classification(s).

2. We efficiently harness the full potential of DTI scans by applying
appropriate DL and ML models in 3D for different types of infor-
mation existing in them. This detailed exploration of DTI data
and that too in 3D is largely absent in the prevalent literature.

3. Finally, outputs of each learning model are combined at the de-
cision level using a modulated rank averaging technique thereby
achieving state-of-the-art classification accuracy.

The rest of the paper is organized as follows: in Section 2, we discuss
the related works. In Section 3, we provide some basic theoretical
foundations regarding DTI. This is followed by detailed description of
our proposed method in Section 4. In Section 5, we present the exper-
imental results with detailed analysis. Finally, the paper is concluded
in Section 6 with an outline of directions for future research.

2. Related work

Use of medical imaging for solving classification problems has been
popular for a long time. Classification is critical for clinicians to ensure
proper diagnosis of a disease. Neuro-science has many such applica-
tions of classification where neuro-imaging has been extensively used.
Some prominent examples include brain tumor classification (Swati
et al., 2019), texture classification in ALS disease (Elahi, Kalra, Zin-
man, Genge, Korngut, & Yang, 2020) and AD classification (Billones,
Demetria, Hostallero, & Naval, 2016; Duc et al., 2020).

Extracted bio-markers and processed medical descriptors, together
with statistical and conventional ML methods, have been widely used
to aid the classification of AD. In Liu et al. (2013), the authors have ex-
tracted 83 Regions of Interest (ROI)s from 3D brain MRI and Positron-
emission tomography (PET) scans, and proposed a Multifold Bayesian
Kernelization (MBK) to diagnose AD. A Support Vector Regression
(SVR) based decision support system was developed by Bucholc et al.
(2019) which achieved a good accuracy. We use classical ML approach
like Random Forest Classifier for only a part of our proposed method
as it has limited feature extraction capabilities. However, a part of the
DTI data is best handled by the Random Forest Classifier as the data
contains numerical features with overlapping and very close values
(linearly inseparable) making it less effective for Support Vector Ma-
chines. Further, since this part of the data has no spatial correlation, DL
methods are not suitable for handling them. Now, we discuss certain DL
methods which have been widely used in computer-aided diagnosis lit-
erature. Ramaniharan, Manoharan, and Swaminathan (2016) used 2D
slices of MRI scans to perform AD classification based on eigen values,
parametric and non-parametric classifiers. Raza et al. (2019) used a mix
of ML and DL approaches to classify AD. Although, ROI-based and 2D
slice-based methods can efficiently extract relevant features and partly
reduce the feature dimension, they are too empirical to capture the
critical features which are associated with AD classification. In contrast,
3D-CNN can capture more complete spatial features through its space
association capability. Cheng, Liu, Fu, and Wang (2017a) extracted
a number of 3D patches from the whole MRI and transformed those
patches into features by 3D-CNN. Finally, multiple 3D-CNNs were used
to combine the features yielding better results for AD classification
which inspired us to use DTI data in a similar way. We also took
inspiration from the work of Lebedev et al. (2014) where they used
Random forest ensembles to detect AD and predict progression from
MCI to AD. We used Random forest for training a type of derived data

obtained from the DTI scans. Although supervised DL methods work
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Fig. 2. Axial FA map of a DTI scan from the ADNI dataset.

better than the unsupervised methods, they are highly data dependent.
The performance of the model depends on the number of training data
available and in most neuroimaging domains, number of data is found
to be insufficient to make a model highly accurate and effective. To
address this challenge we found DTI data to be useful as each DTI scan
produces 3 3D volumetric images leading to a three-fold increase in
the data. Furthermore, additional information about each brain region
is available which can also be utilized using machine learning methods
for improving the classification performance.

As a summary, we can say that AD classification works till date
deal with binary classification problems and are mostly restricted to
using MRI or PET data. Due to less number of available data and less
information in MRI or PET data, satisfactory accuracy for multi-class
classification could not be achieved. By exploiting multiple types of
data available in DTI, creating appropriate DL and ML models for them
and finally fusing the individual outputs at decision level, we have
obtained in this work state-of-the-art performance for a four-class AD
classification problem.

3. Basics of diffusion tensor imaging

DTI is able to capture white-matter (WM) tracts in the brain while
MRI is only limited to gray-matter (GM) visualizations. Alterations in
WM diffusivity on DTI are known to be associated with clinical disease
severity starting from the pre-clinical stages of AD. The WM integrity
on DTI and its importance has been discussed in details in Kantarci
et al. (2017). Hence DTI is a preferred choice for studying AD as it can
capture both GM and WM information.

We now explain briefly about its mathematical motivation. DTI is
a sensitive probe of cellular structure that works by measuring the
diffusion of water molecules (Basser, Mattiello, & LeBihan, 1994) inside
living tissues. Since the diffusion tensor is a symmetric 3 × 3 matrix,
it can be described by its eigenvalues (𝜆1, 𝜆2, 𝜆3) and eigenvectors
(𝑒1, 𝑒2, 𝑒3). The eigenvalues and eigenvectors are then used to process
scalar indices and, in some studies, tractography analysis (Chun, Li,
Xuan, Xun, & Qin, 2005). At each voxel, the eigenvalues represent the
magnitude of diffusion and the corresponding eigenvectors reflect the
directions of maximal and minimal diffusion.

Generally, each DTI scan contains Echo Planar Imaging (EPI) vol-
ume in 3D, and some diffusion tensor information at each voxel which
can be used to generate Fractional Anisotropy (FA) and Mean Diffusiv-
ity (MD) volumes which are also in 3D. In the dataset that we used, FA
and MD volumes were already available along with the EPI volume.
The voxel intensities acquired from the MRI scan are stored in the EPI
volume. The two main diffusion indices, FA and MD, are based on the
eigenvalues, which represent the magnitude of the diffusion process.
3

3.1. Mean diffusivity

MD is a summary measure of the average diffusion properties of a
voxel and is equivalent to the estimated Apparent Diffusion Coefficient
(ADC) over three orthogonal directions (Soares, Marques, Alves, &
Sousa, 2013). In other words, it is a measure of the mean water
diffusion rate. MD values of the voxels differ for brain scans belonging
to different classes of Alzheimer’s and also differ in normal healthy
brains. An increase in MD indicates decreased myelination and loss of
axons (Mayo, Mazerolle, Ritchie, Fisk, & Gawryluk, 2017). It can be
mathematically represented as-

𝑀𝐷 =
𝜆1 + 𝜆2 + 𝜆3

3
=

𝐷𝑥𝑥 +𝐷𝑦𝑦 +𝐷𝑧𝑧

3
= 𝑇 𝑟𝑎𝑐𝑒

3
(1)

where 𝐷𝑥𝑥, 𝐷𝑦𝑦, 𝐷𝑧𝑧 are the diagonal terms of the diffusion tensor.

3.2. Fractional anisotropy

FA is a normalized measure of the fraction of the tensor’s mag-
nitude due to anisotropic diffusion, corresponding to the degree of
anisotropic diffusion or directionality and ranges from 0 (isotropic dif-
fusion) to 1 (anisotropic diffusion). Just like MD, decreased FA values
are indicative of dementia and Alzheimer’s. FA values are rotationally
invariant, i.e. they do not have any orientation information. It can be
mathematically expressed as-

𝐹𝐴 =
√

3
2

√

(𝜆1 −𝐷)2 + (𝜆2 −𝐷)2 + (𝜆3 −𝐷)2

𝜆12 + 𝜆22 + 𝜆32
(2)

where 𝐷 = 𝜆1+𝜆2+𝜆3
3 . FA maps are color coded where a certain di-

rection is represented by a color. In these maps, red color represents
left-to-right orientation, green posterior-to-anterior and blue inferior-
to-superior diffusion as shown in Fig. 2 which has been generated with
the 3D Slicer tool (version 4.10.2) (Fedorov et al., 2012; Pieper, Halle,
& Kikinis, 2004).

3.3. Echo planar imaging

EPI is the fastest imaging sequence currently available and has the
potential to revolutionize many aspects of MRI technology. It is a rapid
MRI technique that is capable of producing tomographic images at
video rates. It is a single-shot method having imaging times ∼ 100 ms
for a 128 × 128 matrix.

In a single-shot echo planar sequence, the entire range of phase
encoding steps, usually up to 128, are acquired in one shot. In multi-
shot echo planar imaging, the range of phase steps is equally divided
into several shots. Each subsequent echo results in a progressively T2-
weighted signal. We use DTI images with this EPI standard in our
experiments.

3.4. Significance of fractional anisotropy and mean diffusivity

AD results in the loss of neurons in the brain and this neuronal
degeneration can be seen as a loss of both GM and WM. Loss of
neurons in certain areas of the brain results in GM atrophy that can be
measured on conventional MR images. Increased MD was consistently
found in the areas such as the hippocampus, the entorhinal cortex, the
parahippocampal gyrus, the temporo-parietal association cortex, and
the posterior cingulate gyrus (Oishi, Mielke, Albert, Lyketsos, & Mori,
2011).

Majority of the published AD research has used a cross-sectional
design and consistently revealed low FA and high MD in widespread
WM regions including the frontal, parietal, and temporal lobes (in-
cluding hippocampal regions), as well as the corpus callosum and
longitudinal association tracts (Mayo et al., 2017). Thus FA and MD
are clear biomarkers and their values indicate which stage of AD the
patient is in. This can be seen in Fig. 3 where EPI, FA and MD slices of
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Fig. 3. Axial slices of EPI, FA and MD maps of two patients. (a), (b) (c) denote the slices of AD patient and (e), (f), (g) denotes that of healthy person. EPI and MD shows the
WM in black, while FA shows the WM in white. We can see that in AD patient the total WM region in lesser than normal person which is clearly indicated by the larger size of
lateral ventricle body in AD patient.
two different patients, one with AD and one healthy, are shown with
visible difference in brain WM structures. These unique traits of DTI
have motivated us to explore this imaging modality for a four-class
classification of AD. So, we decide to apply and combine appropriate
classifiers on the DTI data to achieve the above goal.

4. Proposed method

Our solution pipeline consists of three VoxCNN networks and one
random forest classifier, each of which outputs a 4 × 1 probability
vector. Each probability vector contains the probabilities for the data to
be in the four classes, namely, AD, CN, EMCI and LMCI. The probability
vectors are then linearly combined by ranking the models based on
their accuracy. In particular, we multiply each vector with a weight
which is proportional to the rank of the corresponding model and the
difference in accuracy between the corresponding model and the model
which is rank-wise immediately next to it. We present a schematic
of our solution in Fig. 4. An algorithm showing the details of the
fusion strategy is shown in Algorithm 1. We end this section with
another algorithm (Algorithm 2) where all the steps of our solution are
mentioned. We now provide detailed descriptions of our DL models, ML
models and the modulated rank averaging technique for decision level
fusion.

4.1. VoxCNN

VoxCNN architecture has four volumetric convolutional blocks for
extracting features (with a number of filters increasing from layer
to layer), two deconvolutional layers with batch normalization and
dropout for regularization and an output with SoftMax nonlinearity for
4

classification. We have kept the network architecture as it is defined in
the article (Korolev et al., 2017). The input files are in nifti format, and
they are normalized between 0 and 1 for keeping similarity among all
models. This data preprocessing part has been done with the nilearn
and Scikit-learn packages (Abraham et al., 2014; Pedregosa et al.,
2011b). Considering the dataset size, model size and the limitations of
GPU memory, we modified the batch iteration process in order to get
samples of each class in every batch. The probability of having only
one class represented inside a batch for infinite number of samples is
1
𝑐𝑏 where 𝑐 denotes the number of classes and 𝑏 denotes the batch size.
Therefore, for large batch sizes this probability is low. However, for our
problem, this value is still high enough to thwart the learning process.
Balancing of the samples inside each batch was hence undertaken to
obtain stable learning curves.

4.2. Random forest classifier

Random forest classifier (RFC), an ensemble of decision trees
(Breiman, 2001) is chosen for its very high accuracy and capability
to handle large volume of data. Random forests are well suited for
multi-class classification, they do not tend to overfit, can handle outliers
well and has fewer number of parameters to tune (Pedregosa et al.,
2011a) as compared to other state of the art classifiers like Gradient
Boosting Machines (GBM) (Nawar & Mouazen, 2017), XGBoost (Chen
& Guestrin, 0000), etc. Also, they are more resilient to noisy data, a fea-
ture which can be useful for medical applications (Yang, Wang, Mi, Lin,
& Cai, 2009). Each DTI scan comes with averaged FA values of 57 re-
gions and averaged MD values of the same 57 regions, which is derived
from the images and is not actually image data. Hence, we can say that
we are performing classification based on meta data in tabular format.



Expert Systems With Applications 169 (2021) 114338A. De and A.S. Chowdhury
Fig. 4. Solution pipeline architecture: 𝐶𝑒 , 𝐶𝑓𝑎 , 𝐶𝑚𝑑 and 𝐶𝑟𝑓𝑐 denote the probability vectors of EPI, FA, MD and RFC models respectively, each of which contains the probabilities
of the four AD classes; Finally, 𝑃𝑖𝑠 denote the probabilities for the four AD classes after applying modulated rank averaging.
𝑆𝑆
Although neural networks can perform classification on tabular data, it
is more complex in terms of setting up the model and hyper-parameter
tuning, and also it is computationally expensive, whereas RFCs do not
need a lot of memory resources and the training can be parallelized in a
multi-core processor that greatly speeds up the training process which
is a very crucial factor in the field medical imaging where online and
in-situ measurements are indispensable (Fernández-Delgado, Cernadas,
Barro, & Amorim, 2014). In order to use all available information from
each DTI scan and considering the suitability of DL for volumetric
image data and RFC for tabular meta data, we have used RFC along
with VoxCNN to arrive at the best possible outcome. Each feature value
in the meta data is a real number in [0, 1]. Thus, RFC is employed (code
available at Pedregosa et al., 2011b) to randomly select a subset of
features from the total feature set to arrive at a suitable classification
decision. RFC votes for the most popular class among the individual
trees. The information gain 𝐼 for the 𝑗th node in a decision tree is given
by-

𝐼 = 𝐻(𝑆𝑗 ) −
∑

𝑖=𝐿,𝑅

|𝑆 𝑖
𝑗 |

|𝑆𝑗 |
𝐻(𝑆 𝑖

𝑗 ) (3)

where 𝐻(𝑆𝑗 ) denotes the entropy of the 𝑗th node 𝑆𝑗 . The entropy of a
node for a discrete set of 𝐾 class labels 𝑐 = 1, 2,… , 𝐾 is given by:

𝐻(𝑆𝑗 ) = −
∑

𝑐∈𝐾
𝑝(𝑐)𝑙𝑜𝑔2(𝑝(𝑐)) (4)

Further, |𝑆𝑗 | denotes the number of training images in the node 𝑆𝑗 . So,
|𝑆𝐿

𝑗 | and |𝑆𝑅
𝑗 | respectively represent the number of data in the left child

and the right child of the node 𝑆𝑗 . However, before the data is fed into
the RFC, it goes through a set of pre-processing steps described below.
5

4.2.1. Synthetic minority oversampling technique
Since the data is class imbalanced, Synthetic Minority Oversampling

Technique (SMOTE) sampling (Chawla, Bowyer, Hall, & Kegelmeyer,
2002) has been used which generates excellent synthetic samples from
the data and re-samples all classes to match the number of samples in
the majority class.

Let 𝑥𝑖𝑗 be the value of the 𝑗th variable (𝑗 = 1,… , 𝑝) for the 𝑖th
sample (𝑖 = 1,… , 𝑛) that belongs to class 𝑐, (𝑐 = 1,… , 𝐾). In the present
problem, number of classes 𝐾 = 4. Let, 𝑘𝑐 = 𝑛𝑐

𝑛 is the proportion of
samples from class 𝑐, 𝑛𝑐 is the number of samples in class 𝑐 and 𝑛 is the
total number of samples. Further, let the sample size of the minority
class be denoted by 𝑛𝑚𝑖𝑛. We use capital letters (as 𝑋) to denote random
variables, lowercase letters (as 𝑥) to denote observations and bold
letters (𝐱) to indicate a set of variables. The Gaussian distribution with
mean 𝜇 and standard deviation 𝜎 is indicated with 𝑁(𝜇, 𝜎) and the
uniform distribution defined on [0, 1] with 𝑈 (0, 1).

For each sample from the minority class (𝑥), 40 (or 𝑛𝑚𝑖𝑛 − 1 if
𝑛𝑚𝑖𝑛 ≤ 5) samples from the minority class with the smallest Euclidean
distance from the original sample were identified (nearest neighbors)
and one of them was randomly chosen (𝑥𝑅). The new synthetic SMOTE
sample was defined as-

𝑆 = 𝑋 + 𝑢 ⋅ (𝑥𝑥𝑥𝑅 − 𝑥𝑥𝑥) (5)

where 𝑢 was randomly chosen from 𝑈 (0, 1). Note that 𝑢 is same for all
variables but different for each SMOTE sample.

4.2.2. Spatially uniform ReliefF
Spatially Uniform ReliefF (SURF) identifies the nearest neighbors

(both hits and misses) based on a distance threshold from the target
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instance defined by the average distance between all pairs of instances
in the training data. Since there are 114 continuous valued features in
the data which are very similar to each other having values between 0
and 1, it is quite challenging to classify the data. Hence, SURF (Greene,
Penrod, Kiralis, & Moore, 2009) is used to select the top 50 best features
among the 114 features which improves the accuracy of classification.

4.3. Modulated rank averaging based decision level fusion

In traditional majority voting method, the prediction results of
majority of the classifiers are used as the final prediction labels. Since,
each classifier is independent and the error rates between different
classifiers are irrelevant, such strategy can be useful. However, for
multi-class classification tasks, this method may not be very effective.
Single classifiers perform well on most subjects; but for some subjects
which are difficult to classify, the error rates will be increased due to
the uncertainty among multiple categories. Let us take the following
example with three classifiers. The four-class output probabilities from
the SoftMax layer of these three classifiers for {AD, EMCI, LMCI, CN}
are respectively given by I: {0.7, 0.05, 0.2, 0.05}, II: {0.3, 0.5, 0.1,
0.1}, III: {0.2, 0.4, 0.3, 0.1}. Based on the majority voting method, the
prediction result is EMCI. But this inference is not completely correct,
since the prediction result of classifier I is more credible (the winner is
predominant) while that of classifiers II and III have more uncertainties
(differences between the winner class and other classes are not that
high).

In our approach, we use a weight adjusted probability vector fusion
technique along with ranking of the classification models based on
their individual accuracy. Our approach deals with applying a different
weight for each network. Networks that had a lower classification
error in the training set will have a larger weight when combining the
results for each image from the test set. The algorithm for our proposed
method can be seen in Algorithm 1.

Let 𝑛 be the 𝑛-dimensional feature space. Suppose,  =
[

𝑥1, 𝑥2,
… , 𝑥𝑛

]𝑇 be the 𝑛-dimensional feature vector,  ∈ 𝑛, Ω =
[

𝜔1, 𝜔2,
… , 𝜔𝐾

]

be the set of potential class labels and 𝐶 =
[

𝐶1, 𝐶2,… , 𝐶𝑙
]

be
the set of trained models for decision fusion. Given the input pattern
 , the output of the 𝑖th model is denoted as-

𝐶𝑖() =
[

𝑃𝑖,1(), 𝑃𝑖,2(),… , 𝑃𝑖,𝑚()
]𝑇 (6)

where 𝐶𝑖,𝑗 (), 𝑖 = 1, 2,… , 𝑙 𝑗 = 1, 2,… , 𝑚 represents the probability that
 belongs to class 𝜔𝑗 . Basically, 𝐶𝑖() denotes the probability vector of
model 𝐶𝑖. In our case 𝑙 = 4 as there are 4 models and 𝐾 = 4 as there
are four classes. The fused output of 𝑙 models is constructed as in:

𝐶() = 𝐹
[

𝐶1(), 𝐶2(),… ..., 𝐶𝑙()
]

(7)

where 𝐹 is the fusion rule described below.
Given some input data, the output probability vectors from all CNNs

and one RFC are multiplied by a weight 𝛼 before the prediction. So, for
a given input  , the output probability vector 𝐶() is given by:

𝐶() =
𝑙

∑

𝑗=1
𝛼𝑗𝐶𝑗 () (8)

where 𝐶𝑗 () is the output the network 𝑗 for a given input  .
The weight 𝛼𝑗 is primarily chosen by rank. It is based on the order

of accuracy in the validation set (the test fold in case of K-Fold cross
validation) but the relative differences in accuracy of each model are
taken into account. Let 𝑅() be the function that gives the position of
the model based on validation accuracy sorted in increasing order. For
example, the model with the largest accuracy will have an 𝑅() value of
𝐾 where 𝐾 is the number of classes (𝐾 = 4 in our case), the model
with second largest accuracy will have 𝑅() value of (𝐾 − 1) and so
on until the model with the lowest accuracy will have 𝑅() = 1. Let,
𝑑1, 𝑑2,… , 𝑑𝑙−1 be the differences in validation accuracies of 𝑙 models
6

which are themselves sorted in ascending order of validation accuracy.
Algorithm 1: MRA(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
Input: Evaluation Accuracy of each model as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝐴1, 𝐴2,… , 𝐴𝑙]
Output: Weight for each model as 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[𝛼1, 𝛼2,… , 𝛼𝑙]
/* Store the original accuracies in 𝐴𝑐𝑐𝑅𝑎𝑛𝑘𝑠 so that

values in Weights can be in the same order as
Accuracy */

1 𝐴𝑐𝑐𝑅𝑎𝑛𝑘𝑠 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
2 𝑠𝑢𝑚𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 𝑙
// 𝑙 = 4 in our case

3 Sort the Accuracy array
4 𝑟𝑎𝑛𝑘 ← 𝑙
5 foreach acc in Accuracy do // Iterate through the
sorted accuracies

6 for 𝑖 ← 1 to 𝑙 do
7 if 𝑎𝑐𝑐 = 𝐴𝑐𝑐𝑅𝑎𝑛𝑘𝑠[𝑖] then /* If accuracy value

equals 𝑖𝑡ℎ index, then store the rank at the
𝑖𝑡ℎ index */

8 𝐴𝑐𝑐𝑅𝑎𝑛𝑘𝑠[𝑖] ← 𝑟𝑎𝑛𝑘
9 𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘 − 1
10 end
11 end
12 end
13 for 𝑗 ← 1 to 𝑙 − 1 do
14 𝑑𝑗 ← 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑙 − 𝑗 + 1] − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑙 − 𝑗]
15 𝑓𝑗 = 𝑙 − 𝑗 + (1 − 𝑑𝑗 )
16 𝑠𝑢𝑚𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 𝑠𝑢𝑚𝑓𝑎𝑐𝑡𝑜𝑟𝑠 + 𝑓𝑗
17 end
18 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[1] ← 𝑙

𝑠𝑢𝑚𝑓𝑎𝑐𝑡𝑜𝑟𝑠

19 for 𝑖 ← 2 to 𝑙 do
20 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[𝑖] ← 𝑓𝑖−1

𝑠𝑢𝑚𝑓𝑎𝑐𝑡𝑜𝑟𝑠

21 end
22 return 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠

In our case, we have four models. Let their validation accuracies, after
being trained on full dataset, be denoted by 𝐴1, 𝐴2, 𝐴3 and 𝐴4. The 𝑗th
difference 𝑑𝑗 can be written as-

𝑑𝑗 = 𝐴𝑗 − 𝐴𝑗+1 (9)

here 𝑗 = 1, 2,… , 𝑙−1. The main reason for calculating the differences
n accuracy of the model is because the differences among the four
odels (in terms of accuracy) is not uniform. Hence, the differences

n weight values for each model should also not be uniform. But, in
ormal rank based weighting method, each model gets a weight that is
ust 1 less than the previous model’s weight in spite of having accuracy
alues which are non-uniformly different. Thus, we decide to factor in
he individual contributions of each model and penalize them according
o the difference in accuracy. Based on this value of 𝑑𝑗 , we calculate for
ach rank value, a factor 𝑓𝑗 which is the sum of the rank value 𝑅(𝐴𝑗 )
nd 1 minus the difference 𝑑𝑗 . We write,

𝑗 = 𝑅(𝐴𝑗 ) + (1 − 𝑑𝑗 ) (10)

here 𝑗 = 1, 2,… , 𝑙 − 1. Finally, we calculate the weight 𝛼𝑗 by
normalizing the factor 𝑓𝑗 :

𝛼𝑗 =
𝑓𝑗

∑𝑙−1
𝑗=1 𝑓𝑗 + 𝑅𝑚𝑎𝑥

(11)

where, 𝑗 = 1, 2,… , 𝑙 − 1 and 𝑅𝑚𝑎𝑥 being the rank of the model
with highest accuracy (𝑅𝑚𝑎𝑥 = 4 in our case). The weights are then

multiplied with the outputs of each model and hence Eq. (8) can be
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Algorithm 2: Algorithm of proposed solution
Input : EPI volumes 𝐸 = [𝑒1, 𝑒2,… , 𝑒𝑛]

FA volumes 𝐹 = [𝑓𝑎1, 𝑓𝑎2,… , 𝑓𝑎𝑛]
MD volumes 𝑀 = [𝑚𝑑1, 𝑚𝑑2,… , 𝑚𝑑𝑛]
FA-MD regional averages for 57 brain regions

𝑉 = [𝑣1, 𝑣2,… , 𝑣𝑛] where each 𝑣𝑖 = [𝑝1, 𝑝2,… , 𝑝57, 𝑞1, 𝑞2,… , 𝑞57],
𝑝𝑗 being the averaged FA value and 𝑞𝑗 being the averaged MD
value for a particular brain region.

𝑛 = number of training examples
Output: Probability Vector 𝐶() = [𝑃1(), 𝑃2(), 𝑃3(), 𝑃4()]

where 𝑃𝑘() signifies the probability of input 
belonging to class 𝜔𝑘

/* Initialize an Accuracy array of size 4 to store
the accuracies of each model */

1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = empty
/* Train EPI data in VoxCNN network and store

accuracy */
2 𝐴𝑒 ← 𝑉 𝑜𝑥𝐶𝑁𝑁𝑒(𝐸)
/* Train FA data in VoxCNN network and store

accuracy */
3 𝐴𝑓𝑎 ← 𝑉 𝑜𝑥𝐶𝑁𝑁𝑓𝑎(𝐹 )
/* Train EPI data in VoxCNN network and store

accuracy */
4 𝐴𝑚𝑑 ← 𝑉 𝑜𝑥𝐶𝑁𝑁𝑚𝑑 (𝑀)
/* Train EPI data in VoxCNN network and store

accuracy */
5 𝐴𝑣 ← 𝑅𝐹𝐶(𝑉 )
6 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← [𝐴𝑒, 𝐴𝑓𝑎, 𝐴𝑚𝑑 , 𝐴𝑣]
// Get the weights from Algorithm 1 by giving

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 as input
7 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑀𝑅𝐴(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
/* For any new input  = [𝑒, 𝑓𝑎, 𝑚𝑑, 𝑣], where 𝑒 = EPI

Volume, 𝑓𝑎 = FA Volume, 𝑚𝑑 = MD volume and 𝑣 =
Averaged FA-MD values, find the prediction
results from each of the four models */

8 𝐶𝑒(𝑒) ← 𝑉 𝑜𝑥𝐶𝑁𝑁𝑒(𝑒)
9 𝐶𝑓𝑎(𝑓𝑎) ← 𝑉 𝑜𝑥𝐶𝑁𝑁𝑓𝑎(𝑓𝑎)
10 𝐶𝑚𝑑 (𝑚𝑑) ← 𝑉 𝑜𝑥𝐶𝑁𝑁𝑚𝑑 (𝑚𝑑)
11 𝐶𝑟𝑓𝑐 (𝑣) ← 𝑅𝐹𝐶(𝑣)
12 𝐶() ← [(𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[0] × 𝐶𝑒(𝑒)) + (𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[1] × 𝐶𝑓𝑎(𝑓𝑎)) +

(𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[2] × 𝐶𝑚𝑑 (𝑚𝑑)) + (𝑊 𝑒𝑖𝑔ℎ𝑡𝑠[3] × 𝐶𝑟𝑓𝑐 (𝑣))]

represented as:

𝐶() =
𝑙−1
∑

𝑗=1
𝛼𝑗𝐶𝑗 () + 𝛼𝐿𝐶𝐿() (12)

In the above equation, 𝛼𝐿 = 𝑅𝑚𝑎𝑥
∑𝑙−1

𝑗=1 𝑓𝑗+𝑅𝑚𝑎𝑥
with 𝐿 denoting the model

aving the highest rank after sorting.

. Experimental results

In this section, we first discuss data preparation. This is followed
y implementation details. We then extensively evaluate our solution
ncluding ablation studies and comparisons with external approaches.

.1. Data preparation

For experimentation, publicly available ADNI database is used (Jack
t al., 2008). We take a subset of ADNI DTI data that has been pre-
rocessed with alignment and skull-stripping. Since there are patients
hat have multiple images taken during a period of time, to minimize
ossible information ‘‘leaks’’, only the last images were taken for each
7

Fig. 5. Dataset division strategy.

subject. Also, there were data from two other classes namely MCI and
Significant Memory Concern (SMC), but the number of data for these
classes were so less that we did not consider those two classes for our
experiments. Resulting dataset has 655 images of four classes: 150 of
AD patients, 150 of LMCI, 205 of EMCI and 150 of CN. As the number
of data for each class is unequal and the total number of data is not
enough for training a deep learning model, SMOTE oversampling is
used to increase the number of samples for each minority class. Each
of the scan contains 3 3D volumes of size 110 × 110 × 110 containing
EPI, FA and MD data.

We first divided the dataset containing 655 images into training and
testing sets keeping in mind the number of images in each class. So we
randomly took 80% of images each from AD, CN, EMCI and LMCI and
created the training set containing total of 524 images. The remaining
20% from each class were taken to form the testing set totaling 131
images.

We then applied SMOTE oversampling technique to increase the
number of samples of each minority class (AD, EMCI and LMCI) to
match that of the majority class (CN). As a result each class has a total
of 164 images now.

We then split the entire training set into 10 folds for 10-fold cross
validation keeping the number of images from each class same. This
resulted in 6 folds each containing 64 images(16 from each of AD, CN,
EMCI and LMCI) and 4 folds each containing 68 images(17 from each of
AD, CN, EMCI, and LMCI). The details of dataset division is explained
in Fig. 5.
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Fig. 6. Graph showing how number of estimators in Random Forest Classification
affects accuracy.

Fig. 7. Graph showing how number of SMOTE neighbors affects accuracy.

Each of the FA and MD data has a corresponding metadata file
containing the averaged FA, MD values for each brain region which
is extracted to create the 4th dataset containing real numbered values
which was fed into RFC after going through the same dataset division
process as explained above. Each image file is stored as a 3D tensor
of shape 110 × 110 × 110 in Nifti file format (.nii). The EPI image
ile contains voxel intensity values and the FA and MD files have real
umbered values within 0 and 1. For each model, a 10-fold cross vali-
ation has been employed to get better approximation of the prediction
erformance before applying the decision level fusion.

As such, the investigators within the ADNI contributed to the design
nd implementation of ADNI and/or provided data but did not partic-
pate in analysis or writing of this article. A complete listing of ADNI
nvestigators can be found at the ADNI website (Jack et al., 2008).

.2. Implementation details

After creating training and testing sets for each type of data i.e., EPI,
A, MD and regional FA-MD values as explained in Section 5.1, we
rained the training set with 10-fold cross validation. It performed
etter than 5-fold cross validation as the number of training data in
ach fold significantly increased. We fed the accuracy value of each
odel (three CNNs for EPI, FA, MD and one RFC for FA-MD averaged

alues) to compute the modulated weights which were used in our
ovel modulated rank averaging method. Then, for each data in the
esting set, classification output of the individual models was multiplied
ith the corresponding weights previously calculated and a weighted
veraging was done to arrive at the final classification.

We first furnish the details of VoxCNN training parameters. This
s followed by elaborate discussions on setting of various parameters
ertaining to RFC.
8

Fig. 8. Graph showing how number of SURF features affects accuracy.

Table 1
Individual evaluation accuracy of EPI, FA, MD and RFC models.

Model Accuracy (%)

EPI 87.4
FA 76.4
MD 84.5
RFC 69.4

5.2.1. VoxCNN training parameters
We train the network using AdaM optimizer with learning rate

of 27 × 10−6 and batch size of 32 for 80 epochs for each fold to
get the perfect class separation on the fold training set and stabilize
the performance metrics on fold validation set. The final accuracy is
calculated on the separately kept test set containing 131 samples. We
keep the training parameters same for each model (EPI, FA, and MD)
in order to avoid conflict while combining the outputs of the models so
that the decision level fusion is unbiased.

5.2.2. Random forest classifier parameters
The classifier is also tuned on the training set by experimenting with

the number of trees/estimators. From Fig. 6, it is evident that setting
the number of trees to 1200 yields best results. The function to measure
split quality is set to ‘entropy’ as ‘gini’ function often leads to poorer
results than ‘entropy’.

5.2.3. Synthetic minority oversampling technique parameters
SMOTE oversampling (see Section 4.2.1) is used to create synthetic

training samples which helps in balancing the number of training data
for each class. After experimenting with the number of neighbors in
SMOTE on the training set, keeping other parameters constant, we have
found that the best results are obtained when the number of neighbors
is set to 40. This is evident in the Accuracy vs. SMOTE neighbors graph
in Fig. 7.

5.2.4. Spatially uniform ReliefF parameters
SURF selects the best features from numerous features to find a

balance between computation time and accuracy. In our case, we have
selected 50 features. By experimenting with the number of features in a
small dataset keeping number of RFC estimators and SMOTE neighbors
constant, it was found that 50 features gives the best accuracy value as
evident in Fig. 8.

5.3. Individual model performance

The evaluation accuracy and Area under curve (AUC) of Receiver
Operating Characteristics (ROC) for the individual models evaluated
with the testing set are shown in Table 1. It can be seen that the RFC
has performed worst while the EPI VoxCNN model has performed best.
The models in decreasing order of performance are EPI, MD, FA and
RFC.
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Table 2
Comparison of evaluation accuracy among different feature fusion methods along with the accuracy (in %) for five types of classifications (AD
vs. CN, AD vs. MCI, MCI vs. CN, AD vs. MCI vs. CN, AD vs. EMCI vs. LMCI vs. CN).

Approach Accuracy (%) with Classes

AD vs. CN MCI vs. CN AD vs. MCI AD vs. CN vs. MCI AD vs. CN vs. EMCI vs. LMCI

Liu et al. (2015) 91.4 82.1
Shi, Chen, Zhang, Smith, and Liu (2017) 91.95 83.72
Lei, Chen, Ni, and Wang (2016) 96.93 82.75
Madusanka, Choi, So, and Choi (2019) 86.61 82.05 78.95
Xiao et al. (2017) 85.71 86.11 79.44 75
Our feature fusion method 79.34

Our decision fusion method 92.6
Table 3
Differences in evaluation accuracy at 95% confidence level.

Difference Confidence Interval (95%)

Min. Max.

Ours vs. Rank averaging 3.298 × 10−4 167.854 × 10−4

Ours vs. Majority voting 294.871 × 10−4 528.495 × 10−4

5.4. Combined model performance

The models in various combinations are fused at decision level using
three different fusion techniques as mentioned below.

5.4.1. Majority voting method
Since each model gives a single class decision, we take that as a

vote for that particular class and consider the final output as the class
that gets the maximum number of votes. In this way we found that the
accuracy has significantly increased from that of the individual models.

5.4.2. Rank averaging method
In this scheme, the output probabilities of each model are simply

multiplied by the rank of that model sorted according to descending
accuracy (Frazão & Alexandre, 2014). This method is better than the
majority voting method by 3%.

5.4.3. Modulated rank averaging method
Our proposed model performed even better than the Rank Averag-

ing method. As the accuracy of each model sorted in increasing order is
not uniform (see Table 1), i.e., their relative differences are not same,
the weight assigned to them should also not be uniform. We modified
the weights of Rank Averaging method to factor in the differences of
the model accuracies (see Eq. (10)). The ROC curves for each of the
combined models are plotted in Fig. 9 where we can see that modulated
rank average performs slightly better than the rank averaging model.
This better performance is quantitatively corroborated by the accuracy
and AUC values in Table 4. The per-class metrics are also shown in
Table 5.

To demonstrate statistical significance of the improvement in re-
sults, we have computed confidence interval (with a confidence of
95%) for the difference between evaluation accuracy values of the
proposed modulated rank averaging method and other two decision
fusion approaches, i.e., rank averaging and majority voting. If the
confidence interval includes zero, the difference is not significant at
that confidence level. If the confidence interval does not include zero,
then the sign of the differences in the accuracy values indicates which
alternative is better (Raz, 1992). Since, the confidence intervals (with
a confidence of 95%) do not include zero in either of the cases,
we can say that the results presented in Table 3 confirm that the
proposed decision level fusion approach yields statistically significant
improvements over the other two existing decision fusion strategies.
9

Table 4
Evaluation accuracy and Area under Curve (AUC) of the fusion methods with all four
model combinations.

Fusion approach Accuracy (%) AUC

Majority voting 88.7 0.923
Rank averaging 91.8 0.957
Modulated rank averaging 92.6 0.962

Table 5
Per class metrics containing the precision, recall and f1-score for each disease class.

Class Precision Recall f1-score

AD 0.96 0.92 0.94
CN 1.00 0.97 0.98
EMCI 0.88 0.88 0.88
LMCI 0.85 0.92 0.88

Table 6
Accuracy and Area Under Curve (AUC) for all combinations using Modulated Rank
Averaging method.

Combinations Accuracy (%) AUC

All 92.6 0.962
EPI + FA + MD 91.2 0.955
EPI + FA + RFC 86.48 0.913
EPI + MD + RFC 88.87 0.934
FA + MD + RFC 85.32 0.908
EPI + FA 85.26 0.901
EPI + MD 90.42 0.943
EPI + RFC 84.3 0.886
FA + MD 89.37 0.928
FA + RFC 72.74 0.815
MD + RFC 85.29 0.894

Table 7
Comparison of evaluation accuracy with other state-of-the-art approaches.

Approach Modalities Number of classes Accuracy (%)

Bi et al. (2019) MRI 3 92.5
Billones et al. (2016) MRI 3 91.85
Vu, Ho, Yang, Kim, and
Song (2018)

MRI + PET 3 91.13

Cheng, Liu, Fu, and Wang
(2017b)

MRI 3 87.15

Duc et al. (2020) MRI 3 87.15
Gunawardena, Rajapakse,
and Kodikara (2017)

MRI 3 84.4

Our Method DTI 4 92.6

5.5. Ablation study of the models

Keeping the best fusion strategy, i.e., modulated rank averaging
based decision fusion, we now show the utility of the four models.
An extensive ablation study is carried out in that regard. Within that
study, we compare the performance with all 4 models (EPI, FA, MD and
RFC), all possible combinations of any 3 models at a time as well as any
2 models at a time. The accuracy and AUC for each combination are

shown in Table 6. This table shows that all four models are necessary
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Fig. 9. ROC curves of the combined models (Majority Voting, Rank Averaging and
Modulated Rank Averaging).

to yield best result. It is also interesting to note from a comparison of
Tables 1 and 6 that inclusion of RFC, a classical ML tool, can improve
the overall accuracy when combined with DL models on EPI or MD
values. Furthermore, when clubbed with FA + MD, RFC can once again
increase the overall accuracy. So, we show how effective can be the
combination of DL and ML methods for a given problem.

5.6. Comparison with feature fusion strategies

We also ran an experiment to apply feature fusion instead of de-
cision level fusion. Features were extracted from the individual DL
models (EPI, FA and MD), from the penultimate Fully Connected (FC)
layer (dense_1). It consisted of 64 dimensions for each of the EPI, FA
and MD models. Concatenating all the features from the DL models
along with the input features of the RFC model 4.2, a total of 242
features were obtained (64 + 64 + 64 + 50). All these features were
then trained in a RFC with 1200 trees. This approach of classification
gave a mean accuracy of 79.34% after doing 10-fold cross-validation.
We also compare our proposed modulated rank averaging method with
some state-of-the-art feature fusion approaches in Table 2. All the above
approaches perform either a binary or a three-way classification. It is
interesting to note that our proposed approached has achieved 92.6%
accuracy in a direct 4-class classification problem. Hence, we confirm
that for this classification problem, decision level fusion works better
than feature fusion.

5.7. Comparison with other approaches

We compare our method with seven state-of-the-art methods but
no results are available for 4-class AD classification on ADNI dataset
using DTI data. So, we show comparisons from the problem perspective
and compare our results with the papers which have addressed the
same AD classification problem but from differing modalities and fewer
classes. All the seven methods showed classification among AD, MCI
and CN, i.e., three classes. But we have segregated the MCI class into
more detailed EMCI and LMCI classes and thus made a four class
classification. Classification between EMCI and LMCI is particularly
difficult as their differences are not very significant. Also, none of them
used DTI modality. They used MRI or a combination of MRI and PET to
achieve their goal. The comparisons, shown in Table 7, clearly points
to the supremacy of our approach.

6. Conclusion

Classification of AD is an important part of dementia diagnosis,
especially for the aging population. This classification is still mostly
done manually by the neurologists with the help of brain scans. Existing
methods for automated classification are restricted to either a two-class
10
or a three-class problem from MRI. In this paper, we for the first time
introduced an automated solution for four class classification of AD
using an efficient processing of 3D DTI data. We first trained sepa-
rate deep learning (VoxCNN) and machine learning (Random Forest)
models on different pieces of information in DTI scan volumes. Using a
modulated rank averaging decision fusion strategy, we then combined
the individual classification results. Comprehensive experimentation,
including comparisons and ablation studies, on the publicly available
ADNI database clearly demonstrate the effectiveness of the formulation.

In future, we very much look forward to apply our model in the
actual clinical practice. Note that during the training, the proposed
model (both DL and ML) is tuned with the weights required for the task
at hand and importantly, these weights can be saved for future predic-
tion purposes. The model with saved weights does not require a lot of
space (approx. 100–200 MBs) and can hence be loaded in even mobile
devices which can predict and classify new and previously unseen data.
In clinical practice, a software can be developed which takes in input in
the form of images and loads the saved model from permanent storage
and gives the prediction results without requiring to train again with
lots of data. For instance, Yao et al. (2016) have developed a screening
system that can detect individuals infected with influenza from three
clinical features (heart rate, respiration rate, and facial temperature).
Their system is especially interesting as it uses contactless technologies
that make it particularly suitable for clinical application with conta-
gious patients (Yao et al., 2016). More recently, Dagdanpurev et al.
(2019) have developed a similar screening system using the same three
clinical features. Their system uses a random tree algorithm to predict
the patient’s infection status and is easily understood by physicians
because it can be expressed as a flow chart (Dagdanpurev et al., 2019).
So, as discussed above, we strongly believe that it should certainly be
possible to apply the proposed approach, which couples DL and ML in
the actual clinical practice. We also plan to extend the present model to
accurately solve a six class AD classification problem by incorporating
two more classes, namely, Mild Cognitive Impairment and Significant
Memory Concern. Another direction of future research will be to predict
the next stage of AD progression with significant accuracy.
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