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Abstract

Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques 

in computer-assisted intervention for brain disease diagnosis. Of various machine-learning 

techniques, sparse regression models have proved their effectiveness in handling high-dimensional 

data but with a small number of training samples, especially in medical problems. In the 

meantime, deep learning methods have been making great successes by outperforming the state-

of-the-art performances in various applications. In this paper, we propose a novel framework that 

combines the two conceptually different methods of sparse regression and deep learning for 

Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first 

train multiple sparse regression models, each of which is trained with different values of a 

regularization control parameter. Thus, our multiple sparse regression models potentially select 

different feature subsets from the original feature set; thereby they have different powers to predict 

the response values, i.e., clinical label and clinical scores in our work. By regarding the response 

values from our sparse regression models as target-level representations, we then build a deep 

convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble 
Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse 

regression models with deep neural network. In our experiments with the ADNI cohort, we 

validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies 

in three classification tasks. We also rigorously analyzed our results and compared with the 

previous studies on the ADNI cohort in the literature.
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1. Introduction

With the advent and advance of brain imaging techniques such as Magnetic Resonance 

Imaging (MRI), Positron Emission Tomography (PET), Diffusion Tensor Imaging (DTI), 

functional MRI (fMRI), imaging-based brain disorder diagnosis or prognosis has always 

been of great interest in computer-assisted interventions (Davatzikos et al., 2008; Fan et al., 

2008; Cuingnet et al., 2011). However, it was limited to analyze the high dimensional 

neuroimaging data until the application of machine learning techniques, which are now 

playing core roles in the field (Davatzikos et al., 2008).

Given a brain image, to identify whether a subject has a certain brain disorder can be 

regarded as a classification task. From a machine learning standpoint, the prevalent 

framework for brain imaging data analysis for diagnosis can be summarized as 

preprocessing, feature extraction/selection, and classifier learning. Although machine 

learning techniques can be basically involved in all of these steps, in this paper, we mainly 

focus on the steps of feature extraction/selection and classifier learning. For applications of 

machine learning in brain imaging analysis, e.g., tissue segmentation, registration, atlas 

construction, etc., please refer to Powell et al. (2008), Liao et al. (2012) and Wang and 

Summers (2014).

One of the main challenges in brain imaging analysis is the high dimensionality of data, but 

a small number of samples are available. While various methods have been proposed for 

dimensionality reduction in the field of machine learning, due to interpretational 

requirement, it is limited for the applicable methods. Further, motivated by the principle of 

parsimony in many areas of science, i.e., the simplest explanation of a given observation 

should be preferred over more complicated ones, sparsity-inducing penalization is 

considered as one of the key techniques in machine learning. In light of these, sparse 

regression methods with different forms of regularization terms (Tibshirani, 1996; Zou and 

Hastie, 2005; Yuan and Lin, 2006), and their variants (Liu et al., 2009; Wang et al., 2011; 

Zhang and Shen, 2012; Zhou et al., 2012; Zhu et al., 2014; Suk et al., 2015b) have been 

proposed and demonstrated their validity for feature selection in medical problems.

Meanwhile, deep representation learning has recently been showing state-of-the-art 

performances in various fields of computer vision, speech recognition, natural language 

processing, and medical image analysis. To this end, it has also been considered as one of 

the major tools in brain imaging data analysis (Li et al., 2014b; Plis et al., 2014; Suk et al., 

2015a; 2016b; Pereira et al., 2016; Brosch et al., 2016; Dou et al., 2016) by achieving 

promising performances. In deep learning, a Convolutional Neural Network (CNN) is of 

main stream for image analysis thanks to its modeling characteristic that helps discover local 

structural or configural relations in observations. While it is desirable to apply CNNs to 

learn feature representations from a whole-brain MRI for brain disease diagnosis, it is still 

limited because of its huge number of network parameters, e.g., millions number of 

parameters, that should be learned from a small number data, e.g., less than 1000 samples. In 

this regard, Brosch and Tam (2013) downsampled images before training a convolutional 

restricted Boltzmann machine for manifold learning of brain MRIs. However, image 

downsampling inevitably causes information loss of subtle structural changes especially in 
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Mild Cognitive Impairment (MCI). Unlike the conventional methods that were mostly used 

for feature representation learning, in this work, we utilize a CNN for ensemble modeling by 

finding a non-linear mapping function from matrix-formed predictions, whose dimension is 

considerably lower than the original dimension of imaging features, to make a clinical 

decision.

One prevalent step of the sparsity-inducing regularization methods is to choose the optimal 

value of a regularization control parameter, mostly via cross-validation with a grid search 

strategy. It is, however, possible that for different validation sets, it can be different for the 

optimal value of a regularization control parameter. In this work, instead of choosing a 

single value for the regularization control parameter, we propose to build a set of sparse 

regression models, each of which is trained with different values of the regularization control 

parameter. We regard outputs of the sparse regression models, e.g., clinical label and clinical 

scores in our work, as target-level representations. This is comparable to the previous work 

that mostly used the sparse regression method for feature selection and then trained a 

classifier such as support vector machine based on the selected features only. In our work, 

the sparse regression model plays the role of predicting target outputs, which we consider as 

abstract feature representation, along with informative features selection. It is noteworthy 

that the predicted values from multiple sparse regression models are stacked in an ascending 

or descending 1 order based on the regularization control parameter values. In this way, we 

can exploit the prediction values of “neighboring” sparse regression models, which are 

trained with relatively similar regularization control parameter values, as additional 

information. We then build a CNN that hierarchically combines the prediction values from 

sparse regression models, i.e., target-level representations, for MRI-based brain disease 

diagnosis, especially, Alzheimer’s Disease (AD) and its prodromal stage, MCI.

Our deep network discovers the optimal weights to ensemble multiple sparse regression 

models in a hierarchical and non-linear way, which thus we call ‘Deep Ensemble Sparse 
Regression Network’ (DeepESRNet). The proposed method can be understood as ensemble 

of expert systems. That is, sparse regression models with different regularization control 

values can be considered as experts that output their own prediction values. The prediction 

values of different experts are then combined by CNN that finds non-linear weighting 

coefficients among them.

To our knowledge, one of the beauties of CNN is to hierarchically integrate information 

distributed in the input by means of convolution and pooling operations. We utilize this 

feature to integrate the outputs from multiple sparse regression models, thus to build a strong 

classifier. In a convolution layer, the learnable kernels find relations among outputs, i.e., 
predicted clinical label and clinical scores, from different sparse regression models. In a 

pooling layer, the max operation plays the role of drawing a mid-level decision among 

neighboring regression models. By repeating these operations over layers, our CNN finally 

make a decision by integrating all the information from multiple sparse regression models.

1In our work, we stack in an ascending order. However, there is no difference in the framework.
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The rationale of using a CNN is two aspects: (1) In machine learning, it is generally known 

that combining multiple classifiers is helpful for the improvement of the performance of 

individual classifiers (Kittler et al., 1998). In this work, we use a CNN with a target-level 

representation as input to combine the outputs of multiple sparse regression models. Due to 

the use of non-linear activation functions, our CNN finds non-linear weight coefficients in 

combining the outputs from multiple sparse regression models. (2) In our target-level 

representation, element values (i.e., predicted clinical label and clinical scores) in the same 

row are obtained from the same sparse regression model, thus they are naturally related to 

each other. In the meantime, element values of neighboring rows are from different sparse 

regression models trained with different values of the regularization control parameter. Note 

that our target-level representation is obtained by stacking the outputs of multiple sparse 

regression models in an ordered way based on their regularization control parameter values. 

Sparse regression models trained with slightly different regularization control parameter 

values are likely to produce similar outputs. Thus, it is expected that values of the 

neighboring rows are more related to each other than those of the rows apart in the target-

level representation. A CNN is suitable to well discover such local configural features and to 

combine the overall information hierarchically.

The main contributions of our work can be two-fold: 1) The different values of the 

regularization control parameter are used to select different feature subsets with different 

weight coefficients. Hence, different regression models can predict both clinical status and 

clinical scores in different feature spaces. Also, the use of target-level representations from 

multiple sparse regression models has the effect of reducing dimensionality of an 

observation, allowing us to use CNN with less concern of data insufficiency. 2) Our 

DeepESRNet built on the outputs of the sparse regression models finds a (sub)optimal way 

of combining the regression models in a non-linear manner with the following rationales. 

First, the target-level representation values (i.e., response values of clinical label and clinical 

scores in our work) of a sparse regression model are highly related to each other (intra-
model relation). Second, sparse regression models trained with similar regularization control 

parameter values tend to find similar weight coefficients, thus similar target-representations 

(inter-model relation). In these regards, we couple the target-level representation of the same 

sparse response model(s) and of the neighboring sparse response models via local learnable 

kernels. The local combination allows us to exploit complementary information and their 

hierarchical and non-linear integration over the whole target-level representation helps make 

a robust clinical decision. It is also noteworthy that since we treat the outputs from 

individual sparse regression models as target-level representation, we justify to re-use the 

training data for learning network parameters after training sparse regression models.

Methodologically, our method can be considered as a cascading classifier, which is one case 

of ensemble learning. Our sparse regression models take a vector of features and output 

clinical label and clinical scores, which are usually used for making a decision. As a 

cascading classifier, our method further uses such outputs as inputs to another model, i.e., 
CNN.

The rest of the paper is organized as follows: In Section 2, we review the previous work on 

brain imaging-based AD disease diagnosis in the literature. We then describe the dataset 
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used in this work and explain the steps involved in preprocessing for feature extraction in 

Section 3. We elaborate upon the basics in sparse linear/logistic regression and propose a 

novel deep ensemble sparse regression network in Section 4. The experimental results on the 

public ADNI dataset are presented by comparing with competing methods in Section 5 and 

the discussion on our experimental results and comparison with state-of-the-art results in the 

literature are detailed in Section 6. We conclude this paper by summarizing the proposed 

method and suggesting future research directions in Section 7.

2. Related work

The small number of training samples compared to high-dimension of imaging data has been 

one of the main challenges in brain imaging-based disease diagnosis. To circumvent the 

problem, various machine learning techniques were proposed in the literature. Depending on 

their strategies, techniques can be categorized into 1) feature embedding (Roweis and Saul, 

2000; He et al., 2006; Liu et al., 2013) and 2) feature selection (Wang et al., 2011; Zhu et al., 

2014; Tohka et al., 2016). Basically, the common goal of the methods of both categories is to 

learn dimension-reduced features or representations from a small number of training 

samples, while still pertaining useful information for target tasks. Specifically, the feature 

embedding methods find a latent low-dimensional space, where the original features can be 

efficiently represented without losing much information. Meanwhile, the feature selection 

methods try to find associations among features, based on which they select features 

informative to identify the incidence of a brain disease. From a clinical perspective, the 

interpretability of the features involved in diagnosis is of great importance. In this regard, the 

feature selection methods are generally preferred to the feature embedding methods, and 

thus we consider the feature selection methods in this paper.

Among various feature selection methods, sparse regression models have shown good 

promises in the small sample size problem with different forms of regularization. The Least 

Absolute Shrinkage and Selection Operator (LASSO) regression model (Tibshirani, 1996) 

uses an ℓ1-norm to induce sparsity in the regression coefficients for each target response 

variable independently. To circumvent the limitation of LASSO, i.e., independence in 

sparsity of coefficients, Zou and Hastie (2005) proposed the elastic net penalty which is 

capable of retaining the sparse property of LASSO and utilizing correlation among 

predictors simultaneously. Yuan and Lin (2006) proposed the group LASSO penalty that 

leads a group sparse property by imposing penalties in a group-wise manner via an ℓ2, 1-

norm, and thus select features whose weights are non-zero to all predictors within the 

selected groups. This group LASSO has been successfully applied in brain imaging-based 

AD/MCI diagnosis (Wang et al., 2011; Zhang and Shen, 2012; Wee et al., 2012; Suk et al., 

2015b). For example, Zhang and Shen (2012) designed a multi-task sparse regression model 

with an ℓ2, 1-norm for AD diagnosis. Wang et al. (2011) proposed sparse joint classification 

and regression with logistic regression function for classification and linear regression 

function for regression. Zhou et al., introduced a smoothness constraint along with ℓ1- and 

ℓ2, 1-norm penalties for predicting disease progression. Suk et al. (2015b) devised a 

discriminative group sparse representation method by penalizing a large within-class 

variance and a small between-class variance in estimating functional connectivities.
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In the meantime, inspired by great successes in the fields of computer vision and speech 

recognition, deep learning methods have been applied to discover hierarchical features in 

brain images, too. For example, Suk et al. (2015a) used a stacked auto-encoder to find non-

linear relations among gray matter volumes of brain regions. Suk et al. (2014) also proposed 

a generative deep learning to integrate structural and functional patterns inherent in MRI and 

PET, respectively, by learning shared representations. Similarly, Ithapu et al. (2015) also 

devised a deep learning algorithm called a randomized denoising auto-encoder marker to 

integrate multimodal data of PET and MRI. However, due to complex composition of non-

linear patterns in deep learning, it still remains challenging to interpret the learned 

representations. Hence, unlike other fields such as computer vision and speech recognition, 

it is still popular to use hand-crafted features for neuroscientific interpretations in the field of 

brain disease diagnosis. In this paper, we propose a novel brain disease diagnosis system 

based on sparse regression models with interpretable volumetric features, and further use a 

deep learning method to combine the regression models to make a clinical decision.

3. Materials and image processing

3.1. Dataset

We analyzed a baseline MRI dataset from the ADNI database (http://www.loni.ucla.edu/

ADNI). The dataset included 805 subjects of 186 (AD), 393 (MCI), and 226 (Normal 

Control, NC). For the MCI subjects, they were clinically further subdivided into 167 

progressive MCI (pMCI), who progressed to AD in 18 months, and 226 stable MCI (sMCI), 

who did not progress to AD in 18 months. Each subject had both Mini-Mental State 

Examination (MMSE) and Alzheimer’s Disease Assessment Scale - Cognition (ADAS-Cog) 

scores recorded. The subjects were in the age between 55 and 90, with a study partner, who 

provided an independent evaluation of functioning. All of 805 subjects met the following 

general inclusion criteria: (a) NC subjects: an MMSE between 25 and 30 (inclusive), a 

clinical dementia rating (CDR) of 0, non-depressed, non-MCI, and non-demented; (b) mild 

AD subjects: an MMSE score between 18 and 27 (inclusive), a CDR of 0.5 or 1.0, and met 

the National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria for 

probable AD. Demographic and clinical information of subjects is provided in Table 1.

3.2. Preprocessing

All structural MRI data in this study were acquired using 1.5T scanners. The baseline MRI 

data were downloaded from ADNI in the Neuroimaging Informatics Technology Initiative 

(NIfTI) format, which had already been processed for spatial distortion correction caused by 

gradient nonlinearity and B1 field inhomogeneity. We further processed the MR images by 

applying the typical procedures of Anterior Commissure (AC)-Posterior Commissure (PC) 

correction, skull-stripping, and cerebellum removal. Specifically, we used MIPAV software 2 

for AC-PC correction, resampled images to 256 × 256 × 256, and applied N3 algorithm 

(Sled et al., 1998) to correct intensity inhomogeneity. An accurate and robust skull stripping 

(Wang et al., 2014) was performed along with cerebellum removal. To ensure the clean and 

2Available at ‘ http://mipav.cit.nih.gov/clickwrap.php’
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dura removal, we manually reviewed the skull-stripped images. Then, FAST in FSL package 
3 was used for structural MRI image segmentation into three tissue types of Gray Matter 

(GM), White Matter (WM), and CerebroSpinal Fluid (CSF). 4 We finally parcellated them 

into 93 Regions Of Interest (ROIs), whose list is provided in Table B1, by warping the atlas 

of Kabani et al. (1998), which has been widely used for AD/MCI diagnosis studies 

(Davatzikos et al., 2011; Negash et al., 2013; Suk et al., 2015a) to each subject’s space via 

HAMMER (Shen and Davatzikos, 2002), although many other advanced registration 

methods could be also used (Avants and Gee, 2004; Zacharaki et al., 2009; Xue et al., 2006; 

Shen et al., 1999). Next, we generated the regional volumetric maps, called RAVENS maps, 

using a tissue preserving image warping method (Davatzikos et al., 2001). In this work, we 

considered only the spatially normalized GM densities, due to its relatively high relevance to 

AD compared to WM and CSF (Liu et al., 2012). For each of the 93 ROIs, we computed the 

GM tissue volumes, which is widely used in the field for AD/MCI diagnosis (Davatzikos et 

al., 2011; Hinrichs et al., 2011; Zhang and Shen, 2012; Suk et al., 2015a), as features, i.e., 
93-dimensional features from an MR image. 5

4. Deep ensemble sparse regression network

4.1. Notations

Throughout this paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xi j], its 

i-th row and j-th column are denoted as xi and xj, respectively. Also, we denote the 

Frobenius norm and ℓ2, 1-norm of a matrix X as  and 

, respectively. We use a superscript ⊤ for transpose of a 

vector or a matrix.

4.2. Sparse linear/logistic regression

Assume that we are given N samples of a training set  = {X, T}, where X ∈ ℝ D ×N and T 
∈ ℝ L ×N denote, respectively, D-dimensional brain imaging features and the corresponding 

L-dimensional target values. Sparse regression models are formulated in the form of an 

optimization problem as follows:

(1)

3Available at ‘ http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’
4Note that when normalization is conducted with the whole-brain images, it can introduce unexpected structural differences for 
tissues. That is, there is no any difference but it can be caused for the difference by normalization due to the effect of the neighboring 
tissue that does show structural difference. One common way of minimizing such unexpected error is to normalize with the tissue-
segmented images, instead of the whole-brain images (Mechelli et al., 2005).
5In this paper, we exploit regional gray matter tissue volumes based on the fact that brain atrophy is one of the main neuropathological 
changes with AD. However, visual features with Scale-Invariant Feature Transform (SIFT) (Lowe, 1999) or Histogram of Oriented 
Gradients (HOG) (Dalal and Triggs, 2005) can also be good alternatives to the ROI-based regional features.
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where ℒ ( ; Θ) denotes a loss function and Ω(Θ) denotes a regularization term over a 

parameter set Θ, and λ is a regularization control parameter.

In terms of brain disease diagnosis, xi can include brain imaging features, e.g., GM tissue 

volumes of 93 ROIs xi ∈ ℝ93 in our work, and T can be defined with clinical outputs, e.g., 
clinical label6 and two clinical scores of MMSE and ADAS-Cog ti ∈ ℝ4 in our work. 

Earlier, Zhang and Shen (2012) and Wang et al. (2011) independently designed a sparse 

multi-task learning model with the rationale that since the prediction of clinical label and 

clinical scores are inter-related it is reasonable to learn the models jointly rather than each 

prediction task, separately. The main difference between these two methods lies in the way 

of defining a loss function ℒ. Specifically, Zhang and Shen used a single least square error 

function for both clinical label prediction (classification task) and clinical scores prediction 

(regression task) as follows

(2)

where Θ = W ∈ ℝ D ×L. In the meantime, Wang et al. used different error functions for 

classification and regression tasks, namely, a cross-entropy function for classification and a 

least square error function for regression as follows

(3)

(4)

(5)

where C denotes the number of classes, Θce = Z ∈ ℝ D ×C, ti j = 1 iff xi belongs to the class 

j, T̃ = [t1; …; tR], R (= L − C) denotes the number of clinical scores, and Θls = P ∈ ℝ D ×R.

However, these loss functions themselves do not enforce sparsity. The regularization term 

Ω(Θ) plays the role of selecting informative features for target tasks and different forms of 

the regularization term produce different sets of selected features. Among different forms of 

regularization in the literature, in this paper, we consider an ℓ2, 1-norm regularizer that 

induces sparsity in a group-wise manner by following Wang et al. (2011) and Zhang and 

6We use a class indicator vector ti ∈ {0, 1}2 with a zero-one encoding, i.e., ti j = 1 iff xi belongs to the class j; otherwise ti j = 0.
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Shen (2012). Let Θ denote a weight coefficient matrix, i.e., Θ = W for Eq. (2) and Θ = [Z P] 
for Eq. (3). Note that each element in a column θj of Θ assigns a weight to each of the 

observed features in predicting the j-th response t̂i j for xi. The regularizer of Ω(Θ) = ||Θ||2, 1 

penalizes all coefficients in the same row of Θ and thus guides to select features that are 

informative to predict all the response variables jointly (Liu et al., 2009).

After finding the optimal weight coefficients Θ̂ with respect to a certain value of the control 

parameter λ in Eq. (1), we can then predict the response values for an input vector x* as 

follows:

(6)

We consider the predicted vector t̂ as target-level representations obtained from a sparse 

regression model and utilize it as input to our CNN as described below for clinical decision 

making.

4.3. Deep ensemble sparse regression network

Unlike the conventional approach that finds the optimal control parameter λ in Eq. (1) via 

cross-validation from a predefined parameter space, in this work, we build multiple sparse 

regression models, as many as the size M of the predefined parameter space Λ. 7 It is 

noteworthy that we use the predicted vector obtained by Eq. (6) as a target-level 

representation of the original input vector. Specifically, we exploit the M learned sparse 

regression models with different values of the control parameter λ as ‘target-level 
representation learners’ that transform an input vector xi into a matrix form 

, where  denotes the predicted 

vector by a regression model trained with λ equal to the m-th value in the parameter set Λ. 

Fig. 1 illustrates the construction of a target-level representation matrix from M sparse 

regression models, each of which was trained with different value of a regularization control 

parameter. The target-level representation matrix is then fed into our CNN for clinical 

decision making as described below.

Note that different values of a regularization control parameter λ cause to select different 

feature subsets in learning sparse regression models. Therefore, our M sparse regression 

models produce different target-level representations, estimated from possibly different 

feature subsets. However, it is likely that sparse regression models trained with similar 

regularization control parameter values tend to have similar weight coefficients and thus, to 

select similar feature subsets. There can be high relations among neighboring rows of a 

7In our implementation, we used a SLEP toolbox for sparse model learning, which requires a regularization control parameter, i.e., λ, 
to be in the range of [0, 1], and rescales the value internally. Based on our earlier work (Suk et al., 2015b; 2016a), where we observed 
that parameter values of higher than 0.3 were not useful and never chosen in cross-validation, we thus defined the parameter space 
with 10 values equally spaced between 0.01 and 0.3. As for the size of parameter space (M = 10), it is determined empirically.
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target-level representation in Fig. 1. In the meantime, since the target-level representations 

are basically related to clinical status and clinical scores jointly estimated from the original 

brain imaging features, the values are highly related to each other. Thus, there can be high 

relations among elements of the same row in a target-level representation. In these regards, 

we couple elements of the same row (intra-model relation) and elements of neighboring 

rows (inter-model relation) in a target-level representation Ti together via learnable kernels 

that find configural relations locally. For hierarchical integration of the input representation 

Ti, we employ a CNN that can discover configural relations inherent in inputs. It should be 

emphasized that to our best knowledge, this is the first work that systematically combines 

multiple regression models via CNN for classification.

Fig. 2 illustrates our CNN that takes target-level representations obtained from multiple 

sparse regression models as input and discovers non-linear relations among them in a 

hierarchical manner for brain disease diagnosis. From a pattern classification standpoint, our 

CNN is an ensemble classifier that systematically finds the relations of different sparse 

regression models. Thus, we call our network as ‘Deep Ensemble Sparse Regression 
Network’ (DeepESRNet).

In our DeepESRNet, we have three types of layers, namely, convolution layer, pooling layer, 

and fully connected layer. At a convolution layer, the previous layer’s outputs (called feature 

maps) are convolved with learnable kernels and go through a non-linear activation function 8 

to form the feature maps of the current layer as follows:

(7)

where * is a convolution operator, a superscript (ℓ) denotes a layer index,  and F (l − 1) 

are, respectively, the j-th feature map and the index set of feature maps in the layer (l − 1), 

 is a trainable kernel between the i-th feature map in the layer (l − 1) and j-th feature map 

in the layer l,  is a bias term for a feature map j, and f (·) is a non-linear activation 

function. A pooling layer is interspersed with the convolution layer for reducing the 

resolution of feature maps. In our DeepESRNet, we assign a max-pooling layer that 

partitions an input feature map into a set of non-overlapping regions and outputs the 

maximum value for each region. Lastly, the fully connected layer is the same as the 

conventional multilayer neural network such that the inter-layer units are fully connected but 

with no units within the same layer connected. With this fully connected layer, we finally 

integrate all the information from the outputs from multiple sparse regression models, i.e., 
predicted clinical status and clinical scores, for making a clinical decision at the top output 

layer of our DeepESRNet.

8As for the activation function, while the logistic sigmoid function or hyperbolic tangent function has been commonly used, thanks to 
its great success in recent applications, we used a Rectified Linear Unit (ReLU) (Nair and Hinton, 2010), defined as f (a) = max (0, a).
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Fig. 2 shows an example of applying our DeepESRNet to target-level representations 

obtained from 10 sparse regression models. Given a target-level representation 

, the first convolution layer with 10 feature maps couples target-level 

representation values in the same row and target-level representation values of neighboring 

rows in  via a kernel  in size according to Eq. (7), resulting in 

. A second convolution layer with 30 feature maps follows to find 

associations among the values within the same feature maps and also across different feature 

maps simultaneously via a kernel  followed by a non-linear transformation, 

producing . We then apply a max-pooling operation to each feature map in 

the second layer, which downsamples the features maps into  with a non-

overlapping sliding window of 2 × 1 in size. Beyond the max-pooling layer, the network 

corresponds to a conventional multi-layer neural network with two hidden layers (100 units 

and 50 units, respectively) and one output layer by taking vectorized values of the 30 feature 

maps in the max-pooling layer as input. For the output layer, we use a softmax function for 

classification.

In our DeepESRNet, we have network parameters, i.e., kernels  and biases  in 

convolutional layers and also connection weights and biases in the top three multi-layer 

neural network, that should be learned from data. To train our DeepESRNet, we use a 

backpropagation algorithm (Rumelhart et al., 1986) with a mini-batch gradient descent 

method (Cotter et al., 2011).

5. Experimental results

In this section, we validate the effectiveness of the proposed method for AD/MCI diagnosis 

or prognosis with MRI by comparing with competing methods. We consider three binary 

classification problems: AD vs. NC, MCI vs. NC, pMCI vs. sMCI. In MCI vs. NC 

classification, the samples of both pMCI and sMCI subjects were used for MCI class. Due to 

the limited number of samples, we applied a 10-fold cross validation technique. Specifically, 

we randomly partitioned the dataset into 10 subsets, each of which included 10% of the 

samples per class. We repeated experiments for each classification problem 10 times, by 

using 9 out of 10 subsets for training and the remaining one for testing at each time.

5.1. Experimental settings

With regard to the structure of deep neural networks, i.e., the number of layers and the 

number of feature maps in each layer, there is no golden rule for those. In this work, we 

empirically designed our DeepESRNet with two convolutional layers followed by one max-

pooling layer, two fully connected layers, and one output layer as shown in Fig. 2. The 

kernels for two convolution layers were 3 × 4 and 3 × 1 in size, respectively, with a stride of 

1. In the max-pooling layer, a kernel of 2 × 1 in size was used with a stride of 2. For two 

fully connected layers, we set 100 hidden units and 50 hidden units sequentially. We also 

applied a batch normalization (Ioffe and Szegedy, 2015) to convolution and fully-connected 
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layers except for the last output layer for fast training. No dropout (Srivastava et al., 2014) 

was involved based on the work of Ioffe and Szegedy (2015), where they empirically 

presented that dropout could be removed in a batch-normalized network. The network 

parameters were trained with a stochastic gradient descent approach (Li et al., 2014a) with a 

mini-batch size of 50, a learning rate of 0.001, a weight decay of 0.005, and a momentum 

factor of 0.9. We used a MatConvNet toolbox 9 (Vedaldi and Lenc, 2015) to train our 

DeepESRNet. In regard to computational time, for training our DeepESRNet, it took less 

than 1 minute in a computer with 3.4 GHz Intel(R) Core i7 CPU and 16GB 1333 MHz 

DDR3 RAM. All computations were conducted with CPU only without involving GPU 

computation. The short training time of our CNN was resulted from the greatly reduced 

input size after applying sparse regression models.

We considered two sparse regression models, namely, 1) Multi-Output Linear Regression 

with ℓ2, 1-norm regularization (MOLR) (Yuan and Lin, 2006; Zhang and Shen, 2012) and 2) 

Joint Linear and Logistic Regression with ℓ2, 1-norm regularization (JLLR) (Wang et al., 

2011) with the loss function defined by Eqs. (2) and (3), respectively. We set the space of the 

sparsity control parameter λ with M = 10 values equally spaced between 0.01 and 0.3. 10 By 

taking the outputs of 10 regression models for each of MOLR and JLLR, we trained MOLR

+DeepESRNet and JLLR+DeepESRNet, separately.

To validate the effectiveness of the proposed method, we compared our method with the two 

baseline sparse regression models and their variants of the following methods

• MOLR+SVM: This method first finds the optimal weight coefficients Ŵ in Eq. 

(2) and then selects the informative features based on the learned weight 

coefficients. Specifically, after optimizing Eq. (2), we had some zero row vectors 

in Ŵ and discarded the corresponding features. With the selected features only, 

we then trained a linear Support Vector Machine (SVM) for classification.

• JLLR+SVM: This method jointly finds the optimal weight coefficients P̂ and Ẑ 
in Eq. (3) and then allows to select the informative features based on the learned 

weight coefficients. Specifically, after optimizing Eq. (3), we had some zero row 

vectors in [Ẑ P̂] and discarded the corresponding features. With the selected 

features only, we then trained a linear SVM for classification.

For a linear SVM in the competing methods of MOLR+SVM and JLLR+SVM, we 

determined the model parameter C via 5-fold nested cross-validation with the space of C 
defined as {10−5, 10−4, …, 105} and trained by using the LIBSVM toolbox.11

5.2. Performance evaluation and comparison

Let TP, TN, FP, and FN denote, respectively, True Positive, True Negative, False Positive, 

and False Negative. For quantitative evaluation and comparison among the competing 

methods, we considered the metrics of accuracy = (TP + TN)/(TP + TN + FP + FN), 

9Available at ‘ http://www.vlfeat.org/matconvnet/’
10For sparse model training, we used a SLEP toolbox available at’ http://www.public.asu.edu/~jye02/Software/SLEP/index.htm,’ 
where the control parameter is required to be set between 0 and 1 because its value is internally rescaled (Liu et al., 2010).
11Available at ‘ http://www.csie.ntu.edu.tw/~cjlin/libsvm/’.
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sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), Balanced Accuracy (BA) = 

(sensitivity+specificity)/2, Positive Predictive Value (PPV) = TP/(TP + FP), and Negative 

Predictive Value (NPV) = TN/(TN + FN). We also considered Area Under the receiver 

operating characteristics Curve (AUC), which is widely used to evaluate the performance of 

diagnostic tests in brain disease diagnosis as well as other medical areas.

5.2.1. MOLR as a baseline regression model—The performance comparison among 

the competing methods with MOLR involved in different ways is presented in Table 2. The 

proposed method of MOLR+DeepESRNet achieved mean classification accuracies of 

90.28% (AD vs. NC), 74.20% (MCI vs. NC) and 73.28% (pMCI vs. sMCI). Our MORL

+DeepESRNet improved the mean accuracies by 5.35% (AD vs. NC), 9.54% (MCI vs. NC), 

and 9.93% (pMCI vs. sMCI) in comparison with MOLR and by 3.41% (AD vs. NC), 7.58% 

(MCI vs. NC), and 6.62% (pMCI vs. sMCI) in comparison with MOLR+SVM.

For the metrics of sensitivity and specificity, our MOLR+DeepESRNet also outperformed 

the competing methods for the classification tasks of AD vs. NC and pMCI vs. sMCI. It is 

remarkable that our method enhanced the sensitivity by 14.51% (vs. MOLR) and 8.55% (vs. 

MOLR+SVM) for the most challenging task of pMCI vs. sMCI. For MCI vs. NC 

classification, MOLR achieved the highest sensitivity of 79.40%. However, in terms of the 

balanced accuracy that avoids inflated performance estimates on imbalanced dataset, e.g., 
MCI vs. NC classification in our case, compared to the competing methods (MOLR/MOLR

+SVM), our MOLR+DeepESRNet improved by 5.39%/3.47% (AD vs. NC), 6.99%/8.49% 

(MCI vs. NC), and 9.18%/6.91% (pMCI vs. sMCI).

Regarding PPV and NPV, our MOLR+DeepESRNet achieved the highest PPVs of 85.50% 

in AD vs. NC and 81.92% in MCI vs. NC, and the highest NPVs of 94.25% in AD vs. NC 

and 80.12% in pMCI vs. sMCI. In the meantime, MOLR showed the highest PPV of 64.63% 

in pMCI vs. sMCI and the highest NPV of 73.08% in MCI vs. NC.

It is noteworthy that in terms of the AUC, which can be thought as a measure of the overall 

performance of a diagnostic test, the MOLR+DeepESRNet showed the best AUCs of 0.9260 

in AD vs. NC, 0.7662 in MCI vs. NC, and 0.7192 in pMCI vs. sMCI. Compared to MOLR/

MOLR+SVM, our method increased the AUCs by 0.0095/0.0030 (AD vs. NC), 

0.0420/0.0472 (MCI vs. NC), and 0.0368/0.0068 (pMCI vs. sMCI).

5.2.2. JLLR as a baseline regression model—Table 3 shows the performance of our 

JLLR+DeepESRNet as well as the performance of the competing methods. Our JLLR

+DeepESRNet achieved the mean accuracies of 91.02% (AD vs. NC), 73.02% (MCI vs. 

NC), and 74.82% (pMCI vs. sMCI). Compared to the competing methods, i.e., JLLR/JLLR

+SVM, our method improved the mean accuracies by 6.33%/4.63% (AD vs. NC), 4.47%/

6.24% (MCI vs. NC), and 7.14%/8.43% (pMCI vs. sMCI).

In regard to the fact that the higher the sensitivity, the lower the chance of mis-diagnosing 

patients, which is of great importance in the clinic, it is promising that our JLLR

+DeepESRNet overwhelmed the competing methods in sensitivity. Specifically, our method 

improved the sensitivity, compared to JLLR/JLLR+SVM, by 7.77%/5.1% (AD vs. NC), 
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4.36%/4.73% (MCI vs. NC), and 6.8%/8.99% (pMCI vs. sMCI). It was also observed for 

high improvements in specificity across the three classification tasks, i.e., 4.99%/3.76% (AD 

vs. NC), 8.8%/12.53% (MCI vs. NC), and 8.58%/9.43% (pMCI vs. sMCI) in comparison 

with JLLR/JLLR+SVM.

In PPV and NPV, our JLLR+DeepESRNet showed the highest PPVs of 87.08% (AD vs. 

NC), 82.96% (MCI vs. NC), and 71.43% (pMCI vs. sMCI) and the highest NPVs of 94.23% 

(AD vs. NC), 55.77% (MCI vs. NC), and 77.47% (pMCI vs. sMCI). It is remarkable that in 

the task of pMCI vs. sMCI, the improvements for PPV by our JLLR+DeepESRNet were 

15.77% (vs. JLLR) and 16.36% (vs. JLLR+SVM).

Regarding the AUC metric, our JLLR+DeepESRNet showed the best AUCs of 0.9272 in AD 

vs. NC, 0.7361 in MCI vs. NC, and 0.7539 in pMCI vs. sMCI. Compared to JLLR+SVM, 

our method increased the AUCs by 0.0052 (AD vs. NC), 0.0155 (MCI vs. NC), and 0.0415 

(pMCI vs. sMCI).

6. Discussion

6.1. Visual inspection of target-level representation

To validate our rationale of using CNN, which is designed to extract local relationship in our 

target-level representation and to hierarchically integrate information, we first computed 

correlation coefficients among rows or columns of the target-level representations. Fig. 3 

presents samples of the target-level representations and the correlation matrix estimated 

from our dataset, for which a sliding window of 4 × 4 in size, i.e., 4 consecutive sparse 

regression models, was considered with a stride of 1. Specifically, for the number Q of 

target-level representations of 10 × 4 in size, we shaped them into a 3-dimensional tensor of 

4 × 4 × (7 × Q), where 7 comes from the use of a sliding window of 4 × 4 in size. The large 

tensor was then used to compute the 4 × 4 correlation matrix. Clearly, there exists the 

correlations among target-level representations predicted from sparse regression models with 

similar control parameter values.

6.2. Performance comparison

To better justify the effectiveness of the proposed method, we further conducted statistical 

significance testing. The null hypothesis was that the combination of sparse regression 

models with the proposed DeepESRNet, i.e., MOLR+DeepESRNet and JLLR

+DeepESRNet, produces the same mean accuracies with the competing methods, i.e., 
MOLR, MOLR+SVM, JLLR, and JLLR+SVM. We used the Wilcoxon signed rank test 

(Wilcoxon, 1945) to assess whether the differences in classification accuracies between two 

methods are at a significant level. The resulting p-values are presented in Table 4, where it is 

noticeable that all the null hypothesis can be rejected beyond the 95 percent confidence level 

(i.e., p-value < 0.05). Hence, we can say that the proposed method outperformed the 

competing methods in terms of statistical significance by rejecting the null hypothesis 

beyond the 95 percent confidence level.

Although it is not clear why some people with MCI progress to AD and some do not, MCI is 

considered as an early stage of dementia in the particular form and it is estimated that 
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approximately 10–15% of individuals with MCI progress to AD in one year (Alzheimer’s 

Association, 2012). In this perspective, it is momentous to correctly discriminate pMCI from 

sMCI so that pMCI subjects can take benefit from a proper treatment for possible delay of 

progressing to AD. In our experiments, our MOLR+DeepESRNet and JLLR+DeepESRNet 

improved, respectively, by 6.62% (vs. MOLR+SVM) and 7.14% (vs. JLLR) compared to the 

maximal accuracies of their counterpart methods. It is also noteworthy that our JLLR

+DeepESRNet achieved the best performance across seven metrics considered in our work.

From a clinical standpoint, the PPV is also of great importance, which measures the 

proportion of correctly diagnosed subjects belonging to AD, MCI, or pMCI in the tasks of 

AD vs. NC, MCI vs. NC, and pMCI vs. sMCI, respectively. Based on a recent report by 

Alzheimer’s Association (2012), the AD prevalence is projected to be 11 million to 16 

million by 2050. For MCI and pMCI, although there is high variation among reports 

depending on definitions, the median of the prevalence estimates of MCI or pMCI in the 

literature is 26.4% (MCI) and 4.9% (amnestic MCI) (Ward et al., 2012). Regarding the AD 

prevalence by 2050, our JLLR+DeepESRNet, which maximally achieved the PPV of 

87.08% in the classification of AD and NC, can correctly identify 9.5788 million to 13.9328 

million of subjects with AD, while JLLR+SVM, whose respective PPV was 82.25%, can 

identify 9.0475 million to 13.16 million of subjects with AD. Accordingly, our method can 

correctly identify as many as 0.5313 million to 0.7728 million of subjects more than JLLR

+SVM.

We also compared our two methods, each of which involved different baseline regression 

models but with the same Deep-ESRNet architecture, and summarized results in Fig. 4. 

From the figure, there is no significant difference between them across all three tasks, i.e., 
AD vs. NC, MCI vs. NC, and pMCI vs. sMCI. In our statistical significance testing with the 

Wilcoxon signed rank test (Wilcoxon, 1945), the p-values were 0.25 (AD vs. NC), 0.4570 

(MCI vs. NC), and 0.2109 (pMCI vs. sMCI), for which we cannot reject the null hypothesis 

that their mean accuracies are the same in the different tasks.

6.3. Comparison with (deep) neural networks

It may be possible to think of mapping the ensemble of sparse regression models into a 

conventional multi-layer perceptron or a deep neural network by regarding a subset of 

hidden units being one sparse-model and other subsets of hidden units as other sparse-

models, etc. In this regard, we conducted experiments with (deep) neural networks, into 

which the 93 MR features were fed, by varying the number of hidden layers and their 

respective units. For all the networks, we initialized the parameters, i.e., connection weights 

and biases, via greedy layer-wise pretraining (Hinton and Salakhutdinov, 2006) by using a 

Stacked Auto-Encoder (SAE) (Bengio et al., 2007),12 and trained with a stochastic gradient 

descent approach (Li et al., 2014a) with a learning rate of 0.01, a weight decay of 0.0001, 

and a momentum factor of 0.9. We summarized the results in Table 5. Overall, for the 

classification of AD vs. NC, there were no significant differences in performance among the 

neural networks with different architectures considered in our experiments. However, for the 

12We also conducted experiments by pretraining the network with Deep Belief Network (DBN) (Hinton and Salakhutdinov, 2006) and 
reported the results in Appendix A.
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task of pMCI vs. sMCI, the 3-layer neural network, i.e., 
93(input)-50(hidden)-30(hidden)-2(output), showed the superiority to the other networks. 

When comparing with the performances of our method in Tables 2 and 3, the proposed 

method outperformed the (deep) neural network-based methods.

In the meantime, in order to validate the use of a CNN in our method, we also performed 

experiments with (deep) neural networks by taking the vectorized target-level 

representations as input. We considered the same network architectures in Table 5 and 

trained networks with the same parameter settings. The results are summarized in Table 6. In 

comparison of the results in Table 6 with the performances in Tables 2 and 3, the proposed 

method again outperformed (deep) neural networks that took the vectorized target-level 

representation as input.

6.4. Comparison with previous studies on ADNI dataset

We compared the maximal accuracies achieved by our JLLR+DeepESRNet with the 

accuracies of the previous studies of MRI-based AD/MCI diagnosis on the ADNI cohort in 

the literature. Note that, due to the difference in dataset size and different approaches for 

extracting features (they all belong to the volumetric methods, though), it is not fair to 

directly compare the performances among the methods. However, since those performances 

were obtained with the same ADNI cohort, it still deserves to compare their performances. 

Since previous work mostly focused on classification tasks of AD vs. NC and pMCI vs. 

sMCI, we summarize here only for these two tasks in Tables 7 and 8, respectively. First, in 

the AD vs. NC task, our method of JLLR+DeepESRNet achieved the highest accuracy and 

sensitivity. When comparing with Liu et al.’s results, the results are competitive. However, 

we would like to emphasize the improvements of 6.4% in sensitivity, which is clinically 

regarded more important than other metrics. In the meantime, for the task of pMCI vs. 

sMCI, Moradi et al.’s (2015) method that combined MRI features with age and cognitive 

measures for classification showed the highest accuracy and sensitivity. However, they 

considered a smaller-sized dataset than ours and their very low sensitivity raises doubts 

about an overfitting problem in their classifier, possibly due to a much smaller number of 

sMCI samples than the number of pMCI samples. Except for Moradi et al.’s method, our 

JLLR+DeepESRNet achieved the best accuracy, sensitivity, and specificity on the largest 

dataset, i.e., 167 pMCI subjects and 226 sMCI subjects.

6.5. Potential imaging biomarkers

It is worthy to understand and visualize ROIs selected in sparse regression models that 

provide useful information to extract target-representations, which are finally used by our 

deep model. Note that it doesn’t mean those selected ROIs used by deep learning directly. 

Fig. 5 shows the frequency distribution of the selected ROIs over 10-fold cross validation for 

three different classification tasks by our multiple JLLR. To identify brain regions that can 

be regarded as potential imaging biomarkers, we first identified the most selected features. 

We defined the most selected features based on their frequency, which should be higher than 

95,13 and then found the commonly selected ones across three tasks. The brain regions 

13The maximal frequency in our work is 100.

Suk et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2018 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponding to the commonly selected features are as follows: insula right, precentral 

gyrus right, lateral front-orbital gyrus right, frontal lobe WM left, cingulate region left, 

hippocampal formation right, superior parietal lobule left, middle temporal gyrus left, 

temporal lobe WM left, superior parietal lobule right, lateral front-orbital gyrus left, inferior 

temporal gyrus left, lateral occipitotemporal gyrus right, hippocampal formation left, medial 

occipitotemporal gyrus left, middle temporal gyrus right, and lateral occipitotemporal gyrus 

left.

7. Conclusions

In this paper, we proposed a novel method that combines two conceptually different models 

of sparse regression and deep CNN. Specifically, we proposed to build multiple sparse 

regression models with different values of a regularization control parameter. Next, we 

devised a CNN by taking the predictions from the multiple regression models as input for 

final clinical decision making. With an MRI dataset of 805 subjects from the ADNI cohort, 

our methods outperformed the competing methods in terms of statistical significance, 

rejecting the null hypothesis beyond the 95 percent confidence level. One of the limitations 

in our current work is related to the predefined number of regularization control parameter 

values. From a machine learning perspective, it is necessary to find the optimal number of 

regularization control parameter values from training data solely, which should be our future 

research issue. In the meantime, as end-to-end learning has verified its effectiveness, 

especially in deep learning (Long et al., 2015; Yang et al., 2016), we believe that there is a 

way to further improve the proposed method in that direction. That is, it is desirable to train 

parameters of both sparse regression models and a CNN jointly in a systematic manner.

As deep learning has achieved the state-of-the-art performance over different artificial 

intelligence applications, its use for performance enhancement is also one of the major steps 

in medical imaging. However, performance improvement in brain disease diagnosis is still 

minor. In order to foster the use of deep learning for imaging-based brain disease diagnosis, 

we suggest some directions. First, as witnessed in computer vision, where breakthrough 

improvements could be achieved by exploiting large amounts of training data, e.g., more 

than 1 million annotated images in ImageNet (Russakovsky et al., 2015), it would be one 

direction to build such big publicly available brain imaging datasets. These will help deep 

models to find more generalized features for brain disease diagnosis, thus allowing making a 

leap in performance. Second, it is necessary to develop algorithmic techniques to efficiently 

handle images acquired with different scanning protocols, by which there is no need to train 

scanning protocol-specific deep models. Third, it is desirable to develop a systematic 

framework for constructing an optimal network architecture, instead of empirical design. 

The performances are generally sensitive to the varying number of layers or units per layer 

(e.g., Tables 5 and 6). Last but not least, it is important to develop a method for identifying 

or interpreting deep learned features that mostly devoted to the predicted outputs, thus 

allowing for practical use in clinic.
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Appendix A. Performance by DBN+DNN

For a comparison purpose, we have also conducted an experiment with deep neural 

networks, whose parameter values were pretrained with Deep Belief Network (DBN) 

(Hinton and Salakhutdinov, 2006) by stacking multiple Restricted Boltzmann Machines 

(RBMs). Specifically, we exploited a Gaussian RBM for the bottom input-hidden RBM and 

binary RBMs for the upper hidden layers. For a Gaussian RBM, we fixed the standard 

deviations to 1 to reduce the number of parameters, thus avoiding overfitting and lessening 

training time (Nair and Hinton, 2008). In order for that, the training samples were first 

Gaussian normalized by subtracting with mean and then dividing with standard deviation. 

Regarding the DBN training, we used a contrastive-divergence algorithm (Hinton et al., 
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2006) with 100 epochs, a learning rate of 0.01, and a batch size of 10. The pretained DBN 

was then transformed into a deep neural network for which we attached a top output layer 

for classification. The performance is summarized in Table A1.

Table A1

Performance of (deep) neural networks, pretrained with Deep Belief Network (DBN), with 

93 regional volume features. The boldface denotes the best performance for each metric in 

each classification task.

# of 
hidden 
units Tasks Accuracy (%) Sensitivity (%) Specificity (%) BA (%) PPV (%) NPV (%) AUC

2-
layer 
DBN 
+ 
NN

50 AD vs. NC 85.41 ± 4.80 85.15 86.58 85.87 82.75 87.57 0.9197

MCI vs. NC 65.46 ± 5.42 69.66 56.17 62.91 80.73 38.99 0.6963

pMCI vs. sMCI 62.85 ± 7.80 57.72 66.81 62.26 53.31 69.90 0.6786

100 AD vs. NC 83.97 ± 4.22 85.09 83.87 84.48 78.51 88.48 0.9174

MCI vs. NC 66.43 ± 6.33 70.34 56.95 63.64 81.24 40.69 0.6966

pMCI vs. sMCI 63.33 ± 7.42 57.73 67.03 62.38 51.47 72.08 0.6707

3-
layer 
DBN 
+ 
NN

50-30 AD vs. NC 85.91 ± 5.32 85.55 86.91 86.23 83.30 88.04 0.9082

MCI vs. NC 65.78 ± 6.53 69.44 56.97 63.21 82.24 37.13 0.6980

pMCI vs. sMCI 59.48 ± 7.75 52.53 63.64 58.09 45.26 69.84 0.6194

100-30 AD vs. NC 84.68 ± 6.08 86.59 84.25 85.42 78.51 89.80 0.9102

MCI vs. NC 64.32 ± 4.76 68.86 53.89 61.37 79.97 37.15 0.6848

pMCI vs. sMCI 65.35 ± 7.60 60.11 69.21 64.66 56.25 72.13 0.6651

4-
layer 
DBN 
+ 
NN

50-50-30 AD vs. NC 85.40 ± 6.32 85.68 85.81 85.84 81.17 88.87 0.9062

MCI vs. NC 62.71 ± 4.79 68.55 51.05 59.80 77.46 37.09 0.6438

pMCI vs. sMCI 59.01 ± 5.42 52.36 61.68 57.02 34.49 77.00 0.6146

100-50-30 AD vs. NC 82.77 ± 5.77 82.89 83.48 83.19 78.01 86.72 0.8867

MCI vs. NC 65.93 ± 3.05 69.16 57.36 63.26 84.02 34.31 0.6667

pMCI vs. sMCI 57.24 ± 7.27 50.98 61.42 56.20 40.74 69.41 0.5822

Appendix B. List of 93 ROIs

See Table B1.

Table B1

A list of 93 ROIs considered in this work.

medial front-orbital gyrus right middle frontal gyrus right lateral ventricle left

insula right precentral gyrus right lateral front-orbital gyrus right

cingulate region right lateral ventricle right medial frontal gyrus left

superior frontal gyrus right globus palladus right globus palladus left

putamen left inferior frontal gyrus left putamen right

frontal lobe WM right parahippocampal gyrus left angular gyrus right

temporal pole right subthalamic nucleus right nucleus accumbens right
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uncus right cingulate region left fornix left

frontal lobe WM left precuneus right subthalamic nucleus left

posterior limb of internal capsule inc. 
cerebral peduncle left

posterior limb of internal capsule inc. 
cerebral peduncle right

hippocampal formation right

inferior occipital gyrus left superior occipital gyrus right caudate nucleus left

supramarginal gyrus left anterior limb of internal capsule left occipital lobe WM right

middle frontal gyrus left superior parietal lobule left caudate nucleus right

cuneus left precuneus left parietal lobe WM left

temporal lobe WM right supramarginal gyrus right superior temporal gyrus left

uncus left middle occipital gyrus right middle temporal gyrus left

lingual gyrus left superior frontal gyrus left nucleus accumbens left

occipital lobe WM left postcentral gyrus left inferior frontal gyrus right

precentral gyrus left temporal lobe WM left medial front-orbital gyrus left

perirhinal cortex right superior parietal lobule right lateral front-orbital gyrus left

perirhinal cortex left inferior temporal gyrus left temporal pole left

entorhinal cortex left inferior occipital gyrus right superior occipital gyrus left

lateral occipitotemporal gyrus right entorhinal cortex right hippocampal formation left

thalamus left parietal lobe WM right insula left

postcentral gyrus right lingual gyrus right medial frontal gyrus right

amygdala left medial occipitotemporal gyrus left parahippocampal gyrus right

anterior limb of internal capsule right middle temporal gyrus right occipital pole right

corpus callosum amygdala right inferior temporal gyrus right

superior temporal gyrus right middle occipital gyrus left angular gyrus left

medial occipitotemporal gyrus right cuneus right lateral occipitotemporal gyrus left

thalamus right occipital pole left fornix right
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Fig. 1. 
Multiple sparse regression models with different values of a sparse control parameter, where 

λ1 < ··· < λm < ··· < λM. The prediction function f (·) is defined by Eq. (6).
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Fig. 2. 
Proposed convolutional neural network of modeling deep ensemble sparse regressions for 

brain disorder diagnosis. (I: input, C: convolution, M: max-pooling, F: fully-connect, O: 

output). The online color version provides a clearer view. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article).
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Fig. 3. 
Samples of target-level representations, which were Gaussian normalized by first subtracting 

with means and then dividing with standard deviations, and the correlation matrix that 

represents relations among four sparse regression models.

Suk et al. Page 26

Med Image Anal. Author manuscript; available in PMC 2018 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Performance comparison between MOLR+DeepESRNet and JLLR+DeepESRNet.
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Fig. 5. 
Distribution of the selected ROIs by JLLR for different classification tasks. The color 

denotes the frequency of being selected in 10-fold cross-validation. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article).
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Table 1

Demographic and clinical information of the subjects. (pMCI: progressive MCI, sMCI: stable MCI, SD: 

Standard Deviation).

AD pMCI sMCI NC

Number of subjects 186 167 226 226

 Female/male 87/99 65/102 75/151 108/118

Age (Mean ± SD) 75.37 ± 7.55 74.89 ± 6.83 75.00 ± 7.63 75.96 ± 5.04

Education years (Mean ± SD) 14.70 ± 3.13 15.69 ± 2.87 15.62 ± 3.18 16.03 ± 2.88

MMSE (Mean ± SD) 23.28 ± 2.02 26.59 ± 1.71 27.28 ± 1.77 29.11 ± 1.00

ADAS-Cog (Mean ± SD) 18.44 ± 6.71 13.30 ± 4.05 10.33 ± 4.31 6.21 ± 2.93

CDR (Mean ± SD) 0.75 ± 0.25 0.50 ± 0.00 0.50 ± 0.03 0.00 ± 0.00
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Table 4

Statistical significance test.

Task

MOLR + DeepESRNet JLLR + DeepESRNet

MOLR MOLR + SVM JLLR JLLR + SVM

AD vs. NC 0.0078 0.0312 0.0020 0.0059

MCI vs. NC 0.0020 0.0039 0.0234 0.0078

pMCI vs. sMCI 0.0020 0.0039 0.0117 0.0020
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