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Combining Residual Attention Mechanisms and Generative
Adversarial Networks for Hippocampus Segmentation

Hongxia Deng�, Yuefang Zhang, Ran Li, Chunxiang Hu, Zijian Feng, and Haifang Li

Abstract: This research discussed a deep learning method based on an improved generative adversarial network to

segment the hippocampus. Different convolutional configurations were proposed to capture information obtained by

a segmentation network. In addition, a generative adversarial network based on Pixel2Pixel was proposed. The

generator was a codec structure combining a residual network and an attention mechanism to capture detailed

information. The discriminator used a convolutional neural network to discriminate the segmentation results of

the generated model and that of the expert. Through the continuously transmitted losses of the generator and

discriminator, the generator reached the optimal state of hippocampus segmentation. T1-weighted magnetic

resonance imaging scans and related hippocampus labels of 130 healthy subjects from the Alzheimer’s disease

Neuroimaging Initiative dataset were used as training and test data; similarity coefficient, sensitivity, and positive

predictive value were used as evaluation indicators. Results showed that the network model could achieve an

efficient automatic segmentation of the hippocampus and thus has practical relevance for the correct diagnosis of

diseases, such as Alzheimer’s disease.
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1 Introduction

The hippocampus is located between the thalamus and
the medial temporal lobe of the brain, and it is a
part of the limbic system. It is mainly responsible
for the storage, conversion, and orientation of long-
term memory. The hippocampus is closely related to
many neurological diseases, such as Alzheimer’s disease,
schizophrenia, and dementia[1]. However, the shape
of the hippocampus is irregular, its volume is small,
its edges have no clear boundaries, and individual
differences are large. At present, manual segmentation
results are still considered to be the gold standard for
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hippocampal morphological analysis. The study of the
volume and shape of the hippocampus is a necessary
condition for the diagnosis of these diseases. Therefore,
automatic and accurate segmentation of the hippocampus
using magnetic resonance imaging (MRI) images and its
analysis and research are of great practical relevance for
the correct diagnosis of these diseases.

At present, the following methods are used
for brain MRI hippocampus segmentation: manual,
semiautomatic, and automatic segmentation methods.
The manual segmentation method is performed by
experts to mark and segment the contours of the
hippocampus on each slice. Although the result
of manual segmentation is still considered to be
the gold standard, the process is time consuming
and subjective. Semiautomatic segmentation uses the
threshold method and the image boundary tracking
method to introduce initial image contour information
and achieve hippocampus segmentation. This process
requires precise control of the prior parameters,
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and the parameter adjustment process is too time
consuming. Automatic segmentation methods are
divided into traditional automatic and deep learning-
based segmentation methods. Traditional segmentation
methods include graph-[2–4] and deformation-based[5, 6]

methods. These methods often rely excessively on
auxiliary technologies, such as classifiers and optimizers,
which are difficult to rely on when using simple
registration methods. An accurate segmentation of
different hippocampi with large differences is difficult
to achieve through simple registration methods.

In recent years, deep learning methods have been
widely used in computer vision[7], and convolutional
neural networks have made some progress in medical
image processing. Alaoui et al.[8] proposed a method
based on machine learning to classify tumors. Shelhamer
et al.[9] used the fully convolutional neural network
(FCNN) for the first time to perform pixel-level
segmentation of natural images. The fully connected
layers are converted into convolution operations, and
the global information and the local information are
taken into account by combination of shallow and deep
features. It also supports arbitrary size image training and
segmentation, and has made a breakthrough in semantic
segmentation. Subsequently, the UNet model[10] was
proposed for wide use in medical segmentation. This
model can use few images for end-to-end training. At
each stage, the decoder can learn the relevant
characteristics lost during encoder pooling. Chen et
al.[11] proposed U-Seg-Net to segment 2D slices of MRI
images and then reconstructed the 3D hippocampus
segmentation results through 2D slice image sequence
reconstruction. Chen et al.[12] proposed a method
of combining FCNNs and recurrent neural networks
to achieve automatic hippocampus segmentation. Cao
et al.[13] used an improved 3D-UNet[14] network to
perform three-dimensional segmentation of nuclear
magnetic images; however, this method requires a large
training dataset, and training three-dimensional networks
requires huge resources. The above models perform
excellently in medical image segmentation. However,
when performing segmentation tasks, the relationship
between pixels can be easily ignored, resulting in the
problem of semantic gap.

Numerous methods based on deep learning can be
used at present; however, the segmentation of details
is crucial for medical images. Moreover, ordinary
network models tend to ignore the correlation between
image pixels. To solve this problem, Goodfellow

et al.[15] first proposed the generative adversarial net
work (GAN) model through a cyclic iteration between
the generative and adversarial models; thus, the
generative model can generate fake and real pictures.
However, GAN is prone to problems, such as gradient
explosion and structural instability during the training
process. To solve the problem in which the model
is difficult to train, improvements were made on the
basis of the model[16–21]. Luc et al.[22] applied GAN
to natural image segmentation for the first time and
obtained high segmentation accuracy by training VGG-
based generative adversarial networks. The results
obtained through adding the adversarial model are
more spatially consistent than those obtained through
only the generative model. Xue et al.[23] proposed a
new end-to-end adversarial network architecture called
SegAN. The generative model uses an FCNN to segment
samples and proposes a new discriminant network with
multiscale L1 loss to force the generative and adversarial
models to learn simultaneously the global and local
features that capture the long- and short-distance
spatial relationships between pixels. To modify the
standard GAN architecture, DCGAN[24] was proposed;
it uses convolution generator and discriminator, uses
batch normalization, replaces all pooling layers with
convolution, and forces the generator to create a
piecework mask in addition to image generation. To
overcome the instability of the GAN training process,
the slow convergence rate, and the possibility of mode
collapse, Mondal et al.[25] proposed a semisupervized
segmentation method using GAN for 3D multimodal
images with few training samples available.

Recently, deep learning methods have been introduced
into medical image segmentation[26]. Murugesan et
al.[27] proposed a novel context-based CE loss function
for UNet and a novel architecture Seg-GLGAN to
address the problem of the foreground-background
class imbalance in medical images. Izadi et al.[28]

proposed a novel approach for skin lesion segmentation
by leveraging generative adversarial networks. Li et
al.[29] proposed an adversarial training approach to train
the CNN network for brain tumor segmentation. The
combination of the generative and adversarial models
enhances the spatial continuity of the segmentation
results and improves the accuracy of segmentation. Shi
et al.[30] proposed a method based on GAN to achieve
the hippocampus segmentation. This method uses the
UNet network as a generative model and performs
interactive training with the adversarial model to achieve
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pixel-level classification of brain MRI images. Hui et
al.[31] proposed a super resolution generative adversarial
network (SRGAN) migration learning model on the
Lung Nodule Analysis 2016 Dataset. The emergence of
GAN makes the segmentation results of medical images
smoother.

This study proposes a generative adversarial network
method (Res SEblock GAN) that combines residual
blocks and attention mechanisms to achieve end-to-
end automatic hippocampus segmentation. The main
contributions of this study are the following three points:
First, to obtain semantic information, ResNet34 is used
as the coding structure of the generative model to extract
the shallow features of the image. Second, the attention
mechanism SEblock module is added to the decoding
structure of the generative model. Third, the proposed
method is used to segment hippocampus images on
the Alzheimer’s disease neuroimaging initiative (ADNI)
dataset and compare it with recent segmentation models.
Experimental results show that the proposed method
can well complete the task of automatic and accurate
hippocampus segmentation.

2 Method

In this section, the proposed model for hippocampus
segmentation is described. To improve the accuracy
of hippocampus segmentation, this study proposes
a generative adversarial network model based on
Pixel2Pixel[32] as the basic architecture. The proposed

model (Res-SEblock-GAN) is mainly composed of the
generative and adversarial models. The generative model
is a codec structure combining a residual network[33]

and an attention mechanism. The adversarial network
uses a convolutional neural network to discriminate the
segmentation results generated by the generative model
and expert segmentation results. Through the generative
and adversarial models, the loss is continuously
transmitted; thus, the generative model reaches the
optimal state of hippocampus segmentation. When
GAN is applied in image segmentation, the generative
model is a segmentation network; the adversarial
network judges the trueness of the segmentation of the
generative network and then transmits the loss back
to the generative model; then, the generative model is
segmented again. By iterating between the generative
model and the adversarial model, the segmentation
accuracy of the segmentation network is continuously
improved. Figure 1 shows the proposed generative
adversarial network model. When the discriminator
cannot distinguish between the generator’s segmentation
result and the expert segmentation result, at this time,
the network has reached the optimal state.

2.1 Generative model

The generative model is designed following the principle
of semantic segmentation, as shown in Fig. 2a. This
design is achieved by combining the codec structure of
the residual network and the attention mechanism. The
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Fig. 1 Proposed generative adversarial network model: First, the images are input into the generative model. Then, the
segmented hippocampus label map is output. Afterward, the result of the segmentation of the generative model and the result
of the expert’s segmentation of the hippocampus are input into the adversarial model. Finally, a predicted value is obtained
through the SoftMax function.
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encoding part uses the ResNet34 residual network,
and the decoding part is integrated into the SEblock
structure and Inception layer. SENet[34] can strengthen
the characteristics of important channels and weaken
the characteristics of nonimportant channels. It also
models the relationship in the feature map channel
in an efficient computing manner and is designed
to enhance the network module’s expressive ability
in the network. The network model can improve its
learning ability by deepening the number of network
layers to extract deep features. However, this method
also has certain deficiencies. First, an increase in
deep network parameters likely results in overfitting.
Transmitting gradient updates to the entire network can
be difficult, thus causing gradient dispersion. Second,
simply stacking large convolutional layers consumes
computer resources. To make the network lightweight,
an Inception[35] module is proposed. By embedding
a multiscale feature extraction method in the network
model, the network model can obtain considerable
accuracy. A convolutional layer is used in front of the
original SEblock structure to adjust the channel spliced
by the previous jump connection. The SEblock structure
strengthens the characteristics of important channels and
weakens the characteristics of nonimportant channels.
Through learning, the importance of each feature channel

is automatically obtained; then, in accordance with
this importance, the useful features are enhanced, and
the features that are not useful for the current task
are suppressed[34]. Multiscale features are extracted
through the Inception structure to improve segmentation
accuracy.

Figure 2b shows the SEblock structure. The core idea
of SEblock is to learn feature weights in accordance with
loss through the network so that the effective feature map
weight is large, and the invalid or small effect feature
map weight is small.

First, we perform the global average pooling
(GAP) operation on the feature map extracted by the
convolutional layer. Then we convert the input of H �
W � C into 1 � 1 � C output, and extract global
information. H is the height, and W is the width. The
calculation process is shown in Eq. (1).

ZC D Fsq.UC / D
1

H �W

HX
iD1

WX
jD1

Uc.i; j / (1)

where function Fsq represents squeeze operation. The
feature U extracted from each convolutional layer
is denoted as U D U1; U1; U1; : : : ; Uc , where Ui

represents the i-th characteristic feature map, and c
represents the total number of feature maps. Next, as
in Eq. (2), the excitation operation is performed. The
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result obtained by GAP is z. Here, multiplying W1 by z
is a fully connected layer operation. The dimension of
W1 is C=r � C , where r represents a scaling parameter
and is set to 16 in the study; the purpose is to reduce
the number of channels and thus reduce the amount of
calculation. The dimension of z is 1 � 1 � C , and the
dimension of W1z is 1 � 1 � C=r . After the ReLU
layer, the output dimension remains unchanged; then
it is multiplied by W2, Multiplying with W2 is also a
process of fully connected layer. The dimension of W2

is C � C=r ; thus, the output dimension is 1 � 1 � C .
S D Fex.z;W / D �.W2ı.W1z// (2)

where function Fex represents excitation operation. ı
represents the ReLU activation function and � represents
the sigmoid activation function, and s is obtained
through the sigmoid function..

After obtaining s, a dot product operation is performed
to complete the recalibration of the original input feature
channel. The calculation process is performed as in
Eq. (3), where function Fscale represents re-weighting
operation. Sc represents weight of the output of the
excitation operation, and it is regarded as the importance
of each feature channel after feature selection. Uc is
a two-dimensional matrix, and Sc is the weight; thus,
ecalibration is equivalent to multiplying each value in the
Uc matrix by Sc . This process is the Multiply operation
in Fig. 2b.

QXc D Fscale.Uc ; Sc/ D Sc � Uc (3)
Figure 2c shows the Inception structure. With

reference to the structure of InceptionV1, two different
convolutional layers are used to extract multiscale
information to capture additional features. To reduce
the amount of calculation, an asymmetrical convolution
kernel is used to solve the N � N two-dimensional
convolution into two one-dimensional convolutions of
1 � N and N � 1, that is, the decomposition of 3 � 3
into 1 � 3 and 3 � 1.

2.2 Adversarial model

The adversarial model takes the hippocampus image
and the corresponding label image as the input. The
corresponding label diagram is the result of expert
segmentation and the segmentation result of the
generative model. They are input into the model through
a series of convolution layers and maximum pooling
layers, and a probability is generated to judge whether
the label map is close to the expert segmentation
standard. The closer it is to 1, the more realistic the
segmentation result of the generative model is, and

the closer it is to the expert segmentation result. The
adversarial model then transfers the loss to the generative
model; after many iterations of confrontation, when the
discriminator cannot distinguish between the generator’s
segmentation result and the expert segmentation result,
the network reaches the state of optimal segmentation
effect.

3 Implementation Detail

3.1 Data

The experimental dataset comes from the ADNI
database. A total of 130 sets of baseline T1-weighted
whole brain MRIs from different subjects and their
corresponding label images were downloaded, and data
were all from the normal control group. Figure 3 is a
visualization of the fusion of data of whole brain MRI
images and corresponding hippocampal tags.

Considering that the hippocampus occupies a small
volume in the entire brain and its position in the entire
brain is relatively fixed, we roughly cropped the data and
used it as input.

Figure 4 shows the result of preprocessing. Among
them, Figs. 4b and 4d represent the left and right
hippocampus, respectively, and the size is 64 � 64; this
size can accommodate the hippocampus of each subject.

Fig. 3 Visualization of the fusion of data. The left picture
is the sagittal plane, the middle picture is the coronal plane,
and the right picture is the cross section.

(a) (b)

(c) (d)

Fig. 4 Pre-processing results: (a) the coronal plane, (b) the
left hippocampus of the sagittal plane, (c) the cross-sectional
hippocampus, and (d) the right hippocampus of sagittal plane.
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This study used data Figs. 4b and 4d for training.

3.2 Loss function

The generative model uses the mean absolute value error
(MAE) as the loss function. The average absolute value
error, also known as L1 loss, is the sum of the absolute
value of the difference between the target value and
the predicted value. The MAE calculation is shown in
Eq. (4).

MAE D

nX
iD1

jyi � y
p
i j (4)

The adversarial model uses the mean square error
(MSE) as the loss function. The MSE is a commonly
used regression loss function, which represents the sum
of squares of the distance between the predicted value
and the true value. The MSE calculation is shown in
Eq. (5).

MSE D

nX
iD1

.yi � y
p
i /

2 (5)

3.3 Parameter settings

The software environment is Keras 2.2.4, which uses
the Nadam optimizer; beta 1 = 0.5, and the batch size is
128. Figure 5 shows the selection of epoch and learning
rate (LR). Figure 5a shows that the epoch does not reach
convergence when set to 200 and 250. The accuracy rate

(a) Selection of parameter Epoch

(b) Selection of parameter LR

Fig. 5 Parameter setting.

is the highest when set to 300. When set to 350, the
accuracy rate is not improved but decreased. The loss
of the computer is large, and the effect is not ideal; thus,
the epoch is set to 300. Next is the selection of learning
rate. Under the premise of controlling the epoch to 300,
Fig. 5b reveals that the learning rate reaches the highest
accuracy at 0.0002; thus, the learning rate is set to 0.0002.
To verify the performance of the algorithm proposed in
this study, a ten-fold cross-validation method is used.
The experimental hardware environment is a NVIDIA
GTX1080Ti single GPU and an Intel Core i7 processor.

3.4 Evaluation index

To evaluate quantitatively the performance of the model
proposed in this study, we chose the dice similarity
coefficient (DSC), sensitivity (SEN), positive predictive
value (PPV), and the Jaccard coefficient as the evaluation
indicators of the hippocampus segmentation results.
These evaluation indexes are widely used in the field
of medical image segmentation.

DSC.A;B/ D 2 �
jA \ Bj

jAj C jBj
(6)

SEN.A;B/ D
jA \ Bj

jBj
(7)

PPV.A;B/ D 2 �
jA \ Bj

jAj
(8)

Jaccard.A;B/ D 2 �
jA \ Bj

A [ B
(9)

Equations (6) – (9) are calculation methods, where
A represents the result of the hippocampus segmented
by the network model in this study, B represents
the result of the expert manually segmenting the
hippocampus, A \ B represents the voxel region
at the intersection of the algorithm’s segmentation
region and the expert’s manual segmentation region,
and A [ B represents all the voxel regions of the
segmented area of the algorithm in this study and
the expert-segmented area. DSC represents the degree
of overlap between the experimental segmentation
results and the real hippocampus, SEN represents the
proportion of correctly segmented hippocampus to the
real hippocampus, PPV represents the proportion of
correctly segmented hippocampus to the segmented
hippocampus, and the Jaccard coefficient is the ratio
of sample set intersection to sample set. The closer
these three indicators are to 1, the higher the similarity.
Conversely, the closer the value is to 0, the lower the
similarity.
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4 Experimental Result

The performance of the proposed network model was
quantitatively evaluated using the ADNI dataset. To
verify the performance of the algorithm proposed in
this study, the experiment used ten-fold cross-validation
to analyze the segmentation results. Self-contrast
experiments and comparisons with other methods were
conducted. Using DSC, SEN, and PPV as evaluation
indicators can quantitatively evaluate the accuracy of the
segmentation results.

4.1 Influence of network model on experimental
results

To verify the performance of the model, GAN, Res GAN,
SEblock GAN, and Res SEblock GAN were compared.
GAN is the original method of generating an adversarial
network; Res GAN is a generative adversarial network
that uses a residual network in the coding structure of
the generative model; SEblock GAN is a generative
adversarial network that adds a channel attention
mechanism to the decoding structure of the generative
model; and Res SEblock GAN is the method proposed
in this study.

Figure 6 shows the segmentation results of each
model; the first column is the image to be segmented,
the second column is the expert segmentation result,

the third column is the segmentation result of the basic
GAN, the fourth column is the segmentation result of
the Res GAN, the fifth column is the segmentation
result of the SEblock GAN, and the sixth column
is the segmentation result of the Res SEblock GAN.
We randomly listed the segmentation results of the
hippocampus at different layers. As shown in Fig. 6,
Res SEblock GAN could identify the segmentation
details well, and the segmentation result was close to
the expert segmentation result. Each row represents
the segmentation results of different methods under this
layer. Given that the original GAN does not introduce
the attention mechanism, the segmentation effect in
the detailed boundary area of the hippocampus is not
ideal. By introducing the attention mechanism, the
segmentation effect of the details was considerable
improved, which was close to the result of expert
segmentation. This result shows that Res SEblock GAN
can pay attention to the details of the edge part by
adjusting the weight of the feature channel, thereby
expanding the effective features, suppressing useless
information, and achieving optimal segmentation results.

Table 1 quantitatively evaluates the experimental
results. Experiments show that the introduction of
residual blocks and attention mechanisms in generative
adversarial networks could effectively and accurately
complete the task of hippocampus segmentation.

Image                                     Label GAN Res_GAN SEblock_GAN Res_SEblock_GAN

Slice-15

Slice-30

Slice-45

Slice-60

Slice-75

Fig. 6 Self-contrasting experiment results.
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Table 1 Evaluation index results of each model.
Method DSC SEN PPV
GAN 87.34 87.42 88.96

Res GAN 88.03 88.14 89.89
SEblock GAN 89.14 88.29 89.70

Res SEblock GAN 89.46 88.71 92.36

To compare the methods intuitively, the test results of
Res SEblock GAN and the model before improvement
were analyzed, as shown in Fig. 7. As shown in Fig. 7,
Res SEblock GAN’s DSC, PPV, and SEN indicators
are better than that of the original GAN, indicating
that the method in this study can suppress or reduce
useless features while amplifying the effective features
through the attention mechanism in the generation model
to improve segmentation accuracy.

4.2 Comparative analysis with other algorithms

To verify the performance of the algorithm in this study,
the segmentation algorithms of various methods on the

ADNI dataset were compared. We randomly listed the
segmentation results of the hippocampus at different
layers.

As shown in Fig. 8, the first row is the label
map segmented by experts, the second row is the
segmentation result of the UNet network, the third row
is the segmentation result of the Attention UNet, and
the fourth row is the segmentation result of the network
model proposed in this study. The red part represents
the hippocampus result of expert segmentation, and the
yellow part represents the hippocampus contour of the
network segmentation. To compare the segmentation
effects of each method clearly, the segmentation results
of each segmentation method and that of the expert are
merged. Figure 8 shows that in the method proposed
in this study, the yellow line and red parts are more
consistent than the other methods. For example, the
position of the vacancy in the middle of the 65th floor
is evident. The method proposed in this study captures

(a) DSC (b) PPV (c) SEN

Fig. 7 DSC, PPV, and SEN evaluation indicators of four models.

Label

Unet

Attention Unet

Res_SEblock_GAN

Slice-20 Slice-35 Slice-50 Slice-65 Slice-80

Fig. 8 Segmentation results of several models.
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the details of the hippocampus and the overall outline.
Figure 8 also shows that the network model proposed
in this study can accurately achieve hippocampus
segmentation.

Table 2 shows the comparison of the Dice and
Jaccard coefficients between the method in this study
and the method mentioned in Refs. [11, 35–37]. The
Dice and Jaccard coefficients of the UNet model are
85.40%. The Dice and Jaccard coefficients of Attention
UNet can reach 87.70% and 85.06%, respectively.
The introduction of the residual block and attention
mechanism increased the evaluation index by 2.3%
and 3.03%, respectively. In the end, the evaluation
index of Res SEblock GAN can reach 89.46% and
85.18%. By combining the adversarial model, the
accuracy rate was improved. Experiments showed that
the introduction of the residual block and attention
mechanism in the generation process of the adversarial
model can effectively and accurately complete the task
of hippocampus segmentation. Through the proposed
method, optimal segmentation precision is achieved.
Experimental results showed that the proposed method
can achieve good results in hippocampus segmentation.

5 Conclusion

To segment the hippocampus accurately and efficiently, a
hippocampus segmentation method based on generative
adversarial networks was proposed. In the generative
model, ResNet34 was used as the coding structure to
extract the shallow features of the image, thus reducing
the processing time to a certain extent. The attention
mechanism was added to the decoding structure to
enhance the useful features and suppress the features
that were not useful for the current task. Combined
with the iterative training of the adversarial model, the
generative model achieved the optimal segmentation
state. Experiments show that the proposed model
improves the accuracy of hippocampus segmentation;
thus the effectiveness of the proposed model is verified.

Compared with existing methods, the proposed model
has the following advantages:

The proposed generative adversarial network can
maintain the spatial consistency of the segmentation
results generated by the generative model. The generated
segmentation results are similar to real label maps, which
can achieve the effect of false and true, and the edges of
the segmentation area are smooth.

(1) ResNet34 is used as the coding structure of the
generative model to extract the shallow features of the
image, thereby reducing the processing time to a certain
extent.

(2) By introducing an attention mechanism in the
decoding part of the generative model, the network
starts from the global information to amplify valuable
feature channels selectively and suppress useless feature
channels.

(3) The data used in this study are MRI images of the
normal human hippocampus, exploring the difference
between the hippocampus of the Alzheimer’s syndrome
patient and the normal human hippocampus. The
automatic diagnosis of cases will be the focus of
subsequent research.
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