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Abstract. The 2018 NIA-AA research framework proposes a classification system with Amyloid-� deposition, pathologic
Tau, and neurodegeneration (ATN) for diagnosis and staging of Alzheimer’s disease (AD). Data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database can be utilized to identify diagnostic signatures for predicting AD progression,
and to determine the utility of this NIA-AA research framework. Profiles of 320 peptides from baseline cerebrospinal fluid
(CSF) samples of 287 normal, mild cognitive impairment (MCI), and AD subjects followed over a 3–10-year period were
measured via multiple reaction monitoring mass spectrometry. CSF A�42, total-Tau (tTau), phosphorylated-Tau (pTau-181),
and hippocampal volume were also measured. From these candidate markers, optimal signatures with decision thresholds
to separate AD and normal subjects were first identified via unbiased regression and tree-based algorithms. The best per-
forming signature determined via cross-validation was then tested in an independent group of MCI subjects to predict future
progression. This multivariate analysis yielded a simple diagnostic signature comprising CSF pTau-181 to A�42 ratio, MRI
hippocampal volume, and low CSF levels of a novel PTPRN peptide, with a decision threshold on each marker. When applied
to a separate MCI group at baseline, subjects meeting these signature criteria experience 4.3-fold faster progression to AD
compared to a 2.2-fold faster progression using only conventional markers. This novel 4-marker signature represents an
advance over the current diagnostics based on widely used markers, and is easier to use in practice than recently published
complex signatures. This signature also reinforces the ATN construct from the 2018 NIA-AA research framework.
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INTRODUCTION30

Tools to provide an early diagnosis and predic-31

tion of progression to Alzheimer’s disease (AD) are32

of critical importance. Early diagnosis allows care-33

givers to plan for additional needs which will decrease34

the overall financial burden of the illness [1, 2]. In35

addition, early diagnosis may help identify common36

comorbidities such as depression or undernutrition37

[3, 4], and may spur lifestyle interventions to mit-38

igate some of the cognitive impairments associated39

with aging [5]. Finally, identifying individuals who40

are more likely to progress will help enrich clini-41

cal trial populations with subjects with more rapid42

progression, potentially shortening trial duration.43

Early pathological changes of AD are seen years44

before the clinical diagnosis of AD. Most studies have45

shown that individuals with mild cognitive impair-46

ment (MCI) carry AD pathological burden and have47

a substantial risk (∼10–15% per year) of develop-48

ment of dementia [6, 7]. Thus, as new therapeutics49

are developed that target AD-related pathology, MCI50

may represent a state during which early interven-51

tion may change the trajectory of patient outcomes.52

However, therapeutics targeting A� will likely carry53

potential risks of significant side-effects, as docu-54

mented in clinical trials [8–10], thus limiting their55

use to those with a high risk of subsequent cognitive56

decline. Therefore, what is needed is an approach to57

accurately identify MCI patients with the highest risk58

of conversion to AD.59

Multiple potential biomarkers have been iden-60

tified to aid in the prediction of conversion of61

MCI to AD. For example, cognitive and behav-62

ioral biomarkers have been proposed to identify63

individuals at high-risk for conversion [11–13]. In64

addition, biomarkers based on brain imaging or65

measurements in bodily fluids have been identified66

(for recent reviews, see [14, 15]). The latter groups67

of biomarkers have recently been organized into a68

generalizable research framework. This framework,69

labeled AT(N), describes three classes of biomarkers:70

1) “A” or aggregated amyloid-based (e.g., cere-71

brospinal fluid (CSF) A�42 levels, amyloid positron72

emission tomography (PET)), 2) “T” or aggregated73

tau-based (e.g., CSF phosphorylated tau [pTau-181],74

tau PET) and 3) “N” or neuronal degeneration-75

based (e.g., volumetric magnetic resonance imaging76

(MRI), fluorodeoxyglucose (FDG) PET, CSF total77

tau (tTau)) [16, 17]. Furthermore, Jack et al. [16]78

advocate extending this to the ATX(N) framework,79

where X can include additional markers from the80

multiarray–omics platforms. This research frame- 81

work is intended to form a common approach by 82

which investigators can communicate about and clas- 83

sify novel biomarkers, thereby allowing their more 84

rapid integration into current research. 85

CSF-based biomarkers have been of interest since 86

they represent an assessment of biochemical changes 87

in the central nervous system. The most commonly- 88

observed changes in the CSF of AD subjects have 89

been a reduction of A�42 and increase in pTau- 90

181 [18, 19]. We recently identified a 16-analyte 91

CSF signature which showed higher sensitivity and 92

specificity than any combination of A�42, tTau, and 93

pTau-181 for the diagnosis of AD versus controls, 94

and, when applied to an independent dataset of MCI 95

subjects, outperformed traditional biomarkers in pre- 96

diction of conversion to AD [20]. Unfortunately, 97

a complicated 16-analyte signature is not practi- 98

cal for clinical purposes. Multi-analyte signatures 99

require quality-control measures for each analyte 100

and do not provide an intuitive understanding of 101

how changes in the biomarker impact the disease. 102

Therefore, in the current report, we modified the 103

analytical approach to examine the ability of sim- 104

pler signatures using intuitive cut-point thresholds 105

to predict MCI to AD conversion. Such simplified 106

signatures will be easier to implement in practice 107

than a 16-peptide signature. We identify, using data 108

from only the AD and age-matched Normal (NL) 109

subjects from the Alzheimer’s Disease Neuroimag- 110

ing Initiative (ADNI) database, optimal diagnostic 111

signatures using novel CSF peptides combined with 112

conventional CSF and volumetric MRI biomarkers 113

to separate AD and NL subjects. Decision thresh- 114

olds are determined on markers that separate AD and 115

NL subjects via unbiased regression and tree-based 116

algorithms [21, 22]. The best performing signatures 117

from the NL and AD subjects were then tested in 118

an independent group of MCI subjects at baseline to 119

determine their ability to predict the future progres- 120

sion. The current approach of developing a biomarker 121

signature on one group (AD versus NL) and testing 122

on another (MCI progression or not) has successfully 123

been applied previously [23] and avoids potential 124

biases of approaches that split subjects into subgroups 125

and develop a biomarker on one subgroup and eval- 126

uating on the other. The latter approach tends to 127

produce signatures that are highly specific to the pop- 128

ulation under study and can inflate accuracy values. 129

By developing a simple, yet powerful, cross-validated 130

signature for prediction of MCI to AD, this work con- 131

firms and extends the AT(N) framework and provides 132
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a potential new tool for clinicians to use to advise133

decision making and for researchers to enrich clini-134

cal trials with MCI subjects with a higher likelihood135

of conversion.136

METHODS137

Data used for this research were mostly identical138

to that used in Llano et al. [20], except that the pro-139

gression data on MCI now extends to another two140

years, and we include data from the conventional141

biomarkers (CSF amyloid/tau and MRI hippocam-142

pal volume [HV]) in the analysis. For the sake of143

completeness, we repeat some of the key infor-144

mation pertaining to these data in this paper. The145

ADNI database (http://adni.loni.usc.edu) utilized in146

this research was launched in 2003 as a public-private147

partnership, led by Principal Investigator Michael W.148

Weiner, MD. The primary goal of ADNI has been149

to test whether serial MRI, PET, other biological150

markers, and clinical and neuropsychological assess-151

ments can be combined to measure the progression of152

MCI and early AD. For up-to-date information, see153

http://www.adni-info.org. This study was conducted154

across multiple clinical sites and was approved by the155

Institutional Review Boards of all of the participating156

institutions. Informed written consent was obtained157

from all participants at each site. Data used for the158

analyses presented here were accessed on February159

24, 2018. Although the ADNI database continues to160

be updated on an ongoing basis, most newly added161

biomarker data are from later time points (i.e., beyond162

1 year), in contrast to the baseline data used in this163

study.164

Patient population165

This research was focused on only those subjects in166

the ADNI database for whom data from both the con-167

ventional markers (CSF amyloid/tau and MRI HV)168

and novel markers (320 peptides from the multiple169

reaction monitoring (MRM) proteomics panel) were170

available at baseline. This included 287 subjects with171

AD, MCI, and NL from the ADNI study that received172

clinical, neuropsychological, and biomarker assess-173

ments which were repeated every six months for a174

period of 3 to 10 years. NL individuals were free of175

memory complaints or depression and had a Mini-176

Mental State Examination (MMSE) score above 25177

and a Clinical Dementia Rating (CDR) score of 0.178

We note that 80/86 (93%) of NC subjects had an179

MMSE score of 28 or higher and that 2/86 (2.3%) had180

an MMSE score of 25 or 26. MCI individuals could 181

have MMSE scores of 23 to 30 and required a CDR 182

of 0.5 and an informant-verified memory complaint 183

substantiated by abnormal education-adjusted scores 184

on the Wechsler Memory Scale Revised—Logical 185

Memory II. AD patients could have MMSE scores 186

of 20 to 27 and a CDR of 0.5 or 1.0. 187

Imaging 188

All participants received 1.5 Tesla (T) structural 189

MRI at baseline and at every six months for the next 190

several years. In addition, approximately 25% also 191

received 3.0 T MRI. Cognitive assessments and neu- 192

roimaging procedures were carried out within two 193

weeks of each other. In this research, we utilized only 194

the baseline HV data measured via MRI and com- 195

puted using the FreeSurfer software at the University 196

of California in San Francisco. Details regarding this 197

software can be found in the “UCSF FreeSurfer Meth- 198

ods” PDF document under “MR Image Analysis” in 199

the ADNI section of https://ida.loni.usc.edu/) as well 200

as in [24–26]. 201

CSF samples 202

CSF levels of A�42, tTau, and pTau-181 were 203

determined using Innogenetics’ INNO-BIA AlzBio3 204

immunoassay on a Luminex xMAP platform (see 205

[19] for details). These CSF samples were also pro- 206

cessed in the Caprion Proteomics platform that uses 207

mass spectrometry to evaluate the ability of a panel 208

of peptides to discriminate between disease states 209

and predict disease progression. The CSF multiplex 210

MRM panel was developed by Caprion Proteomics in 211

collaboration with the ADNI Biomarker Consortium 212

Project Team. A total of 320 peptides generated from 213

tryptic digests of 143 proteins were used in this study 214

(see Supplementary Table 1 and the supplemental 215

table in [20] for list of peptides and proteins). 216

Details regarding the technology, quality con- 217

trol and validation of the MRM platform can be 218

found in the Use of Targeted Mass Spectrom- 219

etry Proteomic Strategies to Identify CSF-Based 220

Biomarkers in Alzheimer’s Disease Data Primer 221

(found under Biomarkers Consortium CSF Pro- 222

teomics MRM Data Primer at http://ida.loni.usc.edu). 223

In brief, as described in the data primer and in 224

[27], plasma proteins were depleted from CSF 225

samples using a Multiple Affinity Removal Sys- 226

tem (MARS-14) column, and digested with trypsin 227

(1:25 protease:protein ratio). The samples were then 228

http://adni.loni.usc.edu
http://www.adni-info.org
https://ida.loni.usc.edu/
http://ida.loni.usc.edu
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Table 1
Disease-state demographics

AD MCI NL
(n = 66) (n = 135) (n = 86)

Gender (n)
M 37 91 44
F 29 44 42

ApoE (n)
E4 47 71 21
Non-E4 19 6 65

Age (years, Mean ± SD) 75.1 ± 7.5 74.8 ± 7.4 75.8 ± 5.6
Education (years, Mean ± SD) 15.1 ± 3 16 ± 3 15.6 ± 3
MMSE (Mean ± SD) 23.5 ± 1.9 26.9 ± 1.7 29.1 ± 1

MCI to AD Stable MCI
converters

(n = 64) (n = 71)

Gender (n)
M 40 51
F 24 20

ApoE (n)
E4 40 31
Non-E4 24 40

Age (years, Mean ± SD) 74.9 ± 7.6 74.7 ± 7.2
Education (years, Mean ± SD) 15.6 ± 3.0 16.4 ± 2.9
MMSE (Mean ± SD) 26.4 ± 1.7 27.4 ± 1.6

lyophilized, desalted and analyzed by LC/MRM-MS229

analysis on a QTRAP 5500 LC-MS/MS system at230

Caprion Proteomics. MRM experiments were per-231

formed on triple quadrupole (Q) mass spectrometers.232

The first (Q1) and third (Q3) mass analyzer were used233

to isolate a peptide ion and a corresponding frag-234

ment ion. The fragment ions were generated in Q2 by235

collision induced dissociation. All peptide levels are236

presented as normalized and log2-transformed inten-237

sities as we and others have done previously [20, 27],238

which is identical to the manner in which they were239

provided in the quality-controlled dataset.240

Statistical methods241

Before describing the details of the analysis steps,242

we first summarize the overall analysis process out-243

lined in (Fig. 1). Raw expression data from the244

320-peptide MRM panel was normalized as outlined245

in [27]. The optimal subset of features among the246

MRM panel plus the core CSF amyloid/tau markers247

and MRI hippocampal volume was first selected from248

the training set of AD and NL subjects [28, 29]. Then249

signatures in the form of simple decision thresholds250

on each marker were derived by applying two mul-251

tivariate subgroup identification algorithms [21, 22]252

on this training set. The performance of these sig-253

natures for differentiating the AD and NL subjects254

were then assessed via an internal cross-validation255

procedure, within which the feature selection and sig- 256

nature derivation process were fully embedded [30]. 257

The optimally performing signature was then selected 258

from this cross-validation procedure on the training 259

set. This optimal signature was then applied on a sep- 260

arate group of MCI subjects at baseline to determine 261

its ability to predict the future progression of these 262

MCI subjects to AD. We now provide more details 263

on the different steps of this analysis process. 264

Most algorithms in the predictive modeling and 265

machine learning literature yield signatures in the 266

form of a mathematical equation (e.g., logistic regres- 267

sion) or a large multi-layer decision tree (e.g., 268

classification tree models) or a complex model with- 269

out an explicit closed-form mathematical equation 270

(e.g., random forests, support vector machines). 271

Therefore, most multivariate biomarker signatures 272

that have been proposed in the AD literature take 273

such complex forms and are often based on numer- 274

ous markers (e.g., 16-marker signature in [20] and 275

29-marker signature in [27], and is part of the reason 276

for their lack of translation and use in the clinic. 277

One of the important analysis objectives in this 278

paper was to derive biomarker signatures that are 279

more amenable for routine clinical use and practice. 280

Therefore, we wanted the signatures to be as small as 281

possible (i.e., as few markers as possible), and to take 282

a simple form of a binary decision rule that is enabled 283

by a threshold (cut point) on each marker. We call 284
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Fig. 1. Statistical analysis flow-scheme.

such signatures as multivariate threshold-based sig-285

natures. When applying such a signature in practice,286

one would simply compare the measure level of each287

marker from this signature to its decision threshold288

in order to predict the phenotype of the subject (e.g.,289

AD or NL diagnosis, or whether not an MCI subject290

at baseline will progress to AD in the future), with-291

out the need for complex calculations, formulae or a292

mathematical model.293

As noted above, there are relatively fewer294

algorithms in the statistical literature for deriv-295

ing such multivariate threshold-based signatures.296

We use two recently published nonparametric297

subgroup-identification algorithms called Patient298

Rule Induction Method (PRIM) [21] and Sequential299

Bootstrapping and Aggregation of Trees (BATTing)300

[22]. These algorithms were found to significantly301

outperform the current benchmark algorithms in the302

predictive modeling literature [22]. The PRIM algo-303

rithm identifies regions in the training dataset where304

patients present a target phenotype such as disease305

diagnosis or progression in our case. This is accom-306

plished via an iterative combination of peeling and307

pasting steps with respect to optimal markers, where308

small fractions of the data are removed or added to309

the current region, until the region is optimized for310

the target phenotype. The sequential BATTing algo-311

rithm sequentially stratifies the training dataset with312

respect to the most optimal markers one at a time,313

with the optimal thresholds on each marker estimated314

via a resampling approach. Further details on these315

algorithms are provided in [21, 22].316

We employ both these algorithms in our analy-317

sis, and the best performing signatures are chosen318

via the internal cross-validation procedure within the 319

AD versus NL training set. Prior to the application 320

of these algorithms on the amyloid/tau markers, MRI 321

hippocampal volume, and 320-peptide MRM panel, 322

an optimal subset of promising markers (features) 323

were first selected within the training set of AD and 324

NL subjects via a Lasso-based regularization method 325

[28], along with a bootstrap resampling procedure 326

[29] to improve the stability of the feature selection 327

process. This process does not require the specifi- 328

cation of a certain number of features because the 329

optimal number is selected based on maximizing the 330

differentiation of AD and NL subjects within this 331

training set [28, 29]. The application of PRIM and 332

Sequential BATTing algorithms on this optimal sub- 333

set of features then yields signatures in the form of 334

simple decision thresholds on each of the optimal fea- 335

tures [22]. As explained earlier in this section and as 336

illustrated in Fig. 1, the feature selection and signa- 337

ture derivation process are fully embedded within the 338

rigorous internal cross-validation framework that is 339

explained below. 340

The predictive performance of the optimal signa- 341

ture from each algorithm for differentiating the AD 342

and NL subjects within the training set was evaluated 343

via 10 iterations of five-fold internal cross-validation. 344

In this procedure, the training set data were first 345

divided into five random subsets (folds). Each fold 346

was left out one at a time, and the remaining four 347

folds were used to derive a signature. This signature 348

was then used to predict the AD or NL disease state 349

of each subject in the left-out fold. This process was 350

carried out for each left-out fold one at a time, and 351

the predictions of all the five left-out folds were then 352
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aggregated. Performance measures such as the pos-353

itive and negative predictive value (PPV, NPV) and354

overall accuracy were calculated by comparing the355

predicted AD versus NL status of each subject in the356

left-out fold to the true diagnostic status. For better357

reliability and robustness of these performance mea-358

sures, this internal cross-validation procedure was359

repeated 10 times and the median of each these perfor-360

mance measures was calculated. Most importantly,361

all steps of the signature derivation process, includ-362

ing the feature selection process mentioned above,363

were fully embedded within this cross-validation to364

further reduce any possible bias [31]. This method365

for robust estimation of the performance of multi-366

variate signatures in predictive modeling has been367

recommended in the white-paper by bioinformatics368

experts from the FDA, industry and academic in the369

Microarray Quality Control Consortia working group370

[30].371

The optimal signature from the best performing372

algorithm (i.e., the signature that best differentiated373

AD and NL subjects in the internal cross-validation)374

was now tested on a separate independent group of375

135 MCI subjects at baseline, to predict their future376

progression to AD. As this signature takes the form of377

a simple decision rule with a cut point on each marker378

in the signature, no mathematical equation or model379

fitting was needed for the prediction of each subject.380

The MCI subjects whose markers at baseline satis-381

fied the cut points of this signature were predicted to382

be AD-like (called “Signature Positive”) and there-383

fore considered as future converters to AD. The MCI384

subjects whose markers at baseline did not satisfy385

the cut points of this signature were predicted to be386

NL-like (called “Signature Negative”) and therefore387

considered as non-converters.388

These baseline predictions of the MCI subjects389

were then compared to the follow-up clinical data.390

Performance metrics such as the PPV, NPV, and391

overall accuracy were calculated by comparing the392

predictions to the known progression status of the393

MCI subjects to AD over the next 36 months.394

Comparisons of the performance metrics between395

different signatures were carried out via exact McNe-396

mar’s test.397

These multivariate threshold-based signatures398

were then evaluated for ability to differentiate the399

future time to progression of the MCI subjects to400

AD. This was accomplished by comparing the time401

for MCI to AD progression of the predicted signature402

positive MCI subjects at baseline (i.e., the MCI sub-403

jects that satisfied the cut points of the markers this404

signature at baseline) versus the predicted signature- 405

negative MCI subjects at baseline via Kaplan-Meier 406

analysis. For this evaluation, the progression of MCI 407

subjects to AD over the entire future time course until 408

the last follow-up visit (up to 120 months) was taken 409

into consideration. 410

This analysis procedure was carried out sepa- 411

rately for the following subsets of markers, along 412

with APOE genetic status, age, gender and education 413

(4 markers): 414

- MRI brain HV: 5 total markers (the 4 markers 415

above + HV) 416

- CSF A�42, tTau, pTau-181, ratios of tTau to A�42 417

& pTau-181 to A�42 (AT): 9 total markers 418

- AT + HV: 10 total markers, and 419

- AT + HV + 320 peptides from the CSF MRM 420

panel: 330 total markers. 421

While it is not necessary for a signature that dif- 422

ferentiates AD versus NL subjects to predict the 423

progression of MCI subjects to AD, we wanted a 424

signature that predicts disease progression to also be 425

relevant for disease diagnosis as it would better reflect 426

the AD pathology. Most importantly, this evaluation 427

of the AD versus NL signature on the MCI subjects at 428

baseline to predict their future progression to AD not 429

only served as an independent verification of the util- 430

ity of our signature, but also put it to a much greater 431

test to see whether it is robust enough to address 432

a different and more important question related to 433

the prediction of future progression of the MCI sub- 434

jects to AD. The analysis procedure described here is 435

summarized in (Fig. 1). 436

The outliers shown in the box-plot figures meet 437

the following criteria; samples results greater than Q3 438

+ 1.5 × (Q3–Q1) or lower than Q1–1.5 × (Q3–Q1), 439

where Q1 and Q3 are the 25th and 75th percentiles 440

respectively. Although these outliers are shown in the 441

figures, they were not excluded from the analysis to 442

derive optimal signatures. This is because the algo- 443

rithms used in our analysis (Sequential BATTing and 444

PRIM; [21, 22]) are nonparametric (distribution-free) 445

and robust to extreme values. 446

All analyses related to predictive modeling and 447

signature derivation were carried out using R 448

(http://www.R-project.org), version 3.4.1, with the 449

publicly available package, SubgrpID [22]. The time 450

to progression analysis of the derived signatures and 451

related assessments were carried out using JMP®, 452

version 13.2. 453

http://www.R-project.org
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RESULTS454

Disease-state demographics455

Table 1A summarizes the key demographics of the456

66 AD, 135 MCI, and 86 NL subjects, and Table 1B457

provides a breakdown of the 135 MCI subjects in458

terms of their future progression. The subjects were459

balanced across groups in terms of age and educa-460

tion (both p > 0.05). There were significantly more461

males (59.1%) than females (40.9%) in the study,462

though similar numbers of male and female MCI463

subjects converted to AD over a three-year period464

(44% versus 54.6%, p = 0.248, Chi-squared test).465

As shown previously [32], the presence of at least466

one copy of the APO-E4 allele was a risk factor467

for AD (71.2% AD, 52.6% MCI and 24.4% NL,468

p < 0.0001, Chi-squared test). In addition, this allele469

also tracked with MCI to AD progression over a470

36-month period (37.5% of non-E4 versus 56.3%471

of E4 progressed to AD, p = 0.029, Chi-squared472

test).473

Disease state classification474

The distribution of the conventional biomark-475

ers for NL, MCI, and AD subjects are shown in476

(Fig. 2A-D). While the means significantly dif-477

fer across groups (p < 0.0001), the considerable478

overlap of expression levels greatly limits the diag-479

nostic utility of any of these markers on their480

own.481

Multivariate analysis of the various markers using482

data-driven computational algorithms described483

above yielded optimal signatures for differentiating484

the disease states and prediction of disease progres-485

sion. These signatures are summarized in (Table 2).486

Interestingly, the signature derived from the conven-487

tional and novel markers took a very simple form488

based on only a few markers, with representations489

from both the conventional markers and the novel490

MRM panel, along with a cut-point on each of them;491

it took the form of HV <7.65 cm3, ratio of pTau492

to A�42 >0.09 and a PTPRN peptide (sequence493

SELEAQTGLQILQTGVGQR, referred to here as494

PTPRN.SELE) <10.22 intensity units. Figure 2E495

and F show the significant decline of PTPRN.SELE496

in AD relative to both NL (p = 0.002) and MCI497

(p = 0.004), and a trend toward a decline in base-498

line MCI subjects that progress to AD in the future499

(p = 0.065).500

Prediction of MCI to AD progression 501

For disease state classification, the signatures 502

derived from all data scenarios have similar levels 503

of overall accuracy, with no discernable advan- 504

tage of adding novel markers from the MRM 505

panel to the conventional markers. However, for 506

the prediction of 36-month progression in the inde- 507

pendent group of 135 MCI subjects at baseline, 508

the signature derived from the collection of both 509

conventional and novel markers significantly out- 510

performs the signatures based on the conventional 511

markers (p = 0.0002), with the NPV increasing from 512

70.2% to 77.6% (p = 0.0032) and the PPV increas- 513

ing slightly from 60.2% to 61.6% (p = 0.0107). 514

Thus, the addition of a novel PTPRN peptide 515

from the MRM panel to the conventional AD 516

markers substantially improves the prediction of 517

36-month disease progression in MCI subjects at 518

baseline. 519

Based on the available 3–10-year follow-up clini- 520

cal data available on these subjects, the performance 521

of the optimal signatures from all the scenarios was 522

further assessed on this independent group of base- 523

line MCI subjects with respect to their future time 524

to progression. Table 3 includes a summary of the 525

25th percentile, median, and 75th percentile time 526

to progression of the signature negative and signa- 527

ture positive subjects, and the overall hazard ratio 528

with 95% confidence bands. Based on these results, 529

the optimal combination of conventional markers 530

showed a hazard ratio of 2.2 suggesting that the 531

MCI subjects meeting the criteria of this signa- 532

ture experience 2.2-fold faster progression to AD. 533

However, the MCI subjects that meet the signa- 534

ture criterion from the scenario that includes the 535

PTPRN peptide experience 4.3-fold faster progres- 536

sion to AD, as shown in (Fig. 3). To determine 537

if the impact of PTPRN was likely isolated to the 538

particular peptide fragment (PPRN.SELE, the other 539

two PTPRN peptides, AEAPALFSR, referred to as 540

PTPRN.AEAP and LAAVLAGYGVELR, referred 541

to as PTPRN.LAAV) in the MRM panel were 542

also assessed. The pairwise correlations between 543

these three peptides are all over 87% (data not 544

shown). 545

There were more male (n = 91) MCI subjects than 546

female (n = 44) and, as described above, similar pro- 547

portions (40/91 and 24/44, p = 0.248, Chi-squared 548

test) converted to AD over 36 months. Among 549

the female subjects, the optimal signature had an 550

NPV of 87.5% and a PPV of 63.9%. Among the 551
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Fig. 2. Distribution of four conventional markers of AD (A: CSF A�42, B: CSF pTau-181, C: CSF tTau, D: MRI HV) are shown for the NL,
MCI and AD subjects at baseline. Among the MCI subjects, those that progressed to AD over 36 months are shown in red and rest are shown
in blue. The bottom and top ends of the box represent the first and third quartiles respectively, with the line inside the box representing the
median. Lines extending out of the ends of the box indicate the range of the data, minus the outliers. The points outside the lines are the low
and high outliers. E) Distribution of PTPRN.SELE peptide (in normalized log2 transformed intensity units) is shown across the NL, MCI
and AD groups at baseline, and F) for the baseline MCI subjects that either progressed to AD or remained stable over the next 36 months.

male subjects these numbers were 75.6% and 60%,552

respectively. Given the small numbers of female553

signature-negative subjects (n = 8), no statistical com-554

parison was made for NPV and PPV values between555

gender groups. However, the values are qualitatively 556

similar, suggesting that there is no significant impact 557

of gender on the utility of optimal signature to predict 558

MCI to AD conversion. 559
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Table 2
Performance of optimal signatures

Data type Diagnostic Criteria for AD versus Normal 36 m MCI Progression to AD
Signature positive Diagnosis (independent validation)

(internal cross-validation)
PPV NPV Accuracy PPV NPV Accuracy

(MCI to AD) (Stable MCI)

AT tTau/A�1-42 >0.59 71.6% 80.5% 76.5% 58.1% 66.1% 61.7%
HV HV <6.41 and ApoE4+ 92.7% 74.8% 79.6% 61.2% 60.5% 60.7%
AT + HV HV <7.0, pTau >18.1, and 73.4% 78.4% 76.3% 60.2% 70.2% 64.4%

tTau/A�1-42 >0.36
AT + HV +
MRM

HV <7.65, pTau/A�1-42 75% 79.6% 77.6% 61.6% 77.6% 67.4%
>0.09, and PTPRN.SELE <
10.22

Fig. 3. Time to progression profiles of the signature positive versus signature negative MCI subjects with the shaded 95% confidence bands
are shown here via Kaplan-Meier analysis. The effect of signature based on only the conventional markers (HV and AT) is illustrated in (A)
and the signature with both the conventional markers and the novel PTPRN.SELE peptide from the MRM panel is shown in (B). Patients
meeting the signature criterion that includes this PTPRN peptide experience 4.3-fold faster progression to AD (hazard ratio = 4.4), relative
to the 2.2-fold faster progression without this peptide.

Table 3
Time to progression (T2P) of MCI subjects to AD using optimal signatures

Data type Diagnostic Criteria for Signature Negative Signature Positive Hazard
Signature positive RatioN T2P (months) N T2P (months)

Q1, Q2, Q3 Q1, Q2, Q3 (95% C.I.)

AT tTau/A�1-42 >0.59 59 23.4, 71.6, 108 76 13.6, 25.7, 72.0 1.9 (1.2, 3.1)
HV HV <6.41 and ApoE4+ 86 18.6, 48.2, 108 49 13.1, 31.5, 60.0 2.0 (1.3, 3.2)
AT + HV HV <7.0, pTau >18.1, and 57 24.4, 71.6, 108 78 12.6, 25.7, 72.0 2.2 (1.4, 3.6)

tTau/A�1-42 >0.36
AT + HV + HV <7.65, pTau/A�1-42 >0.09, 49 48.0, 96.5, 120 86 12.7, 24.1, 54.9 4.3 (2.5, 7.7)
MRM and PTPRN.SELE <10.22

Other peptides and prediction of MCI to AD560

conversion561

In the current study, PTPRN emerged via an unbi-562

ased algorithm as the optimal analyte to combine563

with conventional biomarkers for disease-state clas-564

sification. It should be noted that other CSF peptides565

have previously been shown to enhance prediction of 566

MCI to AD conversion [20, 27, 33–37]. We there- 567

fore examined the performance of other peptides 568

by sequentially removing the top-performing pep- 569

tide from the MRM pool and re-running the unbiased 570

algorithm to identify a new signature for disease-state 571

classification. This signature was then used to predict 572
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Table 4
Time to progression (T2P) of MCI subjects to AD using optimal and other candidate signatures for the AT+HV+MRM scenario. Please see

text for definitions of abbreviations

Diagnostic Criteria for Signature Negative Signature Positive Hazard Ratio
Signature positive (95% C.I.)N T2P (months) N T2P (months)

Q1, Q2, Q3 Q1, Q2, Q3

HV <7.65, pTau/A�1-42 >0.09, and 49 48.0, 96.5, 120 86 12.7, 24.1, 54.9 4.3 (2.5, 7.7)
PTPRN.SELE <10.22
HV <7.99, pTau/A�1-42 >0.07, tTau 42 38.8, 96.6, 120 93 13.3, 24.3, 71.6 3.8 (2.2, 7.1)
/A�1-42 >0.25, FABPH.SIVT >
13.96, and NPTXR.ELDV <22.44
HV <7.61, tTau/A�1-42 >0.28, pTau 54 34.6, 84.0, 120 81 12.7, 24.1, 54.9 3.3 (2.0, 5.5)
>16.65, tTau >58, and AMD.IVQF
<21.95

MCI-AD conversion. The top three resulting signa-573

tures and their performances are shown in Table 4. As574

shown, several other peptides improve predictive per-575

formance beyond conventional biomarkers alone. For576

example, combinations of heart fatty-acid binding577

protein (FABPH.SIVT) with the neuronal pentraxin578

receptor (NPTXR.ELDV) as well as peptidyl-glycine579

alpha-amidatingmonooxygenase (AMD.IVQF) have580

hazard ratios of 3.8 and 3.3 respectively, outperform-581

ing conventional biomarkers (HV+AT) which have a582

hazard ratio of 2.2 (Table 3).583

DISCUSSION584

Summary585

We examined the ability of a simple optimized mul-586

tivariate signature comprising conventional biomark-587

ers combined with an array of novel CSF peptides588

from the ADNI database to both classify AD dis-589

ease state and to predict MCI to AD conversion.590

We observed that both conventional AD biomark-591

ers (HV and CSF pTau/A�42 ratio) and conventional592

biomarkers combined with an array of novel CSF593

peptides performed similarly in terms of classifying594

disease state (AD versus NL). However, when these595

optimized signatures were applied to an indepen-596

dent group of MCI subjects, the signature combining597

conventional markers with a novel peptide analyte598

derived from PTPRN substantially outperformed the599

conventional biomarkers in predicting MCI to AD600

conversion by nearly twofold. In addition, the com-601

bined signature contains only four elements: HV, CSF602

A�42, tTau, and the PTPRN.SELE peptide, thus mak-603

ing it simple enough to be tractable for clinical and604

research purposes. These data may also open new605

lines of investigation regarding the role of PTPRN in606

AD as well as confirming and extending the proposed 607

AT(N) framework for AD biomarkers. 608

PTPRN and AD 609

PTPRN is expressed widely in neurons through- 610

out the mouse and human brain, including areas 611

associated with AD neurodegeneration such as 612

hippocampus and neocortex [38, 39]. It is a 613

membrane-spanning protein phosphatase with cyto- 614

plasmic and luminal components and is found in 615

the membranes of secretory granules. The gene for 616

PTPRN is also highly expressed in pancreatic islet 617

cells, and antibodies against this protein are found 618

in type 1 diabetes, hence its alternative name islet- 619

antigen 2 [40]. Deficiency in PTPRN is associated 620

with glucose intolerance in animal models [41] as 621

well as impaired learning [42]. Given the associations 622

between diabetes, insulin resistance and AD [43–45], 623

it is possible that the PTPRN/AD association seen in 624

the current study points to a new and specific role 625

for metabolic dysregulation in the pathophysiology 626

of AD to complement other metabolic hypotheses of 627

AD [46, 47]. 628

Several previous studies have identified PTPRN as 629

a potential marker of AD. For example, downregula- 630

tion of the expression of the PTPRN gene has been 631

observed in the hippocampus of sporadic AD subjects 632

[48] as well as the posterior cingulate area of early- 633

onset AD and presenilin-1 mutation-related dementia 634

[49]. In addition, when incorporated into a three-gene 635

classifier, PTPRN expression levels have been found 636

to discriminate between patients with AD pathology 637

and no symptoms, and those with only AD pathology 638

[50]. Finally, in a preliminary study of genetic interac- 639

tions with CSF pTau levels for predicting MCI to AD 640

conversion, PTPRN levels showed differences with 641
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respect to CSF pTau levels in MCI to AD converters642

compared to non-converters [51].643

It is important to note that other CSF peptides644

may also be used in conjunction with conven-645

tional biomarkers to predict MCI to AD conversion.646

Here, we found that heart fatty-acid binding pro-647

tein, the neuronal pentraxin receptor, as well as648

peptidyl-glycine alpha amidatingmonooxygenase,649

when combined with conventional biomarkers, all650

predict MCI to AD conversion better than conven-651

tional biomarkers alone (Table 4). While all of these652

peptides have previously been implicated in neu-653

rodegenerative disease [34, 35, 52–60], they do not654

outperform the combined PTPRN+AT+HV signa-655

ture, which has the additional advantage of containing656

only four markers, thus amenable to use in clinical657

practice.658

Implications of the prediction of MCI-AD659

conversion660

Over the years, several groups have examined the661

ability of multi-modal combination biomarkers (i.e.,662

combinations of imaging, cognitive, body fluid, and663

other markers) to predict the conversion of MCI to664

AD. Ideally, utilizing an approach such as the AT(N)665

framework, a combination biomarker should merge666

several orthogonal measurements reflecting different667

underlying biological processes. Larger combina-668

tions of biomarkers have the potential to increase the669

predictive power of the combination biomarker. The670

multiplicity of biomarkers is limited by clinical real-671

ity such that it is often impractical and costly to obtain672

multiple studies in individual patients. Therefore, a673

challenge in developing combination biomarkers is674

to develop combinations that provide high predictive675

MCI to AD accuracy and are clinically feasible.676

Here, we have identified a 4-marker signature677

that combines volumetric MRI and CSF testing,678

both feasible clinical tests, that outperforms stan-679

dard biomarkers in the prediction of MCI to AD.680

Although other studies have found that combinations681

of volumetric MRI and CSF measures can predict682

MCI to AD conversion [61–66], a unique aspect of683

the current biomarker signature is that it was ini-684

tially developed using disease state markers from one685

population of subjects, and then validated on an inde-686

pendent group of individuals with MCI, increasing687

its generalizability. As expected, the external cross-688

validation used in the current study diminished the689

accuracy values compared to those observed for inter-690

nal validation (see Table 2). However, the accuracy691

of MCI to AD prediction of current “gold standard” 692

biomarkers of AT and HV was substantially bolstered 693

by adding a single additional peptide (PTPRN). In 694

addition, because the 4-marker signature is in the 695

form of simple decision cut-points, it can readily 696

be applied for clinical trial patient enrollment and 697

in clinical practice for physicians without the need 698

for complex calculations. It will be beneficial in the 699

future to evaluate the performance of this signature 700

in databases containing other neurodegenerative dis- 701

eases to determine the specificity of these markers 702

against related illnesses. In addition, further evalu- 703

ation and validation of PTPRN as a diagnostic and 704

progression marker for patients with early signs of 705

cognitive impairment, in conjunction with the core 706

beta-amyloid and tau markers, in line with the ATN 707

construct proposed in the 2018 NIA-AA consen- 708

sus paper may provide additional insights about AD 709

pathology. 710
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