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A B S T R A C T

Background: While several research methods were developed to estimate individual-based representations of brain
connectional wiring (i.e., a connectome), traditionally captured using multimodal MRI data (e.g., functional and dif-
fusion MRI), very limited works aimed to estimate brain network atlas for a population of connectomes. Estimating well-
representative brain templates is a key step for group comparison studies. However, estimating a network atlas for a
population of multi-source brain connectomes lying on different manifolds is absent.
New method: To fill this gap, we propose a cluster-based multi-view brain connectivity fusion framework to
estimate a brain network atlas for a population of multi-view brain networks, where each view captures a
specific facet of the brain construct. Specifically, given a population of subjects, each with multi-view networks,
we first non-linearly fuse multi-view networks into a single fused network for each subject. Then, we cluster the
fused networks to identify individuals sharing similar connectional traits in an unsupervised way, which are next
averaged within each cluster to generate a representative network atlas. Finally, we construct the final multi-
view network atlas by averaging the obtained templates of all clusters.
Results: We evaluated our method on both healthy and disordered populations (with autism and dementia) and
spotted differences between network atlases for healthy and autistic groups.
Comparison with existing methods and conclusions: Compared to other baseline methods, our fusion strategy
achieved the best results in terms of template centeredness and population representativeness.
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1. Introduction

The study of brain connections has been widely developed for the
last years (Brown and Hamarneh, 2016; Holmes et al., 2015) thanks to
the wealth of connectomic data collected through several projects in-
cluding Human Connectome Project (HCP) (Van Essen et al., 2012,
2013), Lifespan Baby Connectomes Project (BCP) (Van Essen and
Glasser, 2016), and Connectome Related to Human Disease (CRHD)
(Van Essen and Glasser, 2016). Therefore, connectomic data estimated
from structural (T1-w/T2-w), diffusion-weighted (DWI) and resting-
state functional (rsFMI) magnetic resonance imaging (MRI) modalities
is rapidly expanding (Lerch et al., 2017). The richness of these multi-
modal connectional brain data can offer a powerful tool for better un-
derstanding of the human brain construct (Sporns, 2012, 2013), as well
as capturing disordered brain alterations, (Bosc et al., 2003;
Iftekharuddin et al., 2009; Calhoun and Sui, 2016). However, the
analysis of multimodal brain networks, which captures different views
of the brain construct, is a relatively complicated task (Bullmore and
Sporns, 2009; Bullmore and Bassett, 2011). Data fusion and con-
catenation techniques have been widely used to comprehensively in-
tegrate individual-based brain network from multiple brain views,
where each brain view corresponds to an imaging modality or a unique
connectional representation of the brain (Sui et al., 2012). For instance,
Wee et al. (2012), introduced a multiple-kernel support vector ma-
chines to integrate information from structural and functional networks
for mild cognitive impairment diagnosis. In recent works (Lisowska
et al., 2017; Soussia and Rekik, 2017; Mahjoub et al., 2018), morpho-
logical brain networks quantifying dissimilarities between cortical re-
gions were concatenated for dementia and autism diagnosis. However,
to the best of our knowledge, existing methods focus on fusing multi-
modal connectional information at the individual level – and not the
population level.

Recently, Rekik et al. (2017) introduced the concept of a brain
network atlas (or network atlas), and proposed diffusive-shrinking
graph technique to estimate a centered network atlas using a set of
unimodal brain networks. However, this work was limited to in-
vestigating unimodal networks, encoding a single ‘view of the brain’.
Creating such a multimodal brain network atlas can leverage and in-
tegrate complementary aspects of multimodal connections derived from
diverse imaging modalities (Uludağ and Roebroeck, 2014), since each
modality offers limited and complementary information apart. In ad-
dition, defining a ‘normalization’ process of brain networks can reduce
inter-subject variability (Uylings et al., 2005) offering a tool to distin-
guish between healthy and disordered population to help better identify
‘pathological’ alterations in brain networks as deviations from the
‘normalized’ brain network representation (Hinrichs et al., 2011; Zhang
et al., 2011; Yuan et al., 2012; Thung et al., 2014; Tong et al., 2015). To
fill this gap, we propose a cluster-based multi-view brain connectivity
fusion framework to estimate a brain network atlas for a population of
multi-view brain networks, which satisfies the following constraints: 1)
it is well centered (i.e., occupying a center position near to all views and
all individuals), and 2) it is well-representative of a specific population
as it preserves shared traits across its individuals. Specifically, given a
population of subjects, each with multi-view networks where each
modality captures a brain connectional view, we first non-linearly fuse
multi-view networks into a single fused network for each individual.
Then, we cluster the fused networks to identify individuals sharing si-
milar connectional traits in an unsupervised way. Next, through aver-
aging networks in each cluster, we generate a representative network
atlas. Finally, we construct the final multi-view network atlas by
averaging the obtained representations of all clusters. Using our pro-
posed method, we compare multi-view network atlases estimated using
a healthy population (normal controls – NC) and a disordered popula-
tion diagnosed with Autism Spectrum Disorder (ASD).

2. Proposed method

In this section, we denote tensors by boldface Euler script letters,
e.g., X. Matrices are denoted by boldface capital letters, e.g., X, and
scalars are denoted by lowercase letters, e.g., x. For easy reference and
enhancing the readability, we have summarized the major mathema-
tical notations in Table 1.

In this section, we detail each step of our proposed cluster-based
multi-view brain connectivity fusion framework to estimate a brain
network atlas for a population of multi-view brain networks. First, we
model each unimodal brain network as a complete graph comprising n
nodes, where each node denotes an anatomical region of interest (ROI)
in the brain and the strength of each edge connecting two ROIs captures
their relationship in a particular aspect (e.g., brain function or mor-
phology). This can be mathematically defined as an n× n symmetric
connectivity matrix V, where each element v Vij denotes the con-
nectivity weight between two ROIs i and j. A single brain connectivity
between two ROIs can be measured using different MRI modalities. If
one looks at each modality (e.g., rsfMRI) as capturing a single ‘view’ of
the brain, then multiple brain imaging modalities can be leveraged to
produce a multi-view representation of the brain. Hence, to develop an
effective network fusion method for constructing a multi-view brain
network atlas, one needs to well capture these multi-view (or multi-
view) connectional aspects.

Given a population of N subjects, each subject k is represented by a
set of m different brain network views …V V V{ , , , }k k k

m1 2 . Our goal is to
estimate a multi-view network atlas that is well-centered (close to all
views Vk

v and all N subjects) and preserves shared multi-view connec-
tional trends across individuals. Fig. 1 shows the three main steps of the
proposed method.

Individual-based non-linear fusion of connectional brain views
(step 1). For each subject in the population, different views of brain
network might lie on different multi-view manifolds. A non-linear fu-
sion function ϕ is then needed in order to derive a unique re-
presentative matrix Fk for the m views as follows:

=V F({ } )k
v

v
m

k1 (1)

Basically, for each subject k, ϕ non-linearly maps the multi-view
networks =V{ }k

v
v
m

1 to a fused brain network Fk in the mapped or ‘fusion’
space. This allows to map all individuals to a common space where their
brain views are unified individually. To do so, we leverage the generic
similarity network fusion (SNF) developed by Wang et al. proposed in
Wang et al. (2014). Specifically, we use SNF to define our mapping
function ϕ in order to diffuse multi-view brain networks from the ori-
ginal space into the mapped space where they are fused. Given a subject
k, for each connectivity matrix …v mV , {1, , }k

v , we define a status

Table 1
Major mathematical notations used in this paper.

Mathematical notation Definition

N Total number of subjects in the population
n Number of regions of interest (ROIs)
m Total number of brain views for each subject
Vk

v vth brain network view for subject k
Fk Fused views for subject k
Pk

v Status matrix for view v and subject k
Sk

v Kernel matrix for view v and subject k
Ni Set of neighbours for ROI i using KNN algorithm
q Number of neighbours used for KNN algorithm
Nt Number of iterations in SNF
Nc Number of clusters
FCi Cluster-specific network atlas for cluster Ci

A Final estimated network atlas

KNN, K nearest neighbors; SNF, similarity network fusion.
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matrix Pk
v that carries the full information about the connectivity weight

of each pair of ROIs and a kernel matrix Sk
v that encodes the similarity to

the nearest ROIs for each ROI. These matrices are initially defined as
follows based on Wang et al. (2014):

=
=
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(3)

Ni represents the set of q neighbors of ROI i using KNN algorithm. In
order to integrate the different views into a single matrix, the status
matrices Pk

v are iteratively updated using this equation:
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(4)

For each subject k and view v, Pk
v is iteratively updated through

diffusing the global structure of other views ( )m
P
1

t v k
t

along the local
sparse structure Sk

v of the current view v. After Nt iterations, we obtain
the fused views of subject k by averaging (i.e., fusing) the diffused
status matrices Pk

v at the final iteration Nt:

= =
m

F
P

k
v
m

k
v

1
(5)

The update of Pk
v allows to iteratively integrate common as well as

complementary information across brain networks during the fusion
process.

Fused network clustering in the mapped (fusion) space (step 2).
During non-linear fusion using SNF, weak connections within multi-
view networks disappear and strong connections are added to one an-
other. Therefore, network heterogeneous distribution present in the
original space might persist in the mapped space. Hence, instead of
directly fusing heterogeneous data samples in one step, we adopt a
hierarchical merging step where we first identify individuals sharing
similar connectional traits, then group them into more homogenous
clusters in an unsupervised way. In this step, we use spectral clustering
technique to cluster the fused networks =F{ }k k

N
1 in the mapped space into

Nc clusters. Spectral clustering is an effective tool for capturing global
structure of graphs, so we start by constructing a similarity network

between the fused views Fk, where the strength of each connection
between two fused networks Fi and Fj is defined as the distance between
the vectorized upper triangular parts of both matrices (as they are
symmetric). Spectral clustering is then applied to obtain the final par-
tition label vector y, where yi denotes the label of the cluster to which
the network Fi belongs. This produces Nc cluster-specific network at-
lases for each cluster Ci as follows:

=
C

F
F

dim( )
C k C k

i
i

(6)

where dim(Ci) denotes the number of elements in cluster Ci.
Linear fusion (step 3). After obtaining the cluster-based brain

templates ={ }FC
i
N

1i c , we linearly average them into a single template de-
noting our multi-view network atlas A as follows:

= =
N

A
Fi

N C

c

1
c i

(7)

3. Results and discussion

Evaluation dataset and parameters. We evaluated the proposed
network atlas estimation framework on 341 subjects (155 ASD and 186
NC) from Autism Brain Imaging Data Exchange (ABIDE I)2 public da-
taset, in addition to 41 subjects diagnosed with Alzheimer's disease,
collected from Alzheimer's Disease Neuroimaging Initiative (ADNI)3

dataset, each with structural T1-w MR image. Table 2 displays the data
distribution. We used FreeSurfer (Fischl, 2012) to reconstruct both right
and left cortical hemispheres for each subject from T1-w MRI. Then we
parcellated each cortical hemisphere into 35 cortical regions using
Desikan-Killiany Atlas. For each subject k, we defined 4 brain mod-
alities through generating =n 4v cortical morphological networks as
defined in Mahjoub et al. (2018): Vk

1 denotes the maximum principal
curvature brain view, Vk

2 denotes the mean cortical thickness brain
view, Vk

3 denotes the mean sulcal depth brain view, and Vk
4 denotes the

mean of average curvature as illustrated in Fig. 2. For a given view v,
each coefficient i jV ( , )k

v is defined as the absolute difference between
the mean of a the view's cortical attribute of the ith and the jth ROI. For
SNF parameters, the number of iterations is set to Nt=20 as it

Fig. 1. Illustration of the proposed multi-view brain network atlas estimation. Given a population of N subjects, each individual has m brain connectional views (or
modalities). We first non-linearly fuse multi-view brain network views for each subject through graph-diffusion in the original space. Second, we cluster the fused
views in the mapped space into Nc clusters and produce a cluster-specific network atlas through linear fusion. Third, we estimate the final brain network atlas by
averaging the Nc cluster-specific templates.

2 http://fcon_1000.projects.nitrc.org/indi/abide/
3 http://adni.loni.usc.edu/wpcontent/uploads/how to apply/ADNI
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guarantees SNF convergence (Wang et al., 2014). We set the number of
nearest neighbors to q=20 and for the clustering we used Nc=5
clusters for ASD dataset, Nc=6 for NC dataset and Nc=4 for AD da-
taset using multi-fold cross-validation.

Evaluation, reproducibility and comparison methods. To eval-
uate the centeredness of the estimated connectional cortical template,
we used two distances: (1) the average distance to the original space
between the estimated template and each view of each subject, and (2)
the average distance to the mapped space between the estimated tem-
plate and the fused views of each subject. The metric used for the
evaluation is the mean Frobenius distance calculated as:

=d A B a b( , ) | |F i j ij ij
2 . A smaller distance indicates a more

centered network atlas with respect to all individuals in the population
and all views. The evaluation of the proposed method in comparison to
baseline methods was validated using five randomized partitioning of
data samples using five-fold cross-validation, and tested using two po-
pulations of right and left hemisphere cortical brain networks: ASD and
NC. We compared our proposed cluster-based network fusion (SCA)
method to other baseline methods based on the adopted fusion tech-
niques: (1) average-average (AA) method that first averages views for
each subject, then averages across subjects, (2) average-SNF (AS) which
first linearly averages views for each subject and then non-linearly fuses
the obtained views using SNF, (3) the SNF-SNF (SS) technique which
uses SNF to first fuse views for each subject, then merges all fused
networks across subjects using SNF. Each of these distances is calcu-
lated in: (1) the original space (mean distance between the estimated
template and the original views Vk

v), and the mapped space (mean
distance between the estimated template and the fused views Fk).

As shown in Fig. 3, the proposed method (SCA) gave on average
more centered network atlases for both ASD and NC populations in the
original space followed by SNF-Average, average-SNF, SNF-SNF and
Average-Average methods. Average-average technique produced the
highest template-to-population distance for ASD LH {16.22 (average
across folds), 16.05 (fold 1), 16.36 (fold 2), 16.42 (fold 3), 16.00 (fold
4), 16.26 (fold 5)}, {16.39 (average across folds), 16.31 (fold 1), 16.44
(fold 2), 16.41 (fold 3), 16.40 (fold 4), 16.38 (fold 5)} for NC LH,
{16.11 (average across folds), 16,03 (fold 1), 16.19 (fold 2), 16.38 (fold
3), 16.79 (fold 4), 16.15 (fold 5)} for ASD RH and {16.36 (average
across folds), 16.31 (fold 1), 16.41 (fold 2), 16.34 (fold 3), 16.45 (fold
4), 16.29 (fold 5)} for NC RH, respectively. We did not directly include
this in Fig. 3 as they fall far away from the distance range of other
methods. These results can be explained by the fact that the different
views of the brain networks lie on different manifolds, which requires a
non-linear fusion technique in order to combine the multiple types of
data and bring them into a common space. Therefore, we used the SNF
technique in the original space to integrate the multiple views into a
single connectivity network for each subject in the population. The
obtained fused networks then belong to the mapped space where they
become all closer to one another through iterative diffusion (step 2).
Hence, we used cluster-based averaging as a linear fusion method to
merge fused networks in the mapped space.

Unlike simple averaging which treats all subjects equally in the
fusion process, partitioning of the fused views into different clusters and
calculating the mean of the clusters’ representatives would take into
consideration the different patterns (Ecker et al., 2010; Lao et al., 2004;
Casanova and Trippe, 2009) in a population by assigning an equal
weight to each distribution patterns. Such hierarchical process would
solve the problem of inter-variability across subjects offering a well
representative template. Therefore, our method (SCA) achieved the best
performance in terms of centeredness in the original space especially
for ASD population for both hemispheres and across all data partition
folds (Fig. 3). Besides, when evaluating the centeredness of the template
in the mapped space (Fig. 4), SA remarkably outperformed SS while
SCA caused a slight increase in the distance between the estimated
template and the fused views. This might indicate that in the mapped
space, one might need to use a different clustering method leveraging

Table 2
Table of evaluation and validation data distribution. M: male, F: female. Total:
total number of subjects in each group.

ASD NC AD

M 140 155 23
F 15 31 18
Total 155 186 41
Mean age 16.9 16.6 75.27

Fig. 2. Morphological brain network construction. Construction of multi-view brain networks using different cortical attributes.
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the properties of the fusion space to produce a more centered cluster-
based template. The distances in the original space as well as the
mapped space are globally consistent for both populations using both
hemispheres, yet the differences in results between the right and the left
hemispheres for ASD and NC populations can be explained by the fact
that both hemispheres present morphological asymmetry (Witelson and
Pallie, 1973; Chiron et al., 1995), which generate different templates
with different centeredness rates.

Validation on an additional test set. To show the generalizability
of our approach to different brain disorders, we evaluated our method
and comparison methods on a validation test set composed of 41 sub-
jects diagnosed with Alzheimer's disease for left and right hemispheres
independently. As we can see in Fig. 5, overall our method achieved the
best performances in the original space followed by SA, AS, SS and AA
with the highest distances equal to {14.18 (average across folds), 14,18
(fold 1), 14,12 (fold 2), 14,13 (fold 3), 14,19 (fold 4), 14,28 (fold 5)} for

Fig. 3. Evaluation of the morphological multi-view brain network templates estimated for NC and ASD populations using different methods for left (LH) and right (RH)
hemispheres. Distance of the estimated templates to views in the original space using SNF-SNF (SS), Average-SNF (AS), SNF-Average (SA) and SNF-Clustering-Average
(SCA).
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AD LH and {14.26 (average across folds), 14.22 (fold 1), 14.20 (fold 2),
14.29 (fold 3), 14.28 (fold 4), 14.30 (fold 5)} for AD RH, respectively.
Fig. 5 shows consistent results for the validation dataset (AD popula-
tion) in comparison with the evaluation datasets (ASD and NC popu-
lations) in both the original and the mapped spaces.

Insights into discriminative multi-view connectional features.
To investigate multi-view morphological connectional differences be-
tween autistic and healthy subjects, we identified the top 5 dis-
criminative connections for each hemisphere distinguishing between

both groups using the estimated morphological brain templates as
shown in Fig. 6. For each hemisphere, by computing the absolute dif-
ference between the healthy and disordered template, we identified the
top ROIs with the highest distance values. We believe that the differ-
ence between top discriminative regions in the right and left hemi-
spheres are due to the asymmetric nature of the human brain (Witelson
and Pallie, 1973; Wada et al., 1975) as well as the asymmetric influence
of autism on the morphological aspects between both hemispheres
(Chiron et al., 1995; Herbert et al., 2004, 2002). Several identified

Fig. 4. Evaluation of the morphological multi-view brain network templates estimated for NC and ASD populations using different methods for left (LH) and right (RH)
hemispheres. Distance to views in the mapped space of the estimated atlases using SNF-SNF (SS), SNF-Average (SA) and SNF-Clustering-Average (SCA).
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discriminative cortical ROIs were consistent with previous ASD studies
in the literature (Doyle-Thomas et al., 2013; Amaral et al., 2008; Just
et al., 2006; Blatt, 2012; Wegiel et al., 2010) such as the anterior-cin-
gulate cortex, which is responsible for the repetitive behavior in autistic
subjects, the inferior parietal cortex leading to attentional deficits and
the posterior cingulate cortex, as well as the left isthmus cingulate
cortex, the right insula and the medial orbital frontal cortex,

responsible for the social impairment related to autism.
Several ROIs were identified in more than a single discriminative

connection such as the left and the right lingual gyri, which were
present in the 3rd and 5th, and the 2nd and 4th discriminative con-
nections, respectively. A recent study (Zielinski et al., 2014) conducted
to investigate the abnormality of cortical morphological changes in
autistic subjects over time has shown that both left and right lingual

Fig. 5. Evaluation of the morphological multi-view brain network templates estimated for AD population using different methods for left (LH) and right (RH) hemispheres.
Distance to views in both the original and the mapped space of the estimated atlases using SNF-SNF (SS), SNF-Average (SA) and SNF-Clustering-Average (SCA).
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gyri had different morphological development compared to normal
subjects. In fact, the left lingual gyrus was thicker during childhood in
autistic subjects while the right lingual gyrus was thinner by adulthood.
The same study has shown a decrease in the parahippocampal thickness
in ASD, a cortical ROI that was found in the 1st and 3rd discriminative
connections in the right hemisphere using our estimated templates.
Pericalcarine cortex, on the other hand, was identified in the 1st, 2nd
and 4th discriminative connections in the left hemisphere. Cortical
changes in this region of the brain were related to autism in the

childhood with high statistical significance (p-value<0.01) as reported
in Zielinski et al. (2014).

In summary, the proposed method had the best results in terms of
centeredness in the original space compared to other baseline methods,
yet it fell behind the proposed SA in terms of centeredness in the
mapped space. We note that our proposed framework is generalizable
to different modalities or views and different parcellation templates
under the condition that we keep a consistent parcellation across all
modalities and across all subjects. In our future work, we will further

Fig. 6. Comparison between NC and ASD multi-view network atlases and identification of top 5 discriminative connections between both templates for the left (top)
and right (bottom) hemispheres.
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refine this framework through leveraging manifold learning techniques
to generate centered network atlases in both original and mapped
spaces. In addition, we will build brain network atlases for healthy
individuals as well as patients with other brain disorders (e.g., de-
mentia) to better identify population-based distinctive changes in brain
connectivity, thereby providing reliable features or biomarkers for an
accurate diagnosis. Last, building a multi-view brain network atlas that
integrates morphological, functional and structural brain networks in a
single reference template might help reveal how brain morphology
relates to brain function and structure. Our cortical brain network at-
lases can also be integrated with the recently introduced brain ki-
nectomes (i.e., population-based brain growth templates) Rekik et al.
(2018a, 2018b), to investigate the connectional relationship between
brain morphology and kinetics in health and disease.

4. Conclusion

In this work, we unprecedentedly proposed a population-based
multi-view network fusion framework for estimating a multi-view brain
network atlas for both healthy and disordered populations. Our method
had the best results in terms of centeredness when tested on morpho-
logical brain networks, yet it can be applied to all types of brain net-
works (e.g., structural or function). Building multimodal brain network
atlases can be utilized as ‘references’ to normalize individual brain
networks for comparative studies. In our future work, we will explore
multi-manifold learning methods for nesting brain views, which will
eventually produce more robust clustering results to outliers in both
original and mapped spaces.
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