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a b s t r a c t 

The brain connectome encodes different facets of the brain construct such as function and structure in a 

network. Noting that a brain network captures the individual signature of a particular subject, it remains 

a formidable challenge to extract a shared and representative brain signature across a population of brain 

networks, let alone multi -view brain networks. In this paper, we propose netNorm, a method that can 

meet this challenge by normalizing a population of multi-view brain networks, where each brain network 

represents a particular view of the brain, acquired using a neuroimaging technique. While conventional 

methods integrate the network views equally at a global scale, we propose a selective technique which 

unfolds the fusion process at a local scale by first selecting for each local pairwise connectivity between 

two anatomical regions of interest the most representative cross-view feature vector in the population. By 

combining the selected cross-view feature vectors, we then estimate a population representative tensor. 

Such multi-view representation captures the most shared traits across all subjects and thereby occupies 

a centered location compared to all views. In the final step, netNorm non-linearly fuses the frontal views 

of the estimated representative population tensor into a single network depicting the final brain con- 

nectional template. We demonstrate the broad applicability of our method on four connectomic datasets 

and we show that netNorm (i) produces the most centered and representative connectional brain tem- 

plate (CBT) that consistently captures the unique and distinctive traits of a population of multi-view brain 

networks, and (ii) identifies disordered brain connections by comparing templates estimated using dis- 

ordered and healthy brains, respectively, demonstrating the discriminative power of the estimated CBTs. 

This allows to rapidly and efficiently spot atypical deviations from the normal brain connectome for com- 

parative studies, circumventing the need to use machine learning techniques for discriminative feature 

identification. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Neuroscientific and neuroimaging studies have relied heav-

ly on the use of anatomical brain atlases for brain mapping,

ormalization and comparison across individuals and populations
∗ Corresponding author. 

E-mail addresses: salmadhifalah@gmail.com (S. Dhifallah), irekik@itu.edu.tr (I. 

ekik). 

URL: http://basira-lab.com (S. Dhifallah), https://github.com/basiralab/netNorm 

I. Rekik) 
1 Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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 Wu et al., 2015 ; Desikan et al., 2006 ; Dickie et al., 2017 ). However,

he connectional aspect of the brain, captured by the wiring of its

unctional and structural neural connections, was overlooked with

he exception of the work presented in ( Rekik et al., 2017 ), which

roposed the first work on estimating a brain network atlas using

 population of unimodal brain networks using diffusive-shrinking

raph technique. However, this work is only applicable to single-

iew brain networks, i.e. each brain is represented by a single

etwork. Recently, Dhifallah et al. introduced in ( Dhifallah and

ekik, 2019 ) the concept of population template for multi-view

orphological networks using a cluster-based fusion technique.

espite its significant results, the performance of such method

epends on the number of clusters used in the linear fusion step.

wo of the main challenging obstacles for creating a connectional

rain template for a population of multi-view brain networks lie

ssentially on the inter-individual variability across subjects for a

https://doi.org/10.1016/j.media.2019.101567
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101567&domain=pdf
mailto:salmadhifalah@gmail.com
mailto:irekik@itu.edu.tr
mailto:http://basira-lab.com
mailto:https://github.com/basiralab/netNorm
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.media.2019.101567
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Fig. 1. Normalization of healthy brain networks for better spotting deviating patho- 

logical cases from the normalized connectional template. 
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given population, in addition to the multimodal aspect presented

by the different views of the brain connectional construct. For

instance, each view captures a particular aspect of the brain wiring

offering different, yet, com plementary information. 

Recent technological advances in the field of medical imaging,

in addition to the emerging international research initiatives,

namely the ongoing 14 connectomic brain data gathering studies

for Connectome Related to Human Disease (CRHD), 2 have given

rise to large neuroimaging datasets ( Essen et al., 2016 ) acquired

using various magnetic resonance imaging (MRI) modalities (struc-

tural T1-weighted, diffusion, and functional MRI). The wealth of

such multimodal and large datasets can provide an excellent tool

for mapping human function and cognition ( Holmes et al., 2015 ;

Park et al., 2013 ; Seidlitz et al., 2018 ), in addition to enabling the

discovery of novel population-based connectomic brain signatures

for a deeper understanding of different connectional patterns

of both the healthy and disordered brain ( Hinrichs et al., 2011 ;

Zhang et al., 2011 ; Yuan et al., 2012 ; Thung et al., 2014 ; Tong et al.,

2015 ; Farrell et al., 2009 ). Yet, the diversity and complexity of such

data now present a major data-analytic challenge to the field of

neuroscience ( Jbabdi et al., 2015 ). Namely, how can we integrate

the complementary information offered by the different brain

network views into a unified normalized connectional reference

for comparative studies and classification? Moreover, how can we

reduce inter-subject variability in both healthy and disordered

populations for better identification of ‘pathological’ alterations in

brain networks as deviations from the ‘standard’ brain network

representation as described in Fig. 1 ? 

In this paper, we propose netNorm, a novel framework that

builds a connectional template for a population of multi-view

brain networks. The key idea is to first create a representative ten-

sor which is a mosaic representation capturing the most common

cross-view feature vectors across subjects in a selective manner ,

then we non-linearly fuse the different layers of the representative

tensor into the final unified connectional brain template (CBT).
2 https://www.humanconnectome.org/disease-studies . 

m  
e refer to this network normalization method as netNorm

 https://github.com/basiraLab/netNorm 

3 ). We demonstrate that

etNorm outputs multi-view population-driven CBTs satisfying the

ollowing criteria: (i) they are well-centered and representative i.e.,

ccupy the minimum distance to all brain views and to all subjects

n a given population, and (ii) they can effectively and easily re-

eal discriminative brain connections that distinguish between two

opulations (e.g., healthy and demented brain networks) by well

apturing population-specific traits and assuring robustness against

nter-individual variance ( Wu et al., 2011 ). netNorm is a simple

nd innovative framework that estimates multi-view brain connec-

ional templates, thereby providing an integral representation of

ulti-view brain connections across subjects in a given population.

ore importantly, we also investigate the discriminative power

f the estimated template in distinguishing between healthy and

isordered brains. In other words, can we leverage the estimated

onnectional templates to spot disordered brain regions for disen-

angling different brain conditions (e.g., healthy versus disordered)?

. Proposed netNorm framework 

In the mid-1990s, Erich Fromm, a social psychological, in-

roduced “the social character theory” on defining a society’s

sychological traits ( Rickert, 1986 ). Unlike individual psychoanaly-

is, Fromm assumes that, at a group scale, psychological traits are

o longer defined by the complete image of individual’s psyche,

ather it is based on the common psychological features across the

roup members. By analogy to Fromm’s theory, if we consider that

ross-view feature vectors capturing connectivity weights between

airs of ROIs across all views represent our population’s traits, then

 population template can be defined using the most common

eature vectors across all subjects. Hence, we define a commonality

riterion for each pair of ROIs using inter-subject feature vector

istances. This criterion guides our cross-view feature vectors’

election process to construct a population representative brain

ensor depicting the most common traits of our population across

ll subjects. Ultimately, by applying non-linear fusion, we then

ntegrate the different views of the constructed tensor into a single

onnectivity network presenting the final population template. 

In this section, we denote tensors by boldface Euler script

etters, e.g., χ. Matrices are denoted by boldface capital letters,

.g., X , vectors are denoted by boldface lowercase letters, e.g.,

 , and scalars are denoted by lowercase letters, e.g., x . For easy

eference, we have summarized the major mathematical notations

resented in this paper in Table 1 . 

We illustrate in Fig. 2 netNorm steps for brain connectional

emplate estimation from multi-view connectomic data. First, for

ach subject in a population of interest, we build a population

f multi-view brain networks by defining different morphological

rain views. Then, for each pair of ROIs i and j , we define a

ross-view feature vector combining their connectivity weights

cross all views. In the next step, we construct a high-order graph

or each pair of ROIs i and j , modeling the relationship between

he different subjects’ feature vectors. Using the defined graph, we

hen define a commonality criterion guiding a feature vector selec-

ion process. We repeat the same process for all cross-view feature

ectors created for each pair of ROIs in order to construct the pop-

lation representative tensor. The final CBT is then obtained by ap-

lying non-linear fusion for different representative tensor views. 

.1. Multi-view morphological brain network construction 

The two most widely used measures of brain connectivity for

apping brain wiring in the literature are functional connectivity
3 The code will be released upon the acceptance of the paper. 

https://www.humanconnectome.org/disease-studies
https://github.com/basiraLab/netNorm
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Table 1 

Major mathematical notations used in this paper. 

Mathematical notation Definition 

N Total number of subjects in the population 

n v Total number of brain views for each subject 

n r Total number of regions of interest in the brain 

T s Subject’s representative tensor ∈ R n r ×n r ×n v 

X s 
k 

k th network view for subject s ∈ R n r ×n r 

V s 
i j 

Feature vector for subject s related to ROIs i and j ∈ R n v × 1 

H ij High-order graph (graph of a graph) for pair of ROIs i and j ∈ R N× N 

˜ T Population’s representative tensor ∈ R n r ×n r ×n v 

˜ X v v th population’s representative brain view ∈ R n r ×n r 

P v Status matrix for view v ∈ R n r ×n r 

S v Kernel matrix for view v ∈ R n r ×n r 

A Estimated connectional brain template (or atlas) ∈ R n r ×n r 

Fig. 2. Overview of netNorm pipeline for connectional brain template (CBT) estimation from multi-view brain networks. Given a population of N multi-view tensors, 

where each subject-specific tensor comprises a set of stacked brain network views, we first extract a feature vector V k 
i j 

for each subject k and each pair of brain regions of 

interest (ROIs) i and j . Each feature vector V k 
i j 

is composed of connectivity weights between ROIs i and j derived from all views. Next, for each pair of ROIs, we construct a 

high-order graph modeling inter-subject relationship. Each graph node embeds a feature vector V k 
i j 

for subject k in the population and the strength of an edge connecting 

two nodes k and k is calculated as the Euclidian distance between V k 
i j 

and V k 
′ 

i j 
. The node satisfying the minimum mean distance to all other nodes is then selected as a 

population-specific feature vector representative. By selecting the optimal population-specific feature vectors for each pair of ROIs, we construct the population representative 

tensor ˜ T . Finally, we generate brain connectional template by non-linearly fusing all tensor layers using similarity network fusion (SNF) technique. 
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nd structural connectivity, derived from functional magnetic

esonance imaging (fMRI) and diffusion weighted imaging (DWI),

espectively ( Lerch et al., 2017 ). Yet, these imaging techniques

resent the limitations of time-consumption, high cost and prone-

ess to noise ( Lisowska et al., 2018 ). Recent works ( Lisowska et al.,

018 ; Mahjoub et al., 2018 ; Raeper et al., 2018 ; Soussia et al.,

018 ) have considered the use of morphological connectional fea-

ures in order to circumvent these limitations. Brain morphology

ncluding cortical measures (e.g., cortical thickness) can be used

s biomarkers for neurodevelopmental (i.e., ASD) ( Wallace et al.,

010 ; Hardan et al., 2009 ) and neurodegenerative (i.e., AD) dis-

ases ( McEvoy et al., 2009 ; Ridgway et al., 2012 ). More specifically,

rain morphological changes may reflect abnormal functional

nd structural connections ( Essen, 1997 ). Inspired by these works

 Lisowska et al., 2018 ; Mahjoub et al., 2018 ; Raeper et al., 2018 ;

oussia et al., 2018 ) as well as the work of ( Seidlitz et al., 2018 )
nvestigating the relation between morphological similarity net-

orks and cognition, we propose to evaluate netNorm using

ulti-view brain morphological networks derived from differ-

nt morphological measurements relating brain regions to one

nother. Hence, for each subject in the population, we define a

ingle-view morphological brain network (MBN) as a graph where

odes represent cortical regions of interest (ROIs) and edges en-

ode the interconnections between different nodes capturing their

issimilarity in morphology using a specific cortical attribute (e.g.,

ortical thickness, sulcal depth). More specifically, we represent

ach network as a matrix X in R 

n r ×n r , where n r represents the

umber of ROIs. For each ROI, we first compute the average value

f a cortical attribute. Next, we define each element X ( i, j ) as the

bsolute difference between the average cortical attributes in ROIs

 and j , denoting the weight of the link between both regions

f interest. Using different morphological measurements, we can
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Fig. 3. Morphological brain network construction for a representative subject 

using different views of the cortical surface. Each view is represented by a matrix 

quantifying the dissimilarity between each pair of ROIs in the brain in terms of a 

specific morphological attribute (e.g., sulcal depth, cortical thickness). 
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generate multiple network views for each individual, where each

view is represented by an n r × n r connectivity matrix ( Fig. 3 ).

Given a population of N subjects where each subject s is repre-

sented by n v brain network views, let X 

s 
k 

denote the k th network

view (or matrix) for subject s . We can then represent each subject

s by a tensor T s ∈ R 

n r ×n r ×n v where its k th frontal view represents

a brain connectivity matrix X 

s 
k 
. Note that we set the diagonal for

each matrix X 

s 
k 

to zero in order to avoid self-similarity. 

2.2. Connectional feature extraction 

For each subject s , we define a cross-view feature vector

(weight vector) V 

s 
i j 

; 1 ≤ i, j ≤ n r for each pair of ROIs i and j . Specif-

ically, V 

s 
i j 

captures the connectivity between ROIs i and j across all

views. Each subject-specific feature vector is defined as follows: 

 

s 
i j ( k ) = T 

s ( i, j, k ) , ∀ 1 ≤ k ≤ n v , ∀ 1 ≤ i, j ≤ n r 

Considering that brain networks can be represented as symmet-

ric matrices with null diagonal, we only use the upper triangular

part, thereby decreasing the total number of cross-view feature

vectors for each subject from n 2 r to N f = 

∑ n r −1 
i =1 

( n r − 1 ) = 

n r ( n r −1 ) 
2 . 

2.3. High-order graph construction 

In order to unravel the complex relationships between subjects

in a specific population for the normalization process, we propose

to build an N × N high-order graph H ij for each pair of ROIs i and j

(i.e., for each brain connectional feature vector). Such a high-order

representation would help reveal cross-view feature vectors’ dis-

similarities across subjects for a given population by computing

the inter-individual distances for each pairwise feature vector.

For a pair of ROIs i and j , H ij is composed of a set of N nodes

{ V 

1 
i j 

, . . . , V 

N 
i j 

}, each representing a subject-specific cross-view

feature vector V 

s 
i j 

for a subject s . The edges are calculated based

on the Euclidean distance between feature vectors for each pair

of subjects in the population. For ROIs i and j , the edge between

subjects s and s ′ is calculated as follows: 

H 

(
s, s ′ 

)
= 

√ ∑ n v (
V 

s k − V 

s ′ k 
)2 ; ∀ 1 ≤ s, s ′ ≤ N 
i j 

k =1 i j ( ) i j ( ) 
t  
.4. Quantifying the centeredness of each subject for a specific pair of

OIs 

For each pair of ROIs i and j , we construct an N × 1 distance

ector D ij calculated by summing H ij rows: 

 i j ( s ) = 

N ∑ 

s ′ =1 

H i j 

(
s, s ′ 

)
= 

N ∑ 

s ′ =1 

√ ∑ n v 

k =1 

(
V 

s 
i j ( k ) − V 

s ′ 
i j ( k ) 

)2 

Where D ij 
( s ) is the cumulative distance from a feature vector

 

s 
i j 

for subject s to all remaining subjects in the population, V 

s ′ 
i j 

,

 1 ≤ s ′ � = s ≤ N . The intuition behind this step is to define an inclu-

iveness (commonality) criterion for each feature type across the

hole population, where the feature vector satisfying the smallest

istance min 

1 ≤s ≤N 
D ij (s ) depicts the most representative and centered

rait (cross-view feature vector) across all subjects. 

.5. Population-representative tensor construction 

Instead of using the whole population dataset to build the final

BT, netNorm constructs a population-representative tensor ˜ T as

ollows: 

˜ 
 ( i, j, k ) = V 

s ′ 
′ 

i j ( k ) ; ∀ 1 ≤ k ≤ n v ; where s ′ = min 

1 ≤s ≤N 
D i j ( s ) 

In essence, ˜ T is constructed using a selection process that takes

nto consideration ‘the best’ cross-view feature vectors (nearest

eature to all others). The intuition behind this step is to define a

ultimodal brain network that captures the most shared traits of

he population while ‘overlooking’ the peculiarities of individual

ubjects which is the case for network brain average that treats all

ubjects equally in the fusion process. 

.6. Non-linear fusion for connectional brain template estimation 

Since the relationship between brain connections across views

s complex and nonlinear, netNorm non-linearly merges the n v 
iews of the population’s representative tensor ˜ T in order to

btain the final CBT. To this aim, we use similarity network fusion

SNF) introduced by Wang et al. in( Wang et al., 2014 ). SNF is a

ramework that integrates networks defined using different data

ypes for a same set of samples into a single network that gathers

oth local and global traits of similarities between samples. This

nal matrix is then used for retrieval, clustering or classification. 

In our case, we leverage SNF technique to generate a CBT

sing the n v network views composing ˜ T . The first step is to

nitially construct a status matrix P v for each view v carrying the

hole information about ROIs’ connections and a local matrix

 v that only takes into consideration the connections to the K

earest neighbours of each ROI. This fusion technique is based

n iteratively updating each individual status network P v in the

opulation through diffusing the average global structure of other

 − 1 networks along the individual local sparse matrix S v . P v and

 v are calculated as follows: 

 v ( i, j ) = 

{ 

˜ X v ( i, j ) 

2 
∑ 

l � = i ̃  X v ( i,l ) 
, j � = i 

1 / 2 

, i f i = j 

 v ( i, j ) = 

{ 

˜ X v ( i, j ) ∑ 

l∈ N i 
˜ X v ( i,l ) 

, j ∈ N i 

0 otherwise 

Where ˜ X v is the v th frontal view of ˜ T denoting the v th popula-

ion’s representative brain view, and N is the set of neighbors of
i 
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Algorithm 1 SNF algorithm for fusing matrices ( Wang et al., 2014 ). 

1: Inputs: 

A set of m similarity matrices: W k ( i, j ) 

2: Defining a status matrix for each similarity matrix W k : 

for each matrix W k do 

for each pair of ROIs i and j do 

P 0 
k 
( i , j ) = 

{ 

W k ( i , j ) 
2 

∑ 

l � = i W k ( i , l ) 
, j � = i 

1 / 2 , j = i 

end 

end 

3: Defining the K nearest neighbours for each ROI x i and for each view k : 

for each matrix W k do 

for each ROI i do 

Find the K nearest neighbours N i for each ROI x i : 

N i corresponds to the K ROIS x l where W k ( i , l ) is maximum. 

end 

end 

4: Defining a local matrix for each similarity matrix W k : 

for each matrix W k do 

for each pair of ROIs i and j do 

S k ( i , j ) = 

{
W k ( i , j ) ∑ 

lεN i 
W k ( i , l ) 

, jεN i 

0 , otherwise 

end 

end 

5: Iteratively updating the status matrix for each view k : 

for each view k do 

P t+1 
k 

= S k 

( ∑ 

v � = k P 
t 
v 

m −1 

)
( S k ) 

T , k = 1 . . . m 

end 

6: Defining the final fused similarity matrix: 

P c = 

∑ 

1 ≤k≤m P 
t 
k 

m 

R  
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Fig. 4. Illustration of SNF local matrix derived from similarity and dissimilarity 

sub-networks centered at a single seed node (purple node). Strong connections 

in terms of similarity and dissimilarity measures are respectively transformed into 

similarity and dissimilarity local matrices after normalization where weak connec- 

tions disappear for both. The number of neighbors K is set to 2 and the neighbor- 

hood for node 1 is defined as N 1 = { x 3 , x 5 } in both sub-networks. 

Table 2 

Data distribution for LMCI/AD and NC/ASD datasets. 

Datasets 

AD/LMCI ASD/NC 

AD LMCI ASD NC 

Number of subjects 41 36 155 186 

Male 23 20 140 155 

Female 18 16 15 31 

Mean age 75.27 72.54 16.92 16.65 
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w  

n  
OI i . This is achieved through iteratively updating the following

quation: 

 

t 
v = S v ×

(∑ 

v ′ � = v P 
t 
v ′ 

n v − 1 

)
× ( S v ) 

T 

Where t ∈ { 0 , . . . , t ∗} denotes the diffusion iteration number

nd T denotes the matrix transpose operator. Finally, following t ∗

terations, the target CBT is generated by averaging all updated dif-

used networks: 

 = 

1 

n v 

n v ∑ 

k =1 

P t 
∗

v 

emark on using SNF to fuse dissimilarity matrices. Originally,

NF technique ( Wang et al., 2014 ) is used to fuse similarity net-

orks for clustering purposes. In this remark, we mathematically

emonstrate that SNF can be also applied to fuse dissimilarity

ata where the different connections between ROIs denote dis-

ance measures. We introduce below the different steps of SNF al-

orithm for data fusion as introduced in ( Wang et al., 2014 ). 

Considering Algorithm 1 , we note that while the different steps

1, 2, 5 and 6) are mathematically applicable to any type of data

dis/similarity), step 3 and 4 consider pairwise similarities within

 network and use them as a reference for uncovering the inner

tructure of the input data by defining the local matrix for each

iew. The question that arises at this point is: “Is this technique

pplicable for dissimilarity networks where the connectivity values

enote distances instead of similarities? ”

The essential role of defining the local matrix S k for a view k

s to unravel the local structure of the sample matrices in terms

f strong and weak connections. For similarity matrices, we aim to

nhance similarities across ROIs, while for dissimilarity matrices,

e aim to discover the strongest connections in terms of distance

easures (dissimilarities). 

According to SNF algorithm ( Algorithm 1 , Wang et al., 2014 ),

he set of most similar ROIs N i = { x j } j to each ROI x i are defined

y choosing the first K regions x j with the maximum connectivity
easure W k ( i, j ). The intuition behind this step is to define a local

atrix S k capturing the local structure of the network. Only strong

onnections denoting the most similar connections remain strong

hile weak connections disappear. Integrating S k into the fusion

rocess would help enhance the strong similarity connections

cross networks. In case where the input networks are encoded

n dissimilarity matrices as in our experiments, the connections

etween pairs of ROIs denote the distance between them. Hence,

arger values represent most dissimilar pairs of ROIs. Applying

tep 3 in Algorithm 1 , by picking the top ROIs with the maximum

onnectivity values to an ROI x i , we are enhancing the dissimilarity

etween pairs of ROIs across all views. The local structure of the

etworks would then denote the local dissimilarities across ROIs

hile reducing the most similar connections. Using the local ma-

rix S k in the fusion process, strong dissimilarities will get stronger

nd weak dissimilarities will get weaker. For better reference, we

resent in Fig. 4 an example illustrating the definition of local

atrices for both similarity and dissimilarity sub-networks. 

In conclusion, from a mathematical perspective, the different

teps of SNF algorithm are applicable to both similarity and dis-

imilarity networks. Therefore, SNF can be used to fuse any type

f data regardless of the nature of their inner connection. �

. Experiments and material 

.1. Evaluation connectomic datasets 

We evaluated netNorm on two datasets as detailed in Table 2 ,

here each subject is represented by four morphological brain

etworks. The first dataset (ASD/NC dataset) is collected from
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the Autism Brain Imaging Data Exchange ABIDE I public dataset 4 

and consists of 341 subjects: 155 normal controls (NC) and 186

subjects with autism spectrum disorder (ASD) ( Martino et al.,

2014 ). The second dataset (LMCI/AD dataset) is collected from

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database GO

public dataset 5 consisting of 77 subjects: 36 subjects with Late

Mild Cognitive Impairment (LMCI) and 41 subjects with Alzheimer

disease (AD) ( Mueller et al., 2005 ). The ADNI was launched in

2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). 

We used FreeSurfer pipeline ( Fischl, 2012 ) to reconstruct both

right and left cortical hemispheres (RH and LH) for each subject

from structural T1-weighted MRI. We parcellated each hemisphere

into 35 cortical regions of interest using Desikan-Killiany atlas

( Fischl et al., 2004 ). Finally, we generated 4 cortical morphological

brain views (networks) for each hemisphere as shown in Fig. 3 :

X 1 , X 2 , X 3 and X 4 denoting respectively the maximum principal

curvature, the mean cortical thickness, the mean sulcal depth, and

the average curvature. 

Source code. netNorm source code is available at

https://github.com/basiralab/netNorm . 

3.2. Evaluation of connectional brain template representativeness 

To evaluate the centeredness and representativeness of the esti-

mated CBT in the original manifold where all multi-view networks

are nested, we calculate the mean Frobenius distance from each

view of each subject in the population to the estimated template.

The mean Frobenius distance between 2 matrices A and B is

calculated as: d F ( A, B ) = 

√ ∑ 

i 

∑ 

j | a i j − b i j | 2 . For reproducibility

and generalizability, we used 5-fold cross-validation where we

divided each population into 5 sub-populations. We used each

sub-population to generate a connectional template and calculate

its distance to all views within the subgroup. Hence, for each

population (e.g., ASD), we generated 5 CBTs, with an additional

one using the whole data. 

For a clear representation of the results, we normalize the

Frobenius distances calculated using netNorm and state-of-the-art

techniques within each fold using the following formula: 

d ′ F = ( d F − mea n i ) / ( ma x i − mea n i ) + 1 . 5 

Where mean i and max i denote respectively the average and the

maximum values of the Frobenius distances calculated using the

different distances for a given fold i . 

To assess the statistical significance of netNorm, we validated

the comparative study of the CBTs centredness using a two-tailed

paired t -test across all data folds in addition to the whole data

between netNorm and each of the comparative methods. 

3.3. Evaluation of connectional brain template discriminability 

In order to test the discriminability of the estimated CBTs, we

conducted a group comparison study to identify the top brain ROIs
4 http://fcon _ 10 0 0.projects.nitrc.org/indi/abide/ . 
5 Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

vestigators within the ADNI contributed to the design and implementation of ADNI 

and/or provided data but did not participate in analysis or writing of this report. 

A complete listing of ADNI investigators can be found at: https://adni.loni.usc.edu/ 

wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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α

hat distinguish between two groups: (1) ASD vs. NC, and (2) LMCI

s. AD, respectively, using both left and right hemispheres. For

his aim, we estimated a MV-CBT for each group, then by com-

uting the difference between both templates (e.g., NC and ASD

emplates) we identified the top 15 ROIs that distinguish between

oth groups. Next, we computed the overlap (in%) between the top

iscriminative ROIs found by netNorm and a supervised machine

earning method based on multiple kernel learning (MKL). Both

ethods are detailed bellow. 

.3.1. Top discriminative ROIs identification using the estimated CBTs 

To assess the reproducibility of CBT produced by netNorm, we

sed randomized 5-fold partition to divide each population p and

 ’ into 5 folds: p i and p ′ 
j 
, respectively, where 1 ≤ i, j ≤ 5. A 

p 
i 

and A 

p ′ 
j 

enote the estimated CBT for the i th fold in p and the j th fold in p ′ .
e compute the mean absolute difference between the estimated

emplates across folds using a simple inter-template subtraction as

ollows: 

 = 

5 ∑ 

i, j=1 

∣∣∣A 

p 
i 

− A 

p ′ 
j 

∣∣∣
Where D is an n r × n r matrix containing absolute features’

ifferences between fold p i and fold p ’ j in terms of connectional

trength. By summing the columns of D , we obtain a score vector

where the i th coefficient denotes the score αi assigned to the i th 

OI representing the cumulative distance from ROI i to all other

OIs k � = i. αi is calculated as follows: 

i = 

n r ∑ 

k = 1 

k � = i 

D ( i, k ) 

The top discriminative ROIs are then identified as those with

he highest scores ( Fig. 5 ). 

.3.2. Top discriminative ROIs identification using MKL 

Multiple kernel learning (MKL) is a technique aiming to identify

he most discriminative features for a target classification task that

istinguishes between two classes p and p ′ . Given a set of labelled

ata, each represented by a feature vector, we train a support vec-

or machine (SVM) classifier that learns a weight for each feature

ype quantifying its discriminative power in the classification task. 

For each network view, we used 5-fold randomized partition-

ng of data samples to divide each population p and p ′ into 5

ubpopulations. Given the v th brain view, for each combination of

ubpopulations p i and p ′ j , where 1 ≤ i, j ≤ 5, a connectional feature

ector F v s is constructed for each subject s in both subpopulations

sing the vectorized upper triangular part of the connectivity

atrix X 

v 
s . We assign a label y v s ∈ { ± 1} for each feature vector

 

v 
s denoting the population class. Feature vectors and their labels

re then used as inputs to train an SVM classifier. Using wrapper

ethod, a weight vector w 

v 
i j 

is estimated to assign a weight score

or each feature (connectional strength) in the classification pro-

ess using view v and subpopulations p i and p ′ j . The final weight

ector w is then calculated by summing up the weight vectors

cross all views and all combinations of subpopulations: 

 = 

n v ∑ 

v =1 

5 ∑ 

i, j=1 

w 

v 
i j 

Then, we assign a score value αi to the i th ROI by adding up the

eights of all connections involving ROI i to other ROIs. Let w ( i, j )

enote the weight of the connectivity strength between ROIs i and

, αi is then calculated as follows: 

i = 

∑ 

j � = i 
w ( i, j ) 

https://github.com/basiralab/netNorm
http://fcon_1000.projects.nitrc.org/indi/abide/
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Fig. 5. Identification of the top 15 discriminative regions of interest (ROIs) using the estimated connectional brain templates (CBTs) by netNorm. (A) We compute 

the absolute element-wise difference between both CBTs to generate the absolute difference matrix. (B) By summing up the column elements of each row in the absolute 

difference matrix, we create a score vector assigning the weight for each ROI. (C) Top discriminative ROIs are then identified using the highest scores. 

Fig. 6. Identification of the top discriminative ROIs using Multiple Kernel Learning (MKL). (A) We vectorized the upper triangular part of each population matrix to 

generate a feature vector for each connectional network. (B) Using multiple kernel learning (MKL), we obtain a weight vector w quantifying the discriminability of each 

brain feature (i.e., brain connectivity between two regions of interest (ROIs). (C) We use anti-linearization to transform the weight vector into a matrix where each element 

represents the weight of a connectivity between two ROIs. (D) By summing up the columns of the produced matrix we get a score vector denoting the discriminability of 

each ROI. 
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Finally, we select the top discriminative ROIs using the highest

cores αi , where 1 ≤ i ≤ n r ( Fig. 6 ). 

. Results 

For comparative evaluation, we benchmarked netNorm against

CA method introduced in ( Dhifallah and Rekik, 2019 ) in addition

o four baseline methods, relying on either of the following two

ey steps or both: (1) we merge the different views at the indi-

idual level, and (2) we fuse the resulting views from step (1) at

he population level into a single network representing the final

BT. Both steps are conducted using one of the following merging

echniques: linear fusion (average of different views) or non-linear

imilarity network fusion (SNF) ( Wang et al., 2014 ). These four

nclude SNF-SNF (SS), Average-Average (AA), SNF-Average (SA),

nd Average-SNF (AS). The number of iterations used in SNF is

et to N t = 20 to guarantee its convergence as recommended in
 Wang et al., 2014 ). We empirically set the number of nearest

eighbors to q = 20 . 

CBT representativeness and centredness. In order to evaluate

he representativeness of the proposed CBT, we computed the

ean Frobenius distance between the estimated brain network

nd the different views in the population for baseline methods as

ell as the proposed framework for both hemispheres (LH: the left

emisphere and RH: the right hemisphere). Table 3 displays the

ean Frobenius distance between the estimated CBTs calculated

sing the whole dataset for baseline methods as well as the pro-

osed framework. We note that our proposed CBT remarkably and

onsistently outperforms conventional techniques by achieving the

inimum distance for all datasets using both hemispheres offering

he most centered brain template for each population. Fig. 7 fur-

her plots the mean normalized distances between the estimated

BT and all views in the population for each hemisphere in our

our datasets (AD, LMCI, ASD, NC) using 5-fold cross validation
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Fig. 7. Evaluation of netNorm performance. Average Frobenius distance between the estimated connectional brain template (CBT) and all views in the original space using 

netNorm and benchmark methods for the left and right cortical hemispheres in ASD, NC, LMCI and AD populations. In addition to SCA technique introduced in ( Dhifallah 

and Rekik, 2019 ), comparison methods apply linear averaging (A) or nonlinear similarity network fusion (S) techniques in the following two steps: (i) merging brain network 

views for each subject into a single network, and (ii) merging brain networks across all subjects. ( ∗∗) for p-value < 0.001 using two-tailed paired t -test. 
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Table 3 

Normalized mean Frobenius distance between the estimated connectional brain template and the different 

connectional brain views using all subjects in different datasets. LMCI: late mild cognitive impairment. AD: 

Alzheimer’s disease. NC: normal controls. ASD: autism spectrum disorder. 

Datasets 

ASD NC LMCI AD 

LH RH LH RH LH RH LH RH 

AA ( ×10 −2 ) (Tapez une équation ici. 11.54 11.01 13.95 13.41 7.71 5.39 6.25 5.48 

SS 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 

AS 2.08 2.31 2.25 2.46 1.92 1.90 1.82 1.85 

SA 0.85 0.72 0.74 0.65 1.03 0.98 1.05 1.03 

SCA ( Dhifallah and Rekik, 2019 ) 0.84 0.73 0.73 0.65 1.06 0.92 1.02 1.01 

netNorm 0.57 0.47 0.51 0.39 0.55 0.61 0.62 0.61 

Table 4 

Matching rate in% between top discriminative ROIs identified by MKL method 

and the difference between connectional templates estimated for ASD/NC and 

AD/LMCI populations. 

Datasets 

AD/LMCI ASD/NC 

LH RH LH RH 

AA 66.67 73.34 53.54 53.54 

AS 46.67 46.67 40.00 46.67 

SA 73.34 73.34 53.34 73.34 

SS 75.27 72.54 16.92 16.65 

SCA ( Dhifallah and Rekik, 2019 ) 73.33 66.7 60 60 

netNorm 86.66 80.00 66.67 66.67 
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o evaluate the generalizability of our results across folds and

hen scaling up the data (i.e., considering the whole dataset). We

ote that netNorm consistently outperforms comparison methods

n terms of centredness when applied to all populations using

oth hemispheres for a p-value < 0.001 using two-tailed paired

 -test. In fact, the estimated CBTs using netNorm constantly have

he minimum normalized mean distance to all views across all

ubjects followed by SCA ( Dhifallah and Rekik, 2019 ), SA, AS, SS

nd AA techniques, respectively. We did not include the results of

A method in Fig. 7 since its distance values largely exceed the

verage range of other distances. 

CBT discriminability. In addition to being well-centered, we

emonstrate that netNorm produces well-representative templates

n terms of preserving the distinctive traits for a given population.

herefore, we conducted a comparative study between ASD and NC

opulations (respectively LMCI and AD populations) for both hemi-

pheres using the estimated CBTs. More specifically, we identified

he top 15 discriminative ROIs distinguishing between two groups

ASD vs. NC and AD vs. LMCI) for each hemisphere using the ab-

olute difference between the CBTs estimated using netNorm and

ach of the baseline methods (AA, SA, AS, SS and SCA). Then, we

alculated the overlap between the most discriminative anatomical

OIs revealed using our method and those identified using MKL.

able 4 displays the overlap in% between ranked most discrimi-

ative ROIs identified by (i) MKL and (ii) the absolute difference

etween the two estimated CBTs of the comparison methods, re-

pectively. We note that netNorm, overall, achieved a significantly

 p < 0.05) larger overlap in terms of top discriminative ROIs com-

ared with those generated by comparison techniques across all

atasets except for the right hemisphere in ASD/NC populations,

here it fell behind SA technique. Specifically, netNorm reached

n overlap percentage of 86% for distinguishing AD from LMCI sub-

ects using the left hemisphere and 80% for the right hemisphere. 

In Fig. 8 , we visualize the top 15 discriminative ROIs selected

sing MKL and netNorm respectively. We represent each of the

elected ROIs using its normalized score α depicting its discrim-

nability power in distinguishing between different populations

or all datasets using both hemispheres. We note that, the most
iscriminative ROIs selected by netNorm in distinguishing between

MCI and AD populations include the pericalcarine cortex (region

1) ( Wee et al., 2013 ) and the entorhinal cortex (region 6) associ-

ted with a decreased volume in subjects with Alzheimer’s disease

n comparison to those with mild cognitive impairment ( Devanand

t al., 2007 ) for the right hemisphere and the pericalcarine cor-

ex (region 21) and the Rostral middle frontal gyrus (region 27)

 Wee et al., 2013 ) for the left hemisphere, respectively. 

Thus, by applying netNorm to healthy and disordered pop-

lations, we show that the estimated CBTs reliably spot altered

rain regions differentiating healthy and pathological groups.

ore importantly, Table 5 displays the top 5 discriminative ROIs

istinguishing between healthy and autistic subjects (ASD vs.

C populations) using netNorm for both RH and LH, which are

onsistent with previous findings on atypical regions in autistic

ubjects in the literature. More specifically, we note that both the

ericalcarine cortex and the entorhinal cortex are selected as the

ost discriminative ROIs determined by netNorm that differenti-

te between healthy and autistic subjects for both hemispheres.

hese regions are known to be related to ASD ( Zielinski et al.,

014 ; Wegiel et al., 2010 ). In particular, the entorhinal cortex is

ighly correlated with hyperactivity, aggression and self-injurious

ehavior in autistic subjects. 

. Discussion 

In this paper, we introduced netNorm, a novel framework for

onnectional brain template estimation that leverages complemen-

ary information offered by different brain views for a population

f multi-view brain networks. We first built multi-view brain con-

ections between different regions of the brain for a population

f subjects, then we defined a cross-view feature vector between

ach pair of ROIs for each individual in the population. In order

o investigate the inter-relationship between different subjects in

he population at a local scale, we constructed a high-order graph

or each pairwise connection capturing the dissimilarities between

he cross-view feature vectors across all subjects. A selection

rocess is then applied to construct a multi-view population rep-

esentative tensor through selecting the most common cross-view

eature vectors among the population. The estimated CBT is then

enerated by fusing the different views of the estimated tensor.

e aimed to use the produced connectional templates in order to

dentify potential biomarkers for neurodevelopmental (ASD) and

eurodegenerative (AD) disorders. 

CBT representativeness and centeredness. Our proposed

ethod achieved the best performance in terms of centredness

here the estimated CBT had the minimum mean distance to all

etwork views in the population ( Fig. 7 , Table 3 ). These results can

e explained by the fact that while conventional methods (AA, AS,

A, SS) integrate the network views equally by merging them at a

lobal scale, whereas netNorm learns how to fuse them at a local
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Fig. 8. Assessing the discriminability of the estimated population-specific connectional brain template by netNorm. We identify top 15 discriminative ROIs of LH using 

(i) multiple-kernel learning (MKL) and (ii) the template absolute difference between two brain populations for the right and left hemispheres (RH and LH). 
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scale by first selecting for each local pairwise connection between

two ROIs the most representative cross-view feature vector in the

population. More specifically, through building a high-order graph

that captures the dissimilarities between different feature vectors

across all subjects, netNorm builds a population representative

tensor including feature vectors having the minimum distance

in the graph. Therefore, instead of equally combining feature

vectors across the whole population (e.g. through average or SNF),
etNorm only selects the most common subject-specific feature

ectors. The obtained tensor is a mosaic representation of the

hole population that occupies a centered location to all subjects

n the group. Thus, through satisfying the centredness criteria

f the population representative tensor, netNorm ensures the

entredness of the estimated CBT. 

CBT discriminability. Different studies have shown that the

omplementary information offered by different brain modalities
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Table 5 

Top 5 discriminative regions of interest (ROIs) in the left and right hemispheres distinguishing between normal controls (NC) and autistic (ASD) subjects identified by 

computing the absolute difference between ASD and NC estimated CBTs built using netNorm. 

Top 5 discriminative 

ROIs 

Behavioural effect in autism ROI representation 

Left Hemisphere Pericalcarine cortex Thicker cortex in autistic children in comparison to NC ( Zielinski et al., 2014 ). 

Entorhinal cortex Hyperactivity, aggression and self-injurious behaviour ( Wegiel et al., 2010 ). 

Isthmus cingulate 

cortex 

Impairment in social behavior ( Doyle-Thomas et al., 2013 ). 

Pars opercularis Social communication problems ( Yamasaki et al., 2010 ). 

Pars triangularis Language impairment ( De Fossé et al., 2004 ) 

Right Hemisphere Pericalcarine cortex Thicker cortex in autistic children in comparison to NC ( Zielinski et al., 2014 ). 

Entorhinal cortex Hyperactivity, aggression and self-injurious behavior ( Wegiel et al., 2010 ). 

Rostral anterior 

cingulate cortex 

Aggression ( Wegiel et al., 2010 ). 

Fusiform Gyrus Difficulties in face perception and persons’ recognition ( Van Kooten et al., 2008 ; 

Waiter et al., 2004 ). 

Parahippocampal gyrus Abnormal social cognition function ( Xiaoyan et al., 2008 ). 
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lay an important role in identifying potential biomarkers for neu-

ological disorders ( Apostolova et al., 2010 ; de Leon et al., 2007 ).

efining a unified representation of a population of multi-view

rain networks represents a key step for comparative studies. A

aive practice in defining a population’s template is by averaging

he population’s different views. However, this may not be enough

o effectively merge complementary information and preserve

he population’s discriminative traits. In this paper, one impor-

ant advantage of our proposed technique is its discriminative

ower in distinguishing between different populations as shown

n Table 4 and Fig. 8 . These results indicate the effectiveness of

he proposed framework against inter-subject variability while

nforcing the population’s common and distinct traits. This can

e explained, first, by the fact that the estimated CBT occupies

he minimum distance compared to all subjects in the popula-

ion which results in minimizing the inter-individual variability.

econd, through defining a selection process that only takes

nto account the most common cross-view feature vectors across

he whole population, netNorm builds a selective and reliable

ulti-view representation of the population before applying the

nal fusion process. Therefore, through constructing a high-order
raph that captures the commonality aspect of each feature

ector across subjects, netNorm explores the global architecture

etween subjects at the feature vector scale by exploring their

nter-connections. In addition, through applying SNF for non-

inear fusion of the representative views, netNorm explores the

omplementary information offered by different representative

rain modalities. SNF fuses complementary data lying on different

anifolds by an iterative process that adds strong connections

etween different networks to one another while discarding weak

onnections ( Wang et al., 2014 ). Therefore, ensuring a more robust

epresentation of a population’s connectional characteristics and

onserving its distinct traits. We believe that our proposed method

ill pave the way for more representative CBT estimation tech-

iques, stimulating a deeper understanding of neurodegenerative

nd neurodevelopmental diseases using different data sources. 

We display in Table 5 the top 5 discriminative ROIs distin-

uishing between healthy and autistic subjects for the right and

eft hemispheres by computing the absolute difference between

he estimated CBTs and pinning down regions with highest dif-

erences. We show that the pericalcarine cortex followed by the

ntorhinal cortex represent the most 2 discriminative ROIs for
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both hemispheres. We note that the human brain presents hemi-

spheric asymmetries that occur by nature ( Wada et al., 1975 ) or

through the asymmetric influence of autism ( Chiron et al., 1995 ;

Herbert et al., 2004 ), which explains the asymmetry between the

remaining discriminative regions for both hemispheres. We also

note that our findings are consistent with previous studies where

most of the identified ROIs obtained using netNorm are correlated

with behavioral impairments in autistic subjects. Particularly, for

the left hemisphere the isthmus cingulate cortex which is respon-

sible for social behavior impairment ( Doyle-Thomas et al., 2013 ),

the pars opercularis affecting the social communication skills and

the pars triangularis responsible for language impairment were

identified as discriminative ROIs between ASD and NC groups. For

the right hemisphere, however, we identified other discriminative

regions including the rostral anterior cingulate cortex explain-

ing the aggressive behavior in autistic subjects ( Wegiel et al.,

2010 ), the fusiform gyrus responsible for the difficulties in face

perception and persons’ recognition ( Van Kooten et al., 2008 ;

Waiter et al., 2004 ) and the parahippocampal gyrus affecting the

social cognitive function for ASD subjects ( Xiaoyan et al., 2008 ). 

Limitations. Our work has a few limitations. First, we evalu-

ated netNorm on morphological connectomic data using Desikan-

Killiany brain atlas, yet our framework is a generic method that

can be applied to different connectional modalities (e.g., functional

and structural connectomes) and using different brain parcellation

( Glasser et al., 2016 ). We note that, for a given population, the

same parcellation template shall be consistently used across all

network modalities and across all subjects. Second, we only tested

netNorm on morphological brain networks capturing different

attributes. For future work, we can consider combining differ-

ent brain views derived from different imaging modalities (e.g.,

structural and morphological brain networks) in order to explore

diverse and complementary information. Third, we used Euclidean

distance as a dissimilarity metric to build a high-order graph

between different cross-view feature vectors, which alternatively

can be learned to better model the high dimensionality of feature

vectors derived from multi-view networks. Forth, although we

identified morphological ROIs biomarkers for ASD and AD dis-

eases, we did not examine the connectional aspect between these

regions. These unexplored directions can be further investigated in

our future work. 

6. Conclusion 

In this paper, we unprecedentedly propose netNorm framework

for normalizing a population of multi-view brain networks by

estimating a well-representative and centered connectional brain

template using a selective fusion process. Specifically, we applied a

selection strategy for building a multi-view population representa-

tive tensor based on a commonality criterion for cross-view feature

vectors’ selection among all subjects. Then we constructed the final

template by non-linearly fusing the different representative views.

The proposed method outperformed the baseline methods on four

datasets composed of ASD, NC, AD, and LMCI subjects, respectively,

in terms of (i) centredness and representativeness compared to all

subjects and all views in the population and (ii) discriminability

in preserving the population characteristics. In our future work,

we will explore manifold learning techniques to enhance the

non-linear fusion process. Also, we will evaluate our framework on

other types of brain network views including positive and negative

values (e.g. functional brain connectivity) on larger datasets. 
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