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Abstract: Background: Feature extraction in medical image processing still remains a challenge, espe-
cially in high-dimensionality datasets, where the expected number of available samples is considerably 
lower than the dimension of the feature space. This is a common problem in real-world data, and, specifi-
cally, in medical image pro- cessing as, while images are composed of hundreds of thousands voxels, 
only a reduced number of patients are available.  

Objective: Extracting descriptive and discriminative features to represent each sample (image) by a small 
number of features, which is particularly important in classification task, due to the curse of dimensionali-
ty problem. 

Methods: In this paper we solve this recognition problem by means of sparse representations of the data, 
which also provides an arena to multimodal image (PET and MRI) data classification by combining spe-
cialized classifiers. Thus, a novel method to effectively combine SVC classifiers is presented here, which 
uses the distance to the hyperplane computed for each class in each classifier allowing to select the most 
discriminative image modality in each case. The discriminative power of each modality also provides 
information about the illness evolution; while functional changes are clearly found in Alzheimer’s diag-
nosed patients (AD) when compared to control subjects (CN), structural changes seem to be more rele-
vant at the early stages of the illness, affecting Mild Cognitive Impairment (MCI) patients.  

Results: Classification experiments using 68 CN, 70 AD and 111 MCI images from the Alzheimer's Dis-
ease Neuroimaging Initiative database have been performed and assessed by cross-validation to show the 
effectiveness of the proposed method. Accuracy values of up to 92% and 84% for CN/AD and CN/MCI 
classification are achieved.  

Conclusions: The method presented in this work shows that sparse representations of brain images are of 
importance for codifying and transferring relevant image features, as they may capture the salient features 
while maintaining lightweight data transactions. In fact, the method proposed in this work outperforms 
the classification results obtained using projection methods such as Principal Component Analysis for 
extracting representative features of the images. 
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1. INTRODUCTION 

Image analysis is a common technique for the diagnosis 
of dementias, as current imaging systems supply in-vivo in-
formation about the subject under study that complement  
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clinical evaluations. Image techniques can provide structural 
of functional data. The first group includes functional image 
techniques, which aim to capture information of biological 
functions of the brain such as regional cerebral blood flow or 
glucose metabolism, and make use of specific radiotracers 
and tomography imaging techniques as Single Emission 
Computerized Tomography (SPECT) or Positron Emission 
Tomography (PET). Nowadays, Alzheimer’s disease (AD) is 
the most common dementia1, and the diagnosis still remains 
a challenge, especially in the early stages of the disease. As 
the disease advances, brain functions become affected and it 
�������������������������������������������������������������

1Source: World Health Organization. Dementia Fact Sheet, April 2016. 
http://www.who.int/mediacentre/factsheets/fs362/en/ 
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is more difficult to contain the neurodegeneration process. 
Moreover, the cause of AD is not well-known and available 
drugs only help to slow down the advance of the disease. 
This way, early diagnosis is crucial to treat the disease effec-
tively and may help to develop new drugs [1].  

With the recent development of computer aided diagnosis 
(CAD) systems, the potentialities of brain imaging for the 
diagnosis of AD has been explored using functional [2-6] or 
structural [7-13] neuroimaging, as they provide in-vivo in-
formation about the subject under study that complements 
clinical evaluations. Functional neuroimaging aims to cap-
ture information of biological functions of the brain such as 
regional cerebral blood flow or glucose metabolism. Radio-
tracers and tomography imaging techniques such as Single 
Emission Computerized Tomography (SPECT) or Positron 
Emission Tomography (PET), are usually employed. Specif-
ically, Fludeoxyglucose Positron Emission Tomography 
(18F-FDG-PET) has been extensively used for the diagnosis 
of the AD. On the other hand, structural neuroimaging such 
as Magnetic Resonance Images (MRI) provides anatomical 
information of brain tissues.  

CAD systems aim to exploit the information contained in 
the images to learn patterns associated to cerebral neuro-
degeneration [14]. Nevertheless, medical image processing 
in CAD systems presents some difficulties usually associated 
to the computational burden and to the generalization power 
of the models, due to the lower number of available samples. 
In fact, medical image processing usually requires managing 
with high dimensional data, due to the high number of 
voxels in the neuroimage. Thus, reducing the dimension of 
the feature space that describe the samples constitutes an 
important step in data mining as it allows to focus on in-
formative features discarding those that can be considered as 
less informative or noisy. As a result, representing the data 
manifold in a lower dimensional space avoids the curse of 
dimensionality problem [15]: provides a higher discrimina-
tive power between classes and diminishes the number of 
samples needed to effectively train a classifier avoiding 
overfitting and improving the generalization capability. In 
addition, the computational burden associated to data pro-
cessing is dramatically reduced.  

Dimensionality reduction can be accomplished in two al-
ternative ways, namely feature extraction and feature selec-
tion. The first consist on extracting new informative features 
from the RAW dataset [2] or by transforming the original 
data. Thus, techniques such as Principal Component Analy-
sis (PCA) [16] or Independent Component Analysis [17] are 
representative examples of feature extraction techniques that 
compute basis vector indicating the directions of maximum 
variance or maximum statistical independence. Thus, the 
projection of the data onto this basis maximizes the sample 
scatter. Another popular feature extraction technique that 
uses a classification criterion instead of the representation 
error (as in PCA), is Linear Discriminant Analysis (LDA) 
[16]. In this case, the samples may not be accurately repre-
sented by the projected features (that is, reconstruction error 
is not minimised), but class discriminative information is 
enhanced. PCA, and LDA have been used in classical prob-
lems, such as facial recognition, as in the eigen- faces and 
fisherfaces methods [18], respectively. Moreover, PCA and 

ICA have been specifically used in brain image analysis to 
reduce the dimensionality of the data manifold. Thus, [19] 
introduces the eigenbrains, which computes a set of base 
images that allows to extract the most relevant features by 
PCA compression. Applications of the PCA and ICA meth-
ods to extract relevant features from brain images can be 
found in [2, 4, 20-24]. It is worth noting that, although PCA, 
ICA and LDA are linear techniques, the function defining 
the projection onto the lower dimensional space may in gen-
eral implement a non-linear mapping. Other methods extract 
discriminative features by computer vision or image pro-
cessing techniques that aim to compute differences between 
CN and AD images [27]. 

Unlike feature extraction, feature selection does not 
transform the existing features, but only searches for the 
most informative subset. Feature selection methods are clas-
sified into two categories: filters and wrappers. Filters ranks 
the features by computing an average score on the different 
classes. Thus, fea- tures are ranked according to their im-
portance for separating classes using either statistical meth-
ods, information theory-based methods or searching tech-
niques. Statistical methods include hypothesis testing, such 
as the Students t-test [25, 16] or the Mann-Whitney U-test 
[25, 26]. Other filter implementations apply information the-
ory-based methods, using different metrics, such as Entropy, 
Kullback-Leibler divergence [16] or the information gain 
measure [27] to rank the features. Moreover, [28] use the 
Conditional Mutual Information (CMI) as the criterion for 
selecting feature subsets. Nevertheless, most filters evaluate 
the goodness of a feature by computing an average score on 
the different dataset classes and it may lead to removing fea-
tures from the final selection that could be especially rele-
vant for a certain class label.  

On the other hand, wrappers optimize an objective func-
tion that evaluates the usefulness of a feature selection to 
find the best combination of features. The objective function 
usually provides the accuracy of a classifier when executed 
using the current subset of features on the training set. This 
way, wrappers are classifier-dependent, and require execut-
ing the training process in each iteration. Additionally, 
wrappers can search for the optimal feature subset by subop-
timal searching techniques [16], that avoid evaluating all 
possible feature combinations and by exhaustive searching, 
where all possible feature combinations are used to score the 
performance of the classifier. The latter is computationally 
unfeasible for high-dimensionality spaces or large datasets.  

Previous works using different feature selection tech-
niques have provided good classification results using PET 
[4, 29] or MRI images [7, 30-32]. Nevertheless, functional 
and structural information can be jointly used to improve the 
classification performance [33-36]. More specifically, MRI, 
functional MRI (fMRI) and phenotypic data are combined in 
[33] to diagnose the attention deficit hyperactivity disorder 
(ADHD) by extracting features using a Non-Negative Matrix 
Factorization (NMF) based algorithm. In this way, [35] use 
MRI, PET and CSF data to AD diagnosis using Support 
Vector Machines for classification. Support Vector Classifi-
ers (SVC) has been used in previous works (  Alvarez   [37], 
Ortiz   [38]) to classify Alzheimer’s disease patients, provid-
ing good generalization performance while dealing with the 
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curse of the dimensionality problem [39]. Alternatively, 
Sparse Rerpesentation Classifiers (SRC) have provided re-
sults comparable to these and other more complex classifi-
ers, such as Support Vector Machines (SVM), when applied 
to different classification problems like face recognition 
[40]. In Liu   [8], an ensemble of SRC classifiers was already 
built to classify subjects. However, this used patches extract-
ed only from GM (Grey Matter) in MRI images. In our ex-
periments with multimodal data, we corroborate that most 
structural information related to AD is contained in GM data, 
but we find that functional PET data also leverage the classi-
fication performances by providing information not con-
tained in structural images.  

In this paper, we propose a method to extract sparse fea-
tures by means of an over-complete discriminative diction-
ary. Despite the classical SRC approach which uses the im-
ages to compose the dictionary [41], the method devised here 
use K-SVD representation-based dictionaries to compose a 
discriminative dictionary from both, PET and MRI images. 
Then, the computed dictionary is used to extract sparse fea-
tures to train specialized SVC classifiers. Eventually, SVC 
classifiers are combined in an effective way to take ad-
vantage of the most image modality that contains the most 
discriminative information. Additionally, the computed over-
complete dictionary can be used to figure out the most dis-
criminative areas in the brain, which can contribute to a bet-
ter understanding of the illness evolution.  

After this introduction, the rest of the paper is organized 
as follows. Section 2 shows details on the database and the 
methods used in this work. Then, experimental results and a 
discussion regarding the classification outcomes are given in 
Section 3. Finally, Section 4 concludes the paper with the 
main contributions and results of this work.  

2. MATERIALS AND METHODS 

2.1. MRI Brain Image Database 

Data used in the preparation of this article were obtained 
from the Alzheimers Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), 
private pharmaceutical companies and non-profit organiza-
tions, as a $60 million, 5-year public-private partnership. 
The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and 
early Alzheimers disease (AD). Determination of sensitive 
and specific markers of very early AD progression is intend-
ed to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the 
time and cost of clinical trials. The Principal Investigator of 
this initiative is Michael W. Weiner, MD, VA Medical Cen-
ter and University of California - San Francisco. ADNI is the 
result of the efforts of many co-investigators from a broad 
range of academic institutions and private corporations, and 
subjects recruited from over 50 sites across the U.S. and 
Canada. The initial goal of ADNI was to recruit 800 subjects 

but ADNI has been followed by ADNI-GO and ADNI-2. 
These three protocols have recruited so far over 1500 adults, 
with ages between 55 and 90, to participate in the research, 
consisting of cognitively normal older individuals, people 
with early or late MCI and people with early AD. The follow 
up duration of each group is specified in the protocols for 
ADNI-1, ADNI-2 and ADNI-GO. Subjects originally re-
cruited for ADNI-1 and ADNI-GO had the option to be fol-
lowed in ADNI-2. For up-to-date information, we refer the 
reader to www.adni-info.org.  

For the database used in this work we have selected pa-
tients for whom MRI and PET image data were both availa-
ble and taken at the same examination date. In those cases in 
which multiple examinations from the same patient were 
available, the first one was selected. Thus, it contains multi-
modal 18F-FDG PET and T1-weighted MRI data from 249 
subjects, consisting of 68 Normal/control (CN), 111 MCI 
and 70 AD from the ADNI database [42]. Demographic data 
(gender and age) of patients in the database and Mini Mental 
State Examination scores (MMSE) are summarized in  
Table 1. 

Table 1. Demograpichs data of patients in the ADNI multi-

modal PET+MRI database. 

Diagnosis Number Age Gender 

(M/F) 

MMSE 

Control (CN) 68 75.81�4.93 43/25 29.06����� 

MCI 111 76.39����� 76/35 26.68����� 

AD 70 75.33����� 46/24 22.84����� 

2.2. Proposed Method 

Fig. (1) shows a sketch of the proposed method. Two dif-
ferent SRC classifiers are trained using single-modality im-
age data: GM and PET images. Images are firstly prepro-
cessed and then over-complete dictionaries are built for each 
modality image by using preselected voxels via p-values 
obtained from Welch’s test. GM and PET test images are 
then reconstructed by using these dictionaries and the results 
are properly fused to output the most likely class. The differ-
ent parts of the process are described in more detail next. 

2.3. Image Preprocessing 

Different preprocessing was applied to PET and MRI im-
ages. PET images were first spatially normalized according 
to a PET template using SPM [43]. Then, images were nor-
malized in intensity in order to be able to compare them. 
This has been carried out as indicated in Alvarez   [37], 
where the mean value of the 0.1% voxels with the highest 
intensity levels is selected as normalization value. Moreover, 
voxels whose activation or uptake is below 10% have been 
removed and considered as background, as these do not pro-
vide relevant information for classification but cause noise 
and computational overhead. MRI images, on their side, 
have been spatially normalized according to the VBM-T1 
template and segmented into White Matter (WM) and Grey 
Matter (GM) tissues using the VBM toolbox for SPM [44]. 
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Such segmentation through VBM provides information 
about GM and WM tissue distribution, with values in the 
range [0, 1] indicating the membership probability to each 
specific tissue. Brain tissue distribution can be used to classi-
fy subjects as it is expected to be altered due to the neuro-
degenerative process [8, 41, 38]. 

2.4. Voxel Preselection 

Voxel preselection has been applied to each image mo-
dality separately to remove low significance voxels and re-
duce the computational cost caused by the high dimension of 
the input space. This aims to build the SRC dictionary using 
the most informative voxels, and was performed by means of 
Welch’s t-test hypothesis. Depending on the image modality, 
the value at each voxel position refers to a different magni-
tude; i.e. voxel values represent activation or uptake levels in 
PET images and membership probabilities in segmented 
tissues obtained from MRI.  

Welch’s t-test allows testing the difference between the 
means of two populations (  CN and AD) when the variances 
are unequal, and can be calculated using the following ex-
pression: 

�� �
�
��

�
��
��

�

�
��
��

���
�
�
��
��

���

                                       (1) 

Where �
��

�  and �
��

�  are the mean images for CN and AD 

respectively, and ���
�� are the variance images, and NCN, NAD 

are the number of CN and AD images respectively.  

It represent the image composed by the t-value provided 
by the Welch’s t-test for each image voxel, which is a signif-
icance measurement on the means difference. Greater t-
values correspond to lower p-values, where p is the probabil-

ity of observing the given value t, or one more extreme, by 
chance if the null hyphotesis, which argues for equal means, 
is true. In our case, only those voxels of the training set with 
p-value ≤ 0.05 (5% significance level) have been selected to 
build the SRC classifiers. Different numbers of voxels are 
preselected depending on the image modality. In Fig. (2), 
Welch’s t-values for all voxels in the images are shown as 
different colours (white colour represents the background 
voxels as defined in the previous step).  

2.5. Sparse Representation 

Sparse representation (SR) has been applied to different 
classification problems such as face recognition providing 
results comparable or even better than the ones provided by 
more complex classifiers such as Support Vector Machines 
(SVM) [40]. Sparse representation theory shows that sparse 
signals can be exactly reconstructed from a small number of 
linear measurements. Thus, sparse representation classi- fiers 
(SRC) usually takes the training samples as measurements 
under the assumption that a sample of a specific class should 
lie in the subspace spanned by the training samples belong-
ing to that class. Furthermore, a over-complete dictionary 
built to represent the data manifold, should contain the ele-
mentary signals which can be linearly combined to recon-
struct the samples. These elementary signals are called at-
oms. As the dictionary is over-complete, it is composed of a 
number of prototypes that exceeds the dimension of the sig-
nal space. 

Hereafter, we use the following notation. Vectors and 
matrix are notated in bold-face and � � indicates the ��-
norm. Thus, � � (��-norm of vector �) represents the num-
ber of non-zero components of �, and � � is computed as 

��
�
� . Similarly, � ��represents the ��-norm of � (i.e. Eu-

clidean norm).  

 
Fig. (1). Block diagram of the proposed method. Functional and Structural data is fused by comibining different SRC classifiers. 
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SR algorithm can be summarized as follows. Let 
� � � ���� � �� �� ������� be the set of dictionary atoms 
organised by columns (i.e. n atoms of dimension m). Thus, a 
test sample �� � ��� can be expressed as a linear combina-
tion of all the training samples as � � ��. The sparsest solu-
tion �� of this equation can be found by solving the optimi-
zation problem  

�� � ������� � ���� ��� � ������������������������� 

However, this optimization problem cannot be solved in 
polynomial time and it is even difficult to approximate. For-
tunately, if the solution is sparse enough, the solution pro-
vided by �� norm optimization is equivalent to the provided 
by the �� optimization problem, which is can be solved in 
polynomial time by standard linear programming methods 
[45]. Alternatively, it is possible to obtain an approximated 
solution by solving  

�� � ��� �� � � � � � � �             (3) 

where λ ≥ 0 is a regularization parameter related to the 
sparsity of the solution.  

Dictionary is over-complete whether D is a full rank ma-
trix, and n < m. Consequently, y can be exactly represented 
as y = Dx. Hence, y can be represented by its linear projec-
tion on the feature space spanned by the atoms taken into 
account in the linear combination indicated by x. As x is 
sparse, x ∈ Rm vector is the so-called sparse representation 
of y.  

2.5.1. Feature Extraction by Sparse Representation 

Feature extraction aims to obtain representative enough 
features from the original image [11, 47,57]. In this work, 
feature extraction is addressed by Sparse Representation, 
using an over-complete dictionary learnt from the data  
manifold.  

A dictionary can be built by using the training samples as 
atoms or adapting these training samples by some transfor-
mation. The most straightforward approach to build this dic-
tionary consist on using images belonging to different clas-
ses as dictionary atoms, organised by columns and keeping 
images from the same class grouped [48]. Nevertheless, pre-
constructed or adapted dictionaries are usually limited in 
their ability to sparsify the signals they are designed to han-
dle [49]. By contrast, dictionary learning techniques compute 
dictionaries from a training set, looking for an approximation 
of the training set as good as possible given a sparseness 
criterion on the coefficients. At the same time, it ensures a 
small number of non-zero coefficients for each approxima-
tion. On the other hand, dictionary learning techniques do 
not depend on the nature of the signals. Thus, it is possible to 
learn an over-complete dictionary in a more efficient way, 
generating a reduced number of atoms that maximize their 
representation capabilities. In fact, different dictionary learn-
ing algorithms have been proposed [49].  

Learning an over-complete dictionary D ∈ Rmxn for signal 
reconstruction, can be addressed by solving the optimization 
problem  

��������� � � �� ��
�
�� �� �� � � � ���� � � � ��������� 

where X = (x1,..,xk), xi ∈ Rm and s0 is the sparsity constraint 
which controls the maximum number of non-zero compo-
nents in the sparse representation of X (i.e. the maximum 
number of atoms being linearly combined to reconstruct each 
sample X).  

Building an over-complete dictionary imply having a 
higher number of atoms than the dimensionality of the data 
samples. However, this is not possible in our case due to the 
high dimensionality of data samples which could imply an 
infeasible computing time. Moreover, an over-complete dic-
tionary is not always required for discrimination tasks [50]. 

 

Fig. (2). Welch’s t-values for control / AD (a) MRI GM and (b) PET images. 
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Thus, after some experimentation, we set the number of dic-
tionary atoms to 30.  

K-SVD [51] and MOD [52] are two algorithms for con-
structing D from training samples. In this work, we use the 
K-SVD algorithm due to its demonstrated efficiently and 
representation capabilities in image restoration and compres-
sion applications [50]. K-SVD is a direct generalisation of 
the K-Means algorithm, that solves the optimization problem 
in an iterative way by minimising the energy of Equation 5, 
where xj

 is the j-th row in the coefficient matrix X = [x1, ..., 
xn], dj is the j-th column on Dictionary D and S is the sparsity 
constraint. A Detailed description regarding the K-SVD al-
gorithm can be found in [51, 53].  

��������� � � �� ��
�
��� �� � � � � �������������������������� 

�� � � � ����� ��                          (6) 

2.5.2. Building a Discriminative Dictionary 

K-SVD algorithm [46, 51] aims to learn an over-
complete dictionary from training samples minimizing the 
reconstruction error while complying with the sparsity con-
straint (i.e. only a reduced number of dictionary atoms is 
used to reconstruct a sample). However, atoms composing 
these dictionaries are not computed to maximize the discrim-
inative capabilities but to minimize the reconstruction error. 
Since our main goal is to classify the images providing a 
useful tool for CAD applications, a discriminative dictionary 
is built by concatenating representation-based dictionaries 
computed for each class separately, (namely, D1 and D2) (as 
indicated in Fig. 4), ensuring the representational power of 
both classes training samples. This way, K-SVD algorithm is 
used to obtain a small set of atoms comprising the infor-
mation required to reconstruct the images of each class and. 
Subsequently, sparse features computed for a specific sample 
using the discriminative dictionary will indicate a linear 
combination of atoms mostly belonging to the sample class 
(as the atoms used in the linear combination represent the 
most part of the sample class variance). Fig. (4) shows the 
procedure to compose a discriminative dictionary using the 
K-SVD algorithm to learn representative dictionaries for 
each class.  

2.6. Classification Approach 

According to Fig. (1), voxel preselection is performed on 
each image modality independently (PET and GM images). 
Preselected voxels are used to learn a separate dictionary for 

each modality by means of the K-SVD algorithm in order to 
improve the representation capabilities of each image modal-
ity. Hence, three dictionaries are built for PET and GM im-
ages. In other words, this method aims to compute the sparse 
representation of each image from the dictionary correspond-
ing to its modality and using these representations as image 
features. Subsequently, a Support Vector Classifier (SVC) is 
trained for each modality, obtaining separate classifiers for 
PET, and GM images.  

2.6.1. Support Vector Classifiers 

Classification of the feature vectors consisting in the 
sparse coefficients computed as indicated in Section 2.5 is 
accomplished by means of Support Vector Machine (SVM). 
SVMs were introduced in 70’s by Vapnik [54] as a set of 
supervised learning methods that have been widely used for 
classification and re- gression [54, 55], designed to separate 
a set of binary-labeled data by means of a hyperplane. Spe-
cifically, they compute the maximal margin hyperplane to 
achieve maximum separation between classes. SVMs work 
building a decision function in the form f : Rn � {±1} using 
n-dimensional training vectors and class labels li:  

��� �� � ��� �� �� � ��� �� �� ����� �� ������������������� 

in such a way that f is able to correctly classify new samples 
(f, l). Linear discriminant functions define decision hyper-
planes in a multidimensional feature space:  

� � � ���� � ����������������������������������������� 

where υ is the weight vector and �� is a bias (threshold). 
This way, ��� � ��� � � if class �� � �� and ��� � ��� �
��ifclass �� � ��, and the weight vector υ is orthogonal to 
the decision hyperplane. Finding the optimal separating hy-
perplane is addressed by the optimization task consisting of 
finding the unknown parameters �� � � � ��� � �. 

Let �� � � � ��� ��� be the feature vectors of the training 
set F. These belong to either of the two classes, �� or ��. if 
the classes are linearly separable, the objective would be to 
design a hyperplane that classifies correctly all the training 
vectors. That hyperplane is not unique and the optimization 
process focuses on maximizing the generalization perfor-
mance of the classifier, which is, the ability of the classifier 
to operate with new data. Among the different criteria, the 
maximal margin hyperplane is usually selected since it 
leaves the maximum margin of separation between the two 
classes. Since the distance from a point f to the hyperplane is 

 

Fig. (3). Feature extraction by sparse representation. Sparse vector ��(xi) is obtained by convex optimization [46]. 
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given by � � � ���� � � , scaling � and �� so that the value 
of g(f) is +1 for the nearest point in �� and −1 for the nearest 
points in���, reduces the optimization problem to maximiz-
ing the margin �� �  with the constrains:  

��� � ��� � ������ � ������������������������������� 

��� � ��� � ������ � ������������������������������ 

Moreover, the distance to the hyperplane can be inter-
preted in terms of classification confidence: the larger the 
distance from a point to the hyperplane, the higher the classi-
fication confidence. In fact, the distance to the hyperplane is 
used here to select the most reliable classifier for each sam-
ple, as indicated in the following section.  

 
Fig. (5). Distance from the i-sample to hyperplane in Support Vec-
tor Classifier trained for the k classifier. 

2.7. Multimodal Data Fusion 

In this section, the method devised to combine PET and 
GM classifiers is shown. There are different methods to 
combine classifiers [56] building an ensemble of classifiers. 
A simple method consists on using majority voting to decide 
the class of the test sample. However, the score of each clas-

sifier can be used to combine the outcomes of individual 
classifiers in a more effective way. In the assessment of SVC 
classifiers, the distance to the hyperplane can be used as a 
score measure. Thus, an alternative way to combine SVC 
classifiers consists on computing the average distance to the 
hyperplanes generated by each classifier. In our case, three 
SVCs trained for PET and MRI/GM, respectively, are being 
combined. We denoted these SVCs as SVCk, where k = 1, 2 
and dk the distance to the hyperplane corresponding to PET 
and GM classifier, respectively.  

������� � � �
���������

���

�
������������������������ 

According to Fig. (5 and 11), class label of a test sample 
y can be computed as  

����� � �
������������� � � �

������������� � � �
������������� 

The experiments performed using this method to fuse the 
classifiers figured out a new method to combine SVCs that 
provided better results when fewer classifiers are combined. 
This is based on using the distance from a sample to the hy-
perplane to score the classifiers. In other words, as the dis-
tance to the hyperplane becomes larger, the classification 
result provided by the classifier should be more reliable. 
Thus, the class for each sample can be computed as the class 
predicted by the classifier that best differentiates between 
classes in terms of the distance to the hyperplane. The over-
all classification procedure is summarized in Fig. (6).  
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Where y is the i–sample, D is the dictionary and xi is the 
sparse coefficient vector that indicates the linear combination 
that best represents yi in terms of D.  

As different dictionaries, �� � � ��
��� ���

�� �and 
��� � ���

���� ���
��� were leant for classes 1 and -1, data 

dimensions can be ranked as  

�� � ���� ��
�
�� � ������ ��
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� � ��� �� � � � ��� � � ��������������������������� 

 

Fig. (4). A discriminative dictionary is built as a concatenation of representative-based dictionar- ies computed by the K-SVD algorithm. 
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dimensional subspaces to encode high-dimensional samples, 
while minimizing the representation error  

The larger rj the most relevant the j-dimension is. Thus, 
this method selects voxels with discriminant power between 
two classes, and these voxels define Regions of Interest 
(ROIs) associated to the disease.  

Regions of interest shown in Figs. (7 and 8), figure out 
some areas related to AD according to the literature [58]. It 
is worth noting that no preselection was used to compute 
these images, in order to show the hability of the method to 
reveal discriminative areas. Regions revealed in Figs. (7 and 
8) that differentiate CN and AD patients are the hippocam-
pus, enthorrinal cortex, middle temporal gyrus and cingulate 
cortex. Moreover, other areas especially those occupying 
lower GM volume such as the enthorrinal cortex of the mid-
dle temporal gyrus. On the other hand, posterior cingulate 
cortex is also marked.  

Previously mentioned areas are known in the literature as 
AD-related, and they are markedly affected in severe AD. 
Nevertheless, the main interest in AD diagnosis concerns the 
ability to be diagnosed at an early age, even in the absence of 
cognitive symptoms, involving the detection of sightly af-
fected areas [59]. 

3. RESULTS AND DISCUSSION 

In this section, results from the classification experiments 
performed using the proposed algorithm are presented. These 
include experiments using different sparsity values, which 
results in different number of non-zero components in the 
sparse representation of the images. In addition to the tradi-
tional features of accuracy, sensitivity and specificity, the 
discriminative capabilities of the methods are also compared 
by computing the ROC (Receiver Operating Characteristic) 

curves and their corresponding AUC (Area Under the 
Curve). Regarding the evaluation technique, k-fold cross-
validation technique with k = 10 has been used to assess the 
method. The results are then obtained by averaging the k 
iterations. This guarantees that the number of misclassifica-
tions leads to the estimation of the prediction error probabil-
ity. It is worth also note that, to avoid double dipping, only 
training samples have been used to compute preselected 
voxels and build SRC dictionaries. More details about the 
statistical significance can be found in the next subsection.  

For CN/AD classification and taking AD as the positive 
cases, Fig. (9a) shows, for different sparsity values, the clas-
sification accuracies achieved when classifying with 
GM+PET data and when only one of these types, GM or 
PET, is used (i.e. GM or PET). The sparsity value providing 
the best results has been then used to compute the ROC 
curves shown in Fig. (9b), obtaining AUC (Area Under 
Curve) values of 0.92, 0.94, and 0.95 for GM, PET and the 
multimodal combination, respectively. Thus, a slight, but 
nevertheless significant increase in the performances is ob-
served when GM+PET are combined. Likewise, Fig. (10a) 
shows the mean accuracy values obtained by cross-
validation for CN/MCI classification, taking MCI as the pos-
itive cases. The corresponding ROC curve is plotted in Fig. 
(10b), and for this case, the AUC values are 0.83, 0.81, and 
0.86 for GM, PET and the multimodal combination, respec-
tively. Another interesting aspect to be pointed out is that 
while PET and GM information seems to be equally discrim-
inative for AD/CN classification, GM becomes more rele-
vant for the early diagnosis (CN/MCI classification).  

Results obtained using the proposed approach based on 
SR are compared now with a baseline method that uses PCA 
as dimensionality reduction technique and linear SVM as 

 

Fig. (6). Overall Classification Procedure. 
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Fig. (7). Regions of interest computed using the CN/AD dictionary in (a) GM and (b) PET. Scale in colorbar indicates the relative importance 
of each voxel according to the ranking given by equation 14. 

 

Fig. (8). a,b) 3D model of regions of interest using the GM dictionary. Scale in colorbar indicates the relative importance of each voxel ac-
cording to the ranking given by equation 14. 

 

Fig. (9). Classification accuracy (a) and ROC curve (b) obtained for the proposed method for CN/AD classes when GM and PET are com-
bined and used independently. 
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Fig. (10). Classification accuracy (a) and ROC curve (b) obtained for the proposed method for CN/AD clases when GM and PET are com-
bined and used independently. 

classifier [2]. In this case, preselected voxels from each im-
age modality are concatenated obtaining a high-dimensional 
vector for each sample. Next, PCA is applied to reduce this 
dimensionality by projecting data onto the 8 first Principal 
Components (PCs) computed for the training data. These 
first 8 PCs account for more than 90% of the variance. Then, 
a linear Supoort Vector Machine [54] is trained and used to 
classify test samples. As in the SRC case, this approach has 
been assessed by k-fold (k = 10) cross-validation. Table 2 
also colects the classification outcomes described above (i.e. 
GM, PET and GM+PET) and some others presented in pre-
vious works which use multimodal images for AD classifica-
tion such as Liu   [8] and Zhang   [36]. Classification results 
obtained using the method (PCA-SVM) along with their cor-
responding standard errors is also shown in this table. Alt-
hough, as mentioned, an accurate com- parison would re-
quire the use of the exact same database, it can be observed 
that the method proposed here provides similar results to 
those provided by previous works in CN/AD classification 
and outperforms them in CN/MCI classification.  

3.1. Statistical Significance  

The limited number of available samples makes neces-
sary to use a specific method to evaluate the generalization 
error of the proposal. Thus, cross-validation has been used to 
evaluate the performance of the proposed approach as ex-
plained above, specifically, resampling by stratified cross-
validation. This ensures that the proportion of both classes is 
preserved in each fold during training, and avoids double-
dipping, being a popular method to estimate the generaliza-
tion error. In fact, this error will always result in an overes-
timate of the true prediction error, since, as previously men-
tioned, k − 1 folds were used to retrain the model. This over-
estimation will depend on the slope of the learning curve of 
the classifier and reduces when k increases.  

Cross-validations performed for k << N allow to estimate 
the standard deviation of an experiment CV (ζ). First, the 
validation error in the j-th fold is averaged as  

��� � �
�

��
�� � �

�

��
��� � ��

��
�����
����

�  (15) 

where nj is the number of samples in the j-th fold. Then, 
the standard deviation of CVj(ζ) with 1 ≤ j ≤ k can be com-
puted as  

�� � � ���������� � ��� � ��� ��� �   (16) 

where var(x) stands for the variance of the variable x. Fi-
nally, the standard error (or standard deviation of CV(ζ)) is 
computed as:  

��� � � ������� �    (17) 

The standard error of each cross-validation execution 
computed using this method is shown in Table 2 when avail-
able.  

4. DISCUSSION 

Classification results obtained for CN/AD images show 
that relevant information is contained in both, MRI and PET 
images. Although both could be successfully used for diag-
nostic purposes, PET slightly outperforms the results ob-
tained by structural imaging, and the combination of both 
brings better results than either one alone. Thus, multimodal 
data fusion combining SR features provides accuracy values 
of up to 92% for CN/AD classification and AUC of 0.96. In 
the case of CN/MCI classification, structural data provide 
most part of the discriminant information, as functional dif-
ferences between CN and MCI patients are subtle. This is 
confirmed in our experiments that show better classification 
outcomes using MRI data (specifically, GM distribution da-
ta) than PET. Combining PET and MRI, however, results 
more discriminative than MRI, particularly when the number 
of voxels is low (corresponding to low p-value thresholds), 
obtaining an AUC of 0.82. The proposed method is therefore 
able to effectively combine multimodal data and outperforms 
classification using single-modality images, dealing also 
well with the inclusion of non-discriminative voxels in one 
of the classifiers being combined.  

As in the case of NMF factorization [33], the use of 
sparse representation in the basis set improves classification 
accuracy. It is also an efficient representation of the underly-
ing structure of the data, which allows for meaningful com-
binations of PET and MRI imaging data. In contrast, other 
multimodal approaches for combination of different imaging 
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Table 2. Classification results for single modality and multimodal data using p-value threshold ≤ 0.05. Standard deviation is indi-

cated in each case. (*) data not available in the source. 

Method Accuracy Sensitivity Specificity AUC 

CN / AD Classification    

VAF GM 0.81����� 0.81����� 0.82����� 0.83 

VAF PET 0.88����� 0.84����� 0.91����� 0.88 

PCA+SVM GM+PET 0.88����� 0.87����� 0.88����� 0.90 

Sparse Ensemble GM [8] 0.90� � 0.86� � 0.94� � 0.94 

Multimodal MRI+PET [32] 0.94� � 0.93� � 0.93� � 0.97 

Our Approach (GM+PET) 0.92����� 0.94����� 0.89����� 0.96 

CN / MCI Classification    

VAF GM 0.54����� 0.55����� 0.52����� 0.52 

VAF PET 0.68����� 0.78����� 0.57����� 0.74 

PCA+SVM GM+PET 0.69����� 0.70����� 0.54����� 0.75 

Multimodal MRI+PET [32] 0.76� � 0.81� � 0.66� � 0.80 

Our Approach (GM+PET) 0.79����� 0.85����� 0.71����� 0.82 

 

modalities [8, 34] require the use of patches for growing 
robust classifiers, involving more than a single classifier and 
additional computational cost. A baseline method based on 
PCA-SVM classification has been also implemented. This 
method, which applies PCA to the concatenation of the fea-
ture vectors corresponding to each modality and accounts for 
more than 90% of the variance explained, provides 88% of 
accuracy for CN/AD and 68% of accuracy for CN/MCI, be-
ing outperformed by the SR-SVC approach proposed here.  

CONCLUSION 

The future of Computer aided diagnosis systems is mov-
ing towards web-based platforms that may be used online to 
assist the physician and patient in the diagnosis, treatment 
and care. To this end, sparse representations of brain images 
are of importance for codifying and transferring relevant 
image features, as they may capture the salient features while 
maintaining lightweight data transactions. This paper de-
scribes a method for AD diagnosis which uses structural and 
functional data from MRI and PET imaging, respectively. 
Unlike approaches that simply concatenate the feature vec-
tors obtained from structural and functional data, the pre-
sented approach combines specialised classifiers trained with 
single modality data. In particular, these classifiers are 
trained from segmented MRI (GM tissue) and PET images, 
and are based on the SRC model, which assumes that a sam-
ple belonging to a specific class can be reconstructed by a 
linear combination of a reduced number of training samples 
from the same class. Thus, different dictionaries containing 
the training samples of each image modality are built, and a 
sparse linear combination of the dictionary atoms is obtained 
by solving the �� �least squares regularized problem. In this  
 

work, per-class dictionaries learnt using the K-SVD algo-
rithm are used to compose a discriminative dictionary, in-
stead of using the classical SRC approach. This dictionaries 
which contains a base to represent any image, are used to 
compute sparse features that are further classified by a SVC 
classifier. The classification approach described here is ap-
plied to funcional (PET) and sctructural (MRI/GM) images, 
and classification outcomes from specialized classifiers are 
combined to provide a unique class prediction by means of 
the distance to the hyperplane. Basically, if the class predic-
tions for each image modality do not coincide, that with the 
higher hyperplane distance which should correspond to the 
most reliable result.  

Experiments using multimodal image data from the 
ADNI database have been performed, showing improve-
ments from the baselines that use only GM or PET data. For 
multimodal comparisons, classification experiments using 
PCA as dimensionality reduction technique and a linear 
SVM as classifier have been conducted. The classification 
results obtained also outperform the PCA-SVM method, as 
well as those provided in previous works, showing accuracy 
values of up to 92% for CN/AD and 79% for CN/MCI, 
meaning an improvement of 4% and 11%, respectively, in 
comparison with the PCA-SVM approach.  

As future research directions, we plan to use SVM-based, 
optimized binary classifiers such as the twin support vector 
machine (TWSVM) as it provided promising results in other 
works [60, 61].  
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