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Abstract

With the increasing prevalence of Alzheimer’s disease, research focuses on the early computer-

aided diagnosis of dementia with the goal to understand the disease process, determine risk and 

preserving factors, and explore preventive therapies. By now, large amounts of data from multi-site 

studies have been made available for developing, training, and evaluating automated classifiers. 

Yet, their translation to the clinic remains challenging, in part due to their limited generalizability 

across different datasets. In this work, we describe a compact classification approach that mitigates 

overfitting by regularizing the multinomial regression with the mixed ℓ1/ℓ2 norm. We combine 

volume, thickness, and anatomical shape features from MRI scans to characterize neuroanatomy 

for the three-class classification of Alzheimer’s disease, mild cognitive impairment and healthy 

controls. We demonstrate high classification accuracy via independent evaluation within the scope 

of the CADDementia challenge. We, furthermore, demonstrate that variations between source and 

target datasets can substantially influence classification accuracy. The main contribution of this 

work addresses this problem by proposing an approach for supervised domain adaptation based on 

instance weighting. Integration of this method into our classifier allows us to assess different 

strategies for domain adaptation. Our results demonstrate (i) that training on only the target 

training set yields better results than the naïve combination (union) of source and target training 

sets, and (ii) that domain adaptation with instance weighting yields the best classification results, 

especially if only a small training component of the target dataset is available. These insights 
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imply that successful deployment of systems for computer-aided diagnostics to the clinic depends 

not only on accurate classifiers that avoid overfitting, but also on a dedicated domain adaptation 

strategy.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia with incidence rates further 

increasing in the future due to increasing life expectancy. Early and accurate diagnosis of 

AD is a key objective as it can help patients to access supportive therapies earlier allowing 

them to maintain independence for longer (Paquerault, 2012). When treatment options that 

directly interfere with disease pathways finally become available, intervention will likely be 

most effective in early preclinical or presymptomatic disease stages. Furthermore, early 

identification of high-risk individuals can already support selection into promising drug 

trials, inform patient stratification, as well as aid the identification of risk and preserving 

factors. Magnetic resonance imaging (MRI) is an important tool for AD diagnosis because 

the atrophy measured in MRI correlates with neuron loss and can indicate the onset of the 

impairment in close temporal proximity (Jack et al., 2013). Computer-aided diagnosis of 

dementia based on MRI is an active research field as indicated by 50 articles reviewed on 

this topic by Falahati et al. (2014). The deployment of automated system for diagnosis of 

AD in the clinic promises several advantages: (i) the improvement of diagnosis in places 

with limited neuroradiological know-how, (ii) a faster diagnosis without compromising 

accuracy by avoiding lengthy specialist investigations, and (iii) a more objective diagnostic 

assessment based increasingly on quantitative information in contrast to traditionally more 

subjective diagnostic impression (Klöppel et al., 2012). Computational diagnostics promise 

to be particularly useful for screening purposes to identify individuals with preclinical 

disease.

Large, multi-center datasets are available for studying Alzheimer’s disease and for 

supporting the training of complex classification models. A challenge for such models is 

generalizability, i.e., the ability to transfer a model that is trained on one dataset to another 

dataset while retaining high prediction accuracy. In an attempt to provide an objective 

assessment of state-of-the-art methods for AD classification, the CADDementia challenge 

has been organized recently (Bron et al., 2015). The task was to differentiate between 

patients with Alzheimer’s disease, mild cognitive impairment (MCI), and healthy controls 

(CN) based on T1-weighted MRI data. Classification accuracy of a variety of submissions 

was evaluated on an independent test dataset with hidden diagnosis. Intriguingly, the study 

showed that all participating groups overestimated the accuracy of their method. One of the 

main reasons for the overestimation may be overfitting to the training data. Neuroimaging 

applications are susceptible to overfitting due to a potentially large number of features 

extracted from images and a restricted number of samples available for training. Overfitting 

is further aggravated by complex classification models with many degrees-of-freedom that 

Wachinger and Reuter Page 2

Neuroimage. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



easily fine-tune to a specific population but overestimate the performance on the general 

population (Adaszewski et al., 2013; Mwangi et al., 2014). In our classifier we employ 

methods that mitigate overfitting by (i) using sparsity constraints to estimate a compact 

model and by (ii) choosing a linear classification model based on multinomial regression to 

further limit the number of free parameters. Yet, in spite of these efforts, the bias towards 

overestimating performance on the training set still prevails, indicating that overfitting may 

not solely be responsible. Here, we identify another cause for reduced classification 

accuracy on the final test set: the differences in the distribution between training and test 

data.

The main contributions of this work are twofold: We introduce a compact classifier for 

Alzheimer’s disease that incorporates shape information and evaluate its performance on an 

independent test setting. We further demonstrate that variations in source and target datasets 

have a large impact on classification accuracy and present a novel algorithm for domain 

adaptation that re-weights samples from the source dataset.

1.1. Computer-Aided Diagnosis of Dementia

Predicting or classifying dementia based on structural MRI is an active field of research. 

Cuingnet et al. (2011) compare several approaches for the discrimination of AD and MCI 

patients using the cortical thickness, the hippocampus and voxel-based methods. Falahati et 

al. (2014) review the literature for the classification of individuals with dementia. The 

extensive list of articles discussed in the review illustrates the wide interest in the research 

field. In this work, we introduce an algorithm for AD classification that is based on 

BrainPrint (Wachinger et al., 2015) for quantifying brain morphology, which naturally 

extends the region of interest (ROI)-based volume and thickness analysis with shape 

information (Reuter et al., 2006). Anatomical shape features contribute valuable information 

to the characterization of brain structures, which are only coarsely represented by their 

volume. Finding representative and descriptive features is crucial for automatic classification 

as it is well known in pattern recognition that the prediction accuracy is primarily driven by 

the representation (Dickinson, 2009).

Both of the review articles mentioned above refer to a total of only three publications that 

employ shape information, indicating that shape is not commonly used. Most previous work 

that includes shape analysis, typically focus on a single structure, predominantly the 

hippocampus. More precisely, Gerardin et al. (2009) approximate the hippocampal shape by 

a series of spherical harmonics. Ferrarini et al. (2009) use permutation tests to extract 

surface locations that are significantly different among patients with AD and controls. 

Costafreda et al. (2011) incorporate shape information by deriving thickness measurements 

of the hippocampus from a medical representation. Shen et al. (2012) use statistical shape 

models to detect hippocampal shape changes. Bates et al. (2011) investigated spectral 

signatures for AD classification, with a focus on right hippocampus, right thalamus and right 

putamen. Other structures of interest for shape analysis were the cortex and ventricles: Kim 

et al. (2014) use multi-resolution shape features with non-Euclidean wavelets for the 

analysis of cortical thickness, King et al. (2010) analyze the fractal dimension of the cortical 

ribbon, and Gutman et al. (2013) model surface changes of the ventricles in a longitudinal 
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setup with a medial representation. In contrast to all these studies, we incorporate an 

ensemble of both cortical and subcortical structures. This extensive characterization of brain 

anatomy is promising in diagnosing Alzheimer’s disease, which is associated with 

widespread atrophy across the entire brain.

1.2. Domain Adaptation

As described above, differences between source and target datasets can significantly reduce 

classification accuracy. In traditional cross-validation, where a single dataset is split into 

subsets, such variations are negligible, as the subsets tend to represent the data well. 

However, when an independent dataset is used for testing, differences in the distributions 

can have a dramatic impact on the classification accuracy. Such problems are studied in 

domain adaptation (Pan and Yang, 2010), where the model is learned on a source dataset and 

then transferred to a target dataset with different properties. In fact, we believe that domain 

adaptation is crucial for the translation of computer-aided diagnostic methods to the clinic, 

where the source dataset usually consists of large, possibly multi-center, data and the target 

dataset is the (limited) data acquired at the specific hospital, where the system is deployed. 

There are clearly several factors that can contribute to variations between source and target 

datasets arising from location and selection biases.

Here, we assume a supervised domain adaptation scenario, where a subset of the target 

dataset is available for training, replicating the situation that a small, local dataset from the 

clinic is available to support training. Based on this small target training set we weight 

samples from the source dataset to match distributional properties of the target dataset. The 

proposed instance weighting presents a general framework, where naïve strategies for 

combining source and target training data (e.g. the union or selecting one vs. the other) can 

be derived by setting the weights to appropriate constants. We measure a variation in 

classification accuracy of more than 20% across strategies, highlighting the importance of 

domain adaptation. Domain adaptation with instance weighting has previously been 

described in the machine learning literature (Bickel et al., 2007; Jiang and Zhai, 2007). An 

unsupervised domain adaptation strategy for AD classification was used by Moradi et al. 

(2014). This strategy applies discriminative clustering on the source and target domain, 

where a feature weighting is learned by optimizing the mutual information (Shi and Sha, 

2012). In contrast, we use a supervised domain adaptation strategy and do not weight 

features but instances. Further related are approaches that assume a semi-supervised 

classification setting (Zhao et al., 2014; Adeli-Mosabbeb et al., 2015), yet they operate on 

the same domain.

Domain adaptation has previously been successfully used in medical image analysis. van 

Opbroek et al. (2015) proposed transfer learning for image segmentation across scanners and 

image protocols with support vector machines and AdaBoost. Heimann et al. (2013) used 

domain adaptation for the localization of ultrasound transducers in X-ray images with 

probabilistic boosting trees. Schlegl et al. (2014) applied domain adaptation for lung tissue 

classification with convolutional neural networks.

Wachinger and Reuter Page 4

Neuroimage. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

In this section, we introduce our approach to AD classification with domain adaptation. The 

classification task is to predict the diagnostic label y of an individual based on image and 

non-image data summarized in the vector x. First, we introduce the multinomial classifier 

used for the prediction. We then derive our approach to multinomial regression with domain 

adaptation, and finally describe the extraction of image-based features from MRI scans with 

a focus on shape features from the BrainPrint.

2.1. Elastic-Net Multinomial Regression for Alzheimer’s Classification

We employ multinomial regression with a generalized linear model for the classification of 

subjects in three diagnostic groups (controls, MCI, and AD). The high-dimensional 

characterization of an individual may cause overfitting on the training dataset. We therefore 

select a subset of the features to establish a compact model. The elastic-net regularizes 

multinomial regression: During the estimation of a model for predicting diagnostic label y 
from observation x it identifies the most predictive variables (Friedman et al., 2010). The 

categorical response variable y has K = 3 levels with AD, MCI, and CN. We use the multi-

logit model, which is a generalization of linear logistic regression to the multi-class 

situation. The conditional probability for label ℓ is

(1)

with regression coefficients β. The model is fitted by regularized maximum multinomial 

likelihood with a penalty on the regression coefficients R(β)

(2)

with N the number of training samples. The parameter κ balances the data fit term with the 

penalty term.

The regularizer in elastic-net combines lasso ℓ 1 and ridge-regression ℓ2 penalties, modulated 

by the parameter α

(3)

For correlated predictors, ridge-regression shrinks their coefficients and allows them to 

borrow strength from each other. In contrast, lasso will tend to pick one and ignore the rest. 

Increasing α from 0 to 1 will monotonically increase the sparsity of the solution until the 
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lasso solution is reached. In a comparison of methods for model selection (Wachinger et al., 

2014), we obtained the best results for the elastic-net, when compared to manual selection or 

the stepwise selection with the Akaike information criterion.

2.2. Domain Adaptation for AD Classification

Domain adaptation distinguishes between a source domain and a target domain (Quionero-

Candela et al., 2009; Pan and Yang, 2010; Margolis, 2011). The setup for supervised domain 

adaptation is schematically illustrated in Fig. 1. The source domain is the training domain 

with labeled data , while the target domain is the test domain with only a 

fraction of labeled data. The labeled data in the target domain is denoted as 

 and the unlabeled data in the target domain as . As 

common in supervised domain adaptation, we assume Ns ≫ Nt and further that the training 

subset in the target domain is representative of the entire target dataset.

For the formulation of the problem, we consider supervised learning as empirical risk 

minimization. Abstractly, the optimal model θ* in the model family Θ is inferred by 

minimizing the loss function L

(4)

with the joint distribution over observations and labels p(x, y), the input space  and label 

set . In this work, we use the negative log-likelihood function from the multi-logit model 

(first term in Eq. (2)) as loss function, but the formulation is of general nature and therefore 

also extends to other loss functions. Since the joint distribution p(x, y) is unknown, we use 

the empirical approximation with the training data 

(5)

This setup considers a single dataset. For domain adaptation, we want to infer the model 

with minimal loss on the target dataset Dt, while the source training sample Ds is randomly 

sampled from the source distribution ps. In domain adaptation with instance weighting, this 

problem is addressed by re-weighting the elements of the source training dataset. The weight 

is dependent on the probability of source samples in the target domain, which can be derived 

as follows

(6)
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(7)

(8)

Considering further that training data is also available from the target domain, the model 

estimation is

(9)

The ratio

(10)

is the weighting factor for the sample ( ). It evaluates the probability of the source data 

sample ( ) under the target distribution pt, normalized by the probability under the the 

source distribution. The challenging part is the estimation of the probability of the source 

data under the target distribution . For supervised domain adaptation, we have 

training data in the target domain Dt, which we will use for estimating the target distribution. 

Fig. 2 illustrates source and target datasets. The probability density functions highlight the 

different distribution of both datasets. The weight emphasizes points that lie in high density 

regions of the target domain and low density regions of the source domain, in the figure 

these are the red dots towards the right. With this re-weighting of the source domain, we 

infer a model that is better adapted to the target domain and consequently yields higher 

classification accuracy.

In contrast to covariate shift that only considers variations in the marginal distributions of 

the observations ps(x) ≠ pt(x) (Shimodaira, 2000) and class imbalance that only considers 

variations in the marginal distributions of the labels ps(y) ≠ pt(y) (Japkowicz and Stephen, 

2002), we consider variations in the joint distribution ps(x, y) ≠ pt(x, y). To facilitate the 

estimation, we use the factorization p(x, y) = p(x)p(y), which implies the assumption of 

independence. The factorization is continued on the multivariate variable x, yielding a 

product of univariate densities. An alternative would be the direct estimation of the high-

dimensional joint density, however, a reliable estimation would require the number of 

samples to grow exponentially with the number of dimensions. Given the limited number of 
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elements in the target training dataset, a reliable estimation in higher dimensions seems not 

feasible. In this work, we select diagnostic information, age, sex, and the number APOE4 

allele for instance weighting, because they capture important characteristics about an 

individual. The distributions are estimated with histogramming for discrete variables and 

kernel density estimation for continuous variables.

The integration of instance weighting for domain adaptation in the multinomial regression in 

Eq.(2) results in

(11)

where the regression coefficients β correspond to the model parameters θ and training 

samples in the log-likelihood function are weighted. The weights wi are defined in Eq.(10) 

for training samples of the source dataset. Samples from the target training dataset have 

constant weight one. For solving the optimization problem in Eq.(11), a coordinate descent 

scheme is used (Friedman et al., 2010). In nested loops over the parameter κ and the classes, 

partial quadratic approximations to the log-likelihood are computed, where regression 

coefficients only vary for a single class at a time. Coordinate descent is then used to solve 

the penalized weighted least-squares problem.

In addition to setting the weights according to the equation for instance weighting, we can 

enforce different domain adaptation strategies by setting the weights to a constant, wi = c. 

The strategies differ in the data used for training:

I. c ≫ 1: only the source training dataset Ds,

II. c = 0: only the target training dataset Dt,

III. c = 1: the union of both training sets Ds ∪ Dt.

Selecting either one of the datasets or combining both are straightforward approaches that do 

not take the challenges of domain adaptation into account. We show in the results’ section 

that the chosen strategy substantially influences the classification result.

2.3. Image-Based Features for Classification

As mentioned above, the selection of descriptive features for the classifier is essential for the 

performance. For the extraction of image-based features, we process the scans with 

FreeSurfer (Dale and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999a,b, 2002). 

FreeSurfer automatically segments cortical and subcortical structures in the image. Based on 

the segmentation, we use the thickness of 70 cortical regions and the volume 39 brain 

structures. Next to volume and thickness, we use shape features that are derived from the 

BrainPrint, further explained in Section 2.3.1. The shape features include 14 lateral shape 

differences and 44 PCA shape variations. The total number of image features for the 

classification is 167. According to the recent analysis of the normalization of variables for 

AD classification (Westman et al., 2013), we normalize volumetric measures by the 
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intracranial volume (ICV) but do not normalize cortical thickness measures. Age 

residualization with linear regression was performed for each feature to remove the 

confounding effect of age in the analysis. After ICV normalization and age residualization, 

age and gender was not used in multinomial regression.

2.3.1. The Brain Descriptor BrainPrint—We create surface and volumetric meshes 

from cortical and subcortical segmentations. Based on these meshes, we compute compact 

shape representations for all structures, constituting the BrainPrint (Wachinger et al., 2015). 

The shapeDNA (Reuter et al., 2006) is used as shape descriptor, which performed among the 

best in a comparison of methods for non-rigid 3D shape retrieval (Lian et al., 2012). The 

Laplace-Beltrami spectrum is computed on the intrinsic geometry of the object to form the 

shapeDNA. Considering the Laplace-Beltrami operator Δ, one obtains the spectrum by 

solving the Laplacian eigenvalue problem (Helmholtz equation)

(12)

The solution consists of eigenvalue λi ∈ ℝ and eigenfunction fi pairs, sorted by eigenvalues, 

0 ≤ λ1 ≤ λ2 ≤ … (a positive diverging sequence). The first l non-zero eigenvalues computed 

using the finite element methods, form the shapeDNA: λ = (λ1, …, λl). To achieve scale 

independence, we normalize the eigenvalues, , where vol is the Riemannian 

volume of the D-dimensional manifold (Reuter et al., 2006), i.e., the surface area for 2D 

manifolds. Fig. 3 illustrates the first three eigenfunctions of the left white matter surface. 

The eigenfunctions show natural vibrations of the shape when oscillating at a frequency 

specified by the square root of the eigenvalue. We also map the same eigenfunctions on the 

inflated surface to highlight the characteristics of the eigenfunctions, not obscured by the 

complex cortical folding patterns.

The eigenvalues are isometry invariant with respect to the Riemannian manifold, meaning 

that length-preserving deformations will not change the spectrum. Isometry invariance 

includes rigid body motion and therefore permits the comparison of shapes across subjects 

by directly comparing the shapeDNA. A second property is that the spectrum continuously 

changes with topology-preserving deformations of the boundary of the object. These 

properties make the shapeDNA well suited for comparing shapes, as initial alignment of the 

shapes can be completely avoided.

We compute the spectra for all cortical and subcortical structures on the 2D boundary 

surfaces (triangle meshes (Reuter et al., 2009; Niethammer et al., 2007)) and additionally for 

cortical structures (white and pial surfaces in both hemispheres) also on the full 3D solid 

(tetrahedra meshes (Reuter et al., 2007)), forming the BrainPrint Λ = (λ1, …, λη). The 

BrainPrint contains 36 subcortical structures and 8 descriptors for cortical structures (left/

right, white/gray matter, 2D/3D), yielding η = 44.

2.3.2. Features from BrainPrint—Depending on the number of eigenvalues l computed, 

we can easily end up with thousands of values in the Brain-Print, which may make the 
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approach more susceptible to overfitting. To decrease the number of variables and increase 

robustness, we (i) use a 1D asymmetry measure (the distance of BrainPrint across 

hemispheres), and (ii) employ principal component analysis. An important aspect of the 

BrainPrint is that the eigenvalues form an increasing sequence with the variance increasing 

as well. Depending on the distance measure, this can cause higher eigenvalues to dominate 

the similarity measure between two shapes, although these components do not necessarily 

contain the most important geometric information. To account for these issues we normalize 

the BrainPrint and employ appropriate distance computations as described next.

Asymmtery: As a first shape feature, we measure the asymmetry of lateralized brain 

structures in BrainPrint. Since shapeDNA is invariant to mirroring, we directly compute the 

Mahalanobis distance between the descriptors of a lateralized brain structure s

(13)

with Σs the covariance matrix across all subjects for structure s. The lateralized structures 

that we use are white matter and pial surfaces with triangular and tetrahedral meshes, as well 

as triangular meshes for cerebellum white matter and gray matter, striatum, lateral ventricles, 

hippocampus, amygdala, thalamus, caudate, putamen, and accumbens.

Alternative distance functions that have been proposed for shapeDNA are the Euclidean 

distance (or any p-norm), Hausdorff distances, the Euclidean distance on re-weighted 

eigenvalues λ̂
i = λi/i (Reuter et al., 2006; Reuter, 2006), and the weighted spectral distance 

(Konukoglu et al., 2013). The weighted distances (latter two approaches) are motivated by 

the need to reduce the impact of higher eigenvalues on the distance. The linear re-weighting 

is based upon the observation that the eigenvalues demonstrate a linear growth pattern 

(Weyl’s law) and therefore yields an approximately equal contribution of each eigenvalue. 

The weighted spectral distance is similar to a division by the squared eigenvalue number and 

therefore functions like a low-pass filter. Here, we use the Mahalanobis distance because it 

accounts for the covariance pattern in the data and supports an equal contribution of all 

eigenvalues in the sequence.

Principal Component Analysis: We derive a second set of features from BrainPrint by 

computing principal components for each of the 44 brain structures. Projecting the 

shapeDNA on the principal component retains most of the variance in the dataset, while 

reducing the dimensionality. Problematic in this regard is once again that higher eigenvalues 

show most variance, so that they will dominate the identification of the principal component. 

We have experimented with (i) linear re-weighting, λ̂
i =λi/i, and (ii) the normalization of 

each eigenvalue to unit variance across the dataset. Evaluation of both approaches yielded 

similar results, so that we employ the simpler linear re-weighting.

Software: shapeDNA and the BrainPrint software is available at http://reuter.mit.edu/

software/ and https://github.com/reuter-lab/BrainPrint. We integrated the domain adaptation 

in the glmnet1 package in the statistical computing environment R.
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2.4. Data

We use data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu), the Australian Imaging Biomarkers and Lifestyle Study of Aging (AIBL, 

Ellis et al. (2009)), and the CADDementia challenge (Bron et al., 2015). Table 1 summarizes 

the datasets used for the dementia prediction. All datasets were processed with FreeSurfer.

For the CADDementia data, we only have access to the diagnostic information for the 30 

subjects in the training dataset. For the larger test dataset with 354 subjects, only the scans 

with gender and age information is provided. The CADDementia data is composed of 

imaging data from three medical centers: VU University Medical Center, Amsterdam, the 

Netherlands; Erasmus MC, Rotterdam, the Netherlands; University of Porto / Hospital de 

Sao Joao, Porto, Portugal.

AIBL study methodology has been reported previously (Ellis et al., 2009) and AIBL data 

was collected by the AIBL study group. The study was launched in 2006 and focuses on the 

early detection of AD, towards lifestyle interventions. The data is collected at two centers 

(40% subjects from Perth in Western Australia, 60% from Melbourne, Victoria).

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies and non-profit organizations, as a 

$60 million, 5-year public-private-partnership. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). Determination of sensitive and specific markers of very early AD progression 

is intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator 

of this initiative is Michael W. Weiner, MD, VA Medical Center and University of California 

- San Francisco. ADNI is the result of efforts of many coinvestigators from a broad range of 

academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The follow up duration of each group is specified in the 

protocol for ADNI. For up-to-date information, see www.adni-info.org.

3. Results

3.1. CADDementia Challenge

For an independent evaluation of the AD classification method, we report results of our 

method from the CADDementia challenge (Bron et al., 2015). The task of the challenge was 

to differentiate between patients with Alzheimer’s disease, mild cognitive impairment, and 

healthy controls given T1-weighted MRI data. Within the scope of the challenge, 384 multi-

center scans were released, where for 30 of the 384 scans the diagnosis was also provided. In 

addition to the 30 scans also other data, e.g., from ADNI could be used for training. The 

1https://cran.r-project.org/web/packages/glmnet/index.html
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prediction results for the 354 test cases were submitted to the challenge organizers for the 

evaluation.

Based on a comparison in (Wachinger et al., 2014), we selected l = 40 eigenvalues. We set α 
= 1 and the parameter κ in the elastic-net that balances the data fit and penalty term with 

cross-validation. Fig. 4 shows the cross-validation results, where the lowest multinomial 

deviance of the model is roughly for κ = exp(−3.5). The figure also shows the number of 

selected features on top, where smaller κ yields the selection of more features and larger κ 
yields the selection of fewer features. We merged the 751 ADNI subjects with the 30 

CADDementia training subjects for the training, which corresponds to strategy III. Fig. 5 

shows the receiver operating characteristic curve for the prediction on the CADDementia 

test data. Table 2 lists the prediction accuracy together with the true positive fraction across 

the different diagnostic categories and the area under the curve. The table also shows the 

confidence interval, which is computed using bootstrapping on the test set (1000 resamples) 

(Bron et al., 2015). Table 3 shows the classification results as confusion matrix. With these 

results, the proposed classifier was ranked on the second place after the algorithms of 

Soerensen in the challenge2.

The results show that MCI is the most difficult class to predict. The trained elastic-net 

classifier selected 9 volume, 15 thickness, and 17 shape features (3 asymmetry, 14 principal 

components). Notable is the age difference between the challenge and ADNI data. The first 

quantile of ADNI is higher than the third quantile of the challenge data meaning that 75% of 

ADNI cases are older than 75% of challenge cases. This mismatch may have a detrimental 

effect on classification accuracy.

3.2. Domain Adaptation

For the evaluation of the domain adaptation strategies in Sec. 2.2, we use the AIBL data as 

independent target dataset, because the diagnostic information of the CADDementia-Test 

dataset has not been disclosed by the organizers in order to allow continuation of the 

challenge. To obtain the target training data Dt, we randomly sample a subset of the AIBL 

data. The remaining AIBL data serves as test data Du. We vary the subset size between 0% 

and 30% of the original dataset and set α = 0.7. Further, the number of apolipoprotein-E-ε4 

(APOE4) allele is added to the variables because it is available for both ADNI and AIBL.

Fig. 6 depicts the three-class prediction accuracy on the AIBL test data for the domain 

adaptation strategies. The plot shows the mean accuracy and standard error over randomly 

sampling subsets 50 times from AIBL. The lowest accuracy is achieved with strategy I, 

where the classifier was only trained on the source data (ADNI). The low accuracy stems 

from the variations across the two datasets. When merging the ADNI data with training data 

from the target domain (strategy III), we see an accuracy improvement of about 5%. The 

accuracy increases about 10% when more data from the target dataset becomes available for 

training, i.e. when employing 30% instead of only 5% of the target data.

2http://caddementia.grand-challenge.org/results_all/
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Surprisingly, only using the small fraction of the target training data for the estimation of the 

classifier (strategy II) yields a steep improvement in classification accuracy relative to the 

combination with the source training data (strategy III). Since these datasets are fairly small 

for low fractions, we note a larger variance of the results, as shown by the standard error. 

The consistently higher accuracies for strategy II in comparison to strategy III suggest that 

the common approach to simply merge source and target training set is is suboptimal. The 

larger source dataset dominates the smaller one and prevents optimal adaptation to the target 

data. As an intermediary between strategy II and strategy III, we use the weighting with a 

constant weight of c = 0.5. This strategy decreases the influence of all the source samples by 

half and therefore emphasizes the target samples. As expected, the accuracy of this strategy 

lies between using only target data and the union of source and target data.

The highest classification accuracy in this comparison is achieved for the proposed domain 

adaptation with instance weighting. The improvement is most prominent for small training 

fractions of the target data (5%), which is probably the most realistic scenario for the 

deployment in the hospital. As mentioned previously, we use diagnostic information, age, 

sex, and the number APOE4 allele for instance weighting. Note, that the standard error for 

instance weighting is lower than for strategy II (only AIBL), because we also include the 

ADNI data, making the classification more robust. Increasing the amount of target data 

available for training above 30% reported in Fig. 6 yields a further increase in classification 

accuracy for all strategies, where strategy II and instance weighting have a similar accuracy 

after about 60%. Fig. 7 illustrates the receiver operating characteristic curve for the 

prediction on the AIBL test data with weighting and 30% of target data available for 

training. As for the previous results on the CADDementia, the lowest accuracy is for the 

MCI class.

Fig. 8 illustrates the distribution of weights wi for instance weighting the source dataset. 

There is one mode at about 1.0, which causes an equal weighting of source and target 

samples. The mode with highest frequency is at about 0.3, which decreases the impact of 

source samples on the estimation. The third mode is at about 1.9 and therefore roughly 

doubles the weight of such samples. We see from the distribution that only a small subset of 

the source data receives high weights and that the impact of the majority of elements is 

reduced.

To illustrate the variation in the selected features across strategies and the fraction of training 

data, we report the Bhattacharyya coefficient in Table 4. For each strategy and selected 

fraction, we computed the probability of features being selected across 50 runs. The 

Bhattacharyya coefficient is a measure for the amount of overlap, where higher values 

signify more overlap. For the computation, we selected the weighting strategy with 30% 

training data as reference. The table shows that there is only a slight variation in the selected 

features for varying the percentage of training data. The features selected with strategy II are 

more similar to the weighting than the features selected with strategy III, which is similar to 

the reported classification accuracy. The features that have been selected most frequently 

across the 50 runs for different subsets of the AIBL dataset are: hippocampus volume/shape, 

ventricle volume/shape, amygdala shape, entorhinal thickness, parahippocampal thickness, 
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and middletemporal thickness. These features are mainly consistent with previously reported 

structures associated to Alzheimer’s disease.

4. Discussion

In this work, we present an approach for computer-aided diagnostics of Alzheimer’s disease. 

Our classifier combines volume, thickness, and shape features to obtain an accurate 

characterization of brain morphology. In particular, the use of neuroanatomical shape 

descriptors based on the spectrum of the Laplace-Beltrami operator for AD classification is 

novel. Inclusion of shape information shows great promise, as demonstrated by the high 

ranking of our approach on the independent test dataset within the scope of the 

CADDementia challenge. To reduce susceptibility to overfitting, we limit complexity by 

choosing a linear model. We further construct a compact model by setting sparsity 

constraints with the mixed ℓ1/ℓ2 norm. This automatic model selection approach is 

advantageous in comparison to manual selection and stepwise refinement as evaluated 

previously using the Akaike information criterion. Despite these efforts, our results show 

strong remaining variations in the classification accuracy on the target dataset that are likely 

not attributed to overfitting. Instead, we demonstrate that differences in source and target 

data have a substantial impact on classification accuracy, indicating the need for dedicated 

domain adaptation approaches in computer-aided diagnosis.

To address this challenge, we present an approach to domain adaptation based on instance 

weighting and its integration into the multinomial elastic-net classification. Samples in the 

source training dataset are weighted according to the ratio of the target and source 

probabilities. For estimating the target probability, we assume that a subset of the target data 

is available for training, yielding a supervised approach to domain adaptation. In our 

experiments, we selected random subsets from the target dataset for training. In the clinical 

use, best results are to be expected if the target training data is representative of the full 

target dataset. The weighting can be based on several characteristics of the subject, where 

we include the diagnostic information, age, sex, and APOE4. This could be extended to 

additional variables, also including image features. Next to single image features, brain 

distance functions between subjects could be used as proposed by Gerber et al. (2010) for 

manifold learning. Low-dimensional embeddings have shown that major variations stem 

from age and sex differences, so that it needs to be further investigated if brain distances add 

additional value over directly using age and sex. The proposed instance weighting presents a 

general framework to domain adaptation, where we derived naïve approaches for combining 

source and target data by setting the weights to different constants, yielding the selection of 

either the source, or the target data, or the union of both.

Our results demonstrate that the simple union of source and target data, which we used in 

the CADDementia challenge, is not the optimal strategy for obtaining a high classification 

accuracy. Due to the much larger cardinality of the source dataset, the impact of the valuable 

target training data is lost. Surprisingly, the classifier yields better results when employing 

only the target training dataset and ignoring the source dataset completely, even if only 5% 

of the target data is available for training. Optimal results are achieved for the proposed 

domain adaptation with instance weighting, where source and target training data are 
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combined but the importance of each source sample is weighted based on the target and 

source distributions.

As an alternative strategy to instance weighting, we could select source elements with the 

highest weights and therefore extract a subset of the source dataset that is most similar to the 

target training data. Such an approach would require an additional threshold parameter to 

define the cut-off on the weights. The selection of a subset of the source data that matches 

covariates on the target training data is related to propensity score matching (Rosenbaum 

and Rubin, 1983).

With respect to classifier performance, we achieve the lowest classification accuracy for the 

MCI group. This is not surprising as it can be questioned whether MCI forms a separate 

diagnostic entity. Some of the individuals in this group convert to AD, while others remain 

stable. MCI is a clinically heterogeneous group of individuals with varying patterns of brain 

atrophy (Misra et al., 2009). The results of other challenge participants (Bron et al., 2015) 

demonstrate a similar low performance for this group. In this work, we considered 

Alzheimer’s diagnostics by classifying AD, MCI, and CN subjects. Another important topic 

is Alzheimer’s prognosis, by predicting if and when a subject converts to AD. The early 

identification of individuals with an elevated risk for developing dementia is of great value 

for treatments. For predicting the conversion, we face a similar domain adaptation challenge 

as for the classification, so that the presented strategies may also be of great interest, which 

remains to be shown in the future.

The algorithm from Sørensen et al. (2014) achieved the highest accuracy in the 

CADDementia challenge. There are certain similarities to our algorithm; FreeSurfer volume 

and thickness measurements are used. But also several differences: manual feature selection 

was used, texture features were integrated, shape features based on surface landmarks were 

computed, and regularized linear discriminant analysis was used. Further, the training for the 

challenge was performed on ADNI and AIBL data. Since there are numerous differences 

between our approach and the one from Sørensen et al. (2014), it is difficult to ascertain 

what drives the variations in classification accuracy.

Our results provide valuable insights for the optimal implementation of computer-aided 

diagnosis approaches:

i. Simply relying on large datasets for training is not sufficient for obtaining 

a classifier that generalizes well. This is due to the large impact of the data 

distribution on the estimation of model parameters, since the loss 

minimization is driven by high density areas.

ii. Large source datasets are, however, beneficial in supporting the target 

training set for model estimation. Since large datasets capture a wider 

portion of the population, it is likely that they also contain instances that 

are similar to the target samples. These instances can be identified by 

domain adaptation and emphasized in the model estimation.

iii. Availability of training data from the target domain is essential for 

tailoring the model to each target, e.g., an individual hospital. The benefit 
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of supervised domain adaptation is most pronounced for small training 

fractions of the target data (5%), which may the most realistic scenario 

when translating a model to the clinic.

5. Conclusions

We highlight the importance of domain adaptation for the classification of Alzheimer’s 

disease and present an approach based on instance weighting. We introduce a classifier 

based on volume, thickness, and shape features, where the BrainPrint is used for the shape 

representation. A compact model is estimated by regularization of the regression coefficients 

with the mixed ℓ1/ℓ2 norm. This classifier is evaluated on the independent dataset of the 

CADDementia challenge and used for testing different strategies for domain adaptation. Our 

results demonstrate that using only data from either the source or target domain, or the union 

of both, are sub-optimal strategies. We achieved the best results with instance weighting, 

which compensates for differences in source and target distributions.
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Highlights

• Domain adaptation strategies for the computer-aided diagnosis of AD

• Integration of instance weighting in multinomial regression with 

elastic-net regularization

• Classification of AD with shape features derived from the BrainPrint

• Evaluation on ADNI, AIBL and data from the CADDementia challenge

• Domain adaptation is crucial for the translation to target data
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Figure 1. 
Supervised domain adaptation with source (red) and target (blue) domains, where a part of 

the target data (green) is available for training. In the experiments, we use the ADNI data as 

source data and AIBL data as target data.

Wachinger and Reuter Page 21

Neuroimage. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Schematic illustration of data points (subjects) from the source (blue) and target (red) 

domain (top). Marginal distributions of the source ps and target pt domain (center) show the 

variation between both domains. With instance weighting by the term w = pt/ps (bottom), red 

source data points on right are assigned higher weights in the estimation of the regression 

coefficients, while source data points on the left are assigned lower weights.
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Figure 3. 
Left white matter surface and first three non-constant eigenfunctions of the Laplace-

Beltrami operator calculated on the surface, where shape features are derived from natural 

frequencies of eigenfunctions. Top: Eigenfunctions shown with color gradient. Bottom: 

Inflated white matter surface with eigenfunctions shown as level sets. The main directions of 

variation are anterior-posterior, superior-inferior, and lateral-medial, respectively.
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Figure 4. 
Multinomial deviance of elastic-net computed with cross-validation for different parameters 

κ (bottom) and the corresponding number of features (top). The plot shows the mean 

deviance together with upper and lower standard deviation.
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Figure 5. 
Receiver operating characteristic (ROC) curve for the classification in control (CN), mild 

cognitive impairment (MCI), and Alzheimer’s disease (AD) on the CADDementia test data. 

The plot was created by the challenge organizers.
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Figure 6. 
Results for the domain adaptation with ADNI (source) and AIBL (target) data. In addition to 

the proposed domain adaptation with instance weighting, we evaluate four strategies that use 

either one of the datasets (I and II), merge both (III), and combine both with c = 0.5. Discs 

show mean classification accuracy over 50 samples and bars indicate standard error. We vary 

the size of the training dataset from AIBL (x-axis), where the remaining AIBL data is used 

for testing.
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Figure 7. 
Receiver operating characteristic (ROC) curve for the classification in control (CN), mild 

cognitive impairment (MCI), and Alzheimer’s disease (AD) on the AIBL test data for the 

weighting strategy with 30% training data.
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Figure 8. 
Histogram of weights wi for weighting source samples. Weights above 1.0 increase the 

importance of elements in the inference and weights below 1.0 decrease the importance.
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Table 2

Classification results on the CADDemetia test data, reported values are in %, confidence intervals are shown 

in parenthesis. (TPF = true positive fraction, AUC = area under the receiver operating characteristic curve).

Accuracy TPF-CN TPF-MCI TPF-AD AUC

59.0 (54.0 – 63.6) 72.1 (63.4 – 79.2) 51.6 (43.5 – 61.3) 51.5 (41.5 – 61.2) 77.0 (73.6 – 80.3)
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Table 3

Confusion matrix for the classification results on the CAD-Dementia test data. Rows represent the predicted 

diagnostic classes, columns represent the true classes. Table entries were computed by the challenge 

organizers.

True

CN MCI AD

Pred.

CN 93 44 6

MCI 36 63 44

AD 0 15 53
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