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SUMMARY

We consider high-dimensional regression over subgroups of observations. Our work is motivated by
biomedical problems, where subsets of samples, representing for example disease subtypes, may differ
with respect to underlying regression models. In the high-dimensional setting, estimating a different
model for each subgroup is challenging due to limited sample sizes. Focusing on the case in which
subgroup-specific models may be expected to be similar but not necessarily identical, we treat subgroups
as related problem instances and jointly estimate subgroup-specific regression coefficients. This is done in
a penalized framework, combining an �1 term with an additional term that penalizes differences between
subgroup-specific coefficients. This gives solutions that are globally sparse but that allow information-
sharing between the subgroups. We present algorithms for estimation and empirical results on simulated
data and using Alzheimer’s disease, amyotrophic lateral sclerosis, and cancer datasets. These examples
demonstrate the gains joint estimation can offer in prediction as well as in providing subgroup-specific
sparsity patterns.

Keywords: Group-structured data; Heterogeneous data; High-dimensional regression; Penalized regression; Informa-
tion sharing.

1. INTRODUCTION

High-dimensional regression has been well studied in the case where all samples can reasonably be
expected to follow the same model. However, in several current and emerging applications, observations
span multiple subgroups that may not be identical with respect to the underlying regression models. In
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biomedical problems, sets of samples representing, for example, disease subtypes may differ with respect
to underlying biology, and therefore have different relationships between observed features and a response
of interest.

A topical example, to which we return below, is in the study of neurodegenerative diseases such as
Alzheimer’s disease (AD). In AD, there is as yet no disease-modifying therapy and no reliable way to
predict future disease course (Ewers and others, 2011). The latter is important both for targeting candidate
therapies at an early stage of the disease and for more general screening purposes, for example to target
preventative interventions. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a collaborative,
open science initiative for AD. The ADNI studies include cognitively normal (CN) subjects, as well as
subjects withAD and with mild cognitive impairment (MCI). It is likely that patterns of association between
various high-dimensional data and phenotypes of interest (such as cognitive scores) differ between these
study groups due to differences between the respective subpopulations and underlying biological factors.
If so, a single regression model imposed on all of the data may be mis-specified, possibly severely. An
alternative would be to build a separate model for each group. However, the sample size per group is then
necessarily strictly smaller than the total sample size, making estimation challenging, especially when
the number p of features is large. Then, predictive ability and, just as important, the ability to efficiently
estimate subgroup-specific influences or sets of influential factors may be compromised. This general
situation is increasingly common in the emerging area of stratified medicine, where studies are designed
to span one or both of disease stages and disease subtypes (if not multiple different diseases). At the
same time emerging studies are increasingly high-dimensional in terms of the total number of features of
potential relevance. These factors motivate a need for flexible models that are statistically efficient and
scalable enough for practical application in high-dimensional biomedical studies.

Here, we focus on the specific case of high-dimensional regression in group-structured settings. In
particular, we consider linear regression in the scenario in which the same set of p features or predictors
is available in each of K subgroups. That is, we consider subgroup-specific linear regression problems
indexed by k , each with subgroup-specific sample size nk , a response vector yk of length nk , a nk × p
feature matrix Xk and a p-vector βk of regression coefficients. The problem we address is estimating the
regression coefficients β1 . . . βK .

We propose an approach to jointly estimate the regression coefficients that induces global sparsity
and encourages similarity between subgroup-specific coefficients. We consider the following penalized
formulation and its variants

B̂ = arg min
B=[β1...βk ]

K∑
k=1

{
1

nk
‖yk − Xkβk‖2

2 + λ‖βk‖1 + γ
∑
k ′>k

τk ,k ′ ‖βk − βk ′ ‖2
2

}

where B = [β1 . . . βK ] is a p×K matrix that collects together all the regression coefficients, ‖ · ‖q denotes
the �q norm of its argument and λ, γ , τ are tuning parameters. The last term is a fusion-type penalty between
subgroups; note that the difference is taken between entire vectors of subgroup-specific coefficients. An
�2 fusion penalty is shown above, although other penalties may be used; in this article, we also consider
an �1 variant. The parameters τk ,k ′ allow for the possibility of controlling the extent to which similarity is
encouraged for specific pairs of subgroups. In contrast to simple pooling, our approach, which we name
the joint lasso, allows subgroups to have different sparsity patterns and regression coefficients, but in
contrast to the subgroup-wise approach it takes advantage of similarities between subgroups.

The joint lasso shares similarities with both the group lasso (Yuan and Lin, 2006) and the fused lasso
(Tibshirani and others, 2005) but differs from both in important ways. In contrast to the group lasso, we
consider subgroups of samples or observations rather than groups of coefficients and in contrast to the
fused lasso, we consider fusion of entire (subgroup-specific) coefficient vectors, rather than successive
coefficients under a pre-defined ordering. Obozinski and others (2010) showed how the group lasso could
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be used in subgroup-structured settings, essentially by considering the global problem and defining groups
(in the group lasso sense) corresponding to the same features across all subgroups. This means that each
feature tends either to be included in all subgroup-specific models or none. In contrast, the joint lasso
allows subgroups to have different sparsity patterns, whilst pulling subgroup-specific coefficients together
and inducing global sparsity. Our work is also similar in spirit to recent work concerning joint estimation
of graphical models over multiple problem instances (Danaher and others, 2014; Oates and others, 2014,
2015).

We show empirical results in the context of two neurodegenerative diseases—AD and amyotrophic
lateral sclerosis (ALS). The methods we propose are general and we show also an application to cancer
cell line data (see below for full details of the applications and data). The responses concern disease
progression in AD and ALS and therapeutic response in cancer cell lines. In the AD and ALS examples,
subgroups are based on clinical factors, while in the cancer data they are based on the tissue type of the
cell lines.

Across the three examples, data types include genetic, clinical, and transcriptomic variables. We find
that the joint lasso can improve performance relative to pooling or subgroup-wise analysis. Importantly,
in cases where pooling or subgroup-wise analyses do well (perhaps reflecting a lack of subgroup struc-
ture or insufficient similarity, respectively) our approach remains competitive. This gives assurance that
penalization is indeed able to share (or not share) information appropriately in real-world examples. We
emphasize that the goal of the empirical analyses we present is not to give the best predictions possible
in these applications, but rather to better understand the potential of joint estimation in group-structured
problems.

2. METHODS

2.1. Notation

Each subgroup k ∈ {1 . . . K} has the same set of p features, but subgroup-specific sample size nk . Total
sample size is n =∑K

k=1 nk . For subgroup k , Xk is the nk×p feature matrix and yk the corresponding nk×1
vector of observed responses. Subgroup-specific regression coefficients are βk ∈ R

p. Where convenient
we collect all regression coefficients together in a p× K matrix B = [β1 . . . βK ] and accordingly we use
βj,k to denote the coefficient for feature j in subgroup k .

2.2. Model formulation

We seek to jointly estimate the regression coefficients B = [β1 . . . βK ] whilst ensuring global sparsity and
encouraging agreement between subgroup-specific coefficients. We propose the criterion

B̂ = arg min
B=[β1...βK ]

K∑
k=1

{
1

nk
‖yk − Xkβk‖2

2 + λ‖βk‖1 + γ
∑
k ′>k

τk ,k ′ ‖βk − βk ′ ‖2
2

}
(2.1)

and a variant with an �1 norm in the last term

B̂ = arg min
B

K∑
k=1

{
1

nk
‖yk − Xkβk‖2

2 + λ‖βk‖1 + γ
∑
k ′>k

τk ,k ′ ‖βk − βk ′ ‖1

}
. (2.2)

Here, λ, γ , τ are tuning parameters. The role of the last term is to encourage similarity between subgroup-
specific regression coefficients. The special case K = 1 recovers the classical lasso (applied to all data
pooled together). The tuning parameters τk ,k ′ give the possibility of controlling the extent of fusion between
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specific subgroups. By default all τ ’s are set to unity (“unweighted fusion”), but they can also be set to
specific values as discussed below (“weighted fusion”). In the above formulation, we assume that yk and
Xk have been standardized (at the subgroup level) so that no intercept terms are required. Note that the
regularization parameters λ, γ are the same across subgroups. The 1

nk
factor in the squared loss term

corrects for subgroup size, to allow for the same amount of regularization across subgroups.
The difference between the two variants is that the first, �2 fusion encourages similarity between

subgroup-specific coefficients, while the second �1 version allows for exact equality. The �2 formulation
has the computational advantage that the fusion part of the objective function becomes continuously
differentiable, and the estimate of the objective function at each step can be obtained by soft-thresholding,
analogously to co-ordinate descent for regular lasso problems. In the �1 formulation on the other hand, the
fusion constraint is only piece-wise continuously differentiable, leading to a more difficult optimization
problem (see below).

2.3. Comparison with group and fused lasso

It is instructive to compare our formulation to the group lasso and the fused lasso, and to highlight the
important ways in which it differs from both.

The original group lasso (Yuan and Lin, 2006) was designed to consider groups of features within
a single regression problem. Let X be the feature matrix and y the vector of responses in a standard
regression problem. Letting l ∈ {1 . . . L} index groups of features, the group lasso criterion is

β̂ = arg min
β

‖y −
L∑

l=1

X (l)β(l)‖2
2 +

L∑
l=1

λl‖β(l)‖2 (2.3)

where X (l) is the submatrix of X corresponding to the features in group l, β(l) the corresponding regression
coefficients and λl a tuning parmeter. The penalty tends to include or exclude all members of a group from
the model, i.e. all coefficients in a group may be set to zero giving groupwise sparsity.

In our setting, the subgrouping is over subsets of samples, and not over groups of features. It would
therefore seem that there is little relationship between the joint lasso and the group lasso. However, in
Obozinski and others (2010), a group lasso-like criterion was used for estimation in the multiple subgroup
setting. Using the sum squared error as the loss function, the model in equation (2) of Obozinski and others
(2010) becomes:

β̂ = arg min
B=[β1...βK ]

K∑
k=1

‖y − Xkβk‖2
2 + λ

p∑
j=1

‖βj,:‖2 (2.4)

where βj,: denotes a vector of coefficients for a single feature j ∈ {1 . . . p} across all K subgroups. This
formulation encourages features to either be included in all the subgroup-specific models or none. However,
unlike the joint lasso model, this formulation does not encourage similarity across subgroups among the
non-zero covariates.

The fused lasso (Tibshirani and others, 2005) is also aimed at a single regression problem, but assumes
that the features can be ordered in such a way that successive coefficients may be expected to be similar.
This leads to the following criterion

β̂ = arg min
β

‖y − X β‖2
2 + λ‖β‖1 + γ

p−1∑
i=1

‖βi − βi+1‖1 (2.5)
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where λ, γ are tuning parameters and we have assumed that the features are in a suitable order. The final
term encourages similarity between successive coefficients. Efficient solutions for various classes of this
problem exist (e.g. Hoefling, 2010; Liu and others, 2010; Ye and Xie, 2011).

Our approach shares the use of a fusion-type penalty, but focuses on a different problem, namely
that of jointly estimating regression coefficients across multiple, potentially non-identical, problems.
Accordingly, the joint lasso penalty encourages agreement between entire coefficient vectors from different
subgroups and does not require any ordering of features.

2.4. Setting the tuning parameters τ

For weighted fusion, the parameters τk ,k ′ could be set by cross-validation but this may be onerous in
practice. As an alternative we consider setting τk ,k ′ using a distance function d(k , k ′) based on the features.
The idea is to allow more fusion between subgroups that are similar with respect to d, while allowing
the τk ,k ′ to be set in advance of estimation proper. However, this assumes that similarity in the features
reasonably reflects similarity between the underlying regression coefficients, which may or may not be
the case in specific applications.

We consider two variants. The first sets d(k , k ′) = ‖μk − μk ′ ‖2 where μk , μk ′ are the sample means
of the features in the subgroups k , k ′, respectively (we assume the data have been standardized). The
second approach additionally takes the covariance structure into account by using the symmetrised
Kullback–Leibler (KL) divergence, i.e. d(k , k ′) = 1

2 (KL(p̂k‖p̂k ′) + KL(p̂k ′ ‖p̂k)), where p̂k , p̂k ′ are esti-
mated distributions over the features in the subgroups k , k ′ respectively and KL(p‖q) is the KL-divergence
between distributions p and q. In practice, this requires simplifying distributional assumptions. Below we
use multivariate Normal models for this purpose, with the graphical lasso (Friedman and others, 2008)
used to estimate the �k ’s. For both approaches, we set τk ,k ′ = 1 − d(k , k ′)/dmax, with dmax the largest
distance between any pair of groups k , k ′ (this scales τ to the unit interval).

2.5. Optimization

We describe a co-ordinate descent approach for optimizing equation (2.1). While it is possible to derive
a block coordinate descent approach for equation (2.2) (e.g. following Friedman and others, 2007), this
is generally inefficient for the high-dimensional problems that we consider. Instead, we will describe an
optimization procedure based on a proximal gradient approximation derived in Chen and others (2010).

2.5.1. Co-ordinate descent for �2 fusion. The �2 fusion penalty is continuously differentiable and we can
obtain the optimal value for β̂j,k in equation (2.1) at each step by first calculating optimal values without
the lasso penalty:

β̂∗j,k =
xT

j,k(yk − X−j,kβ−j,k)+ nkγ
∑

k ′ �=k τk ,k ′βj,k ′

xT
j,kxj,k + nkγ

∑
k ′ �=k τk ,k ′

(2.6)

Then β̂j,k can be obtained by soft-thresholding on β̂∗j,k . The procedure is summarized in Algorithm 1.
While Algorithm 1 is easy to understand and implement, a naive implementation in most pro-

gramming languages will be still be slow due to the need for an inner for-loop over p, where
p can be in the tens of thousands for the kinds of problems we will consider. In order to effi-
ciently optimize B, we reformulate (2.1) as a classical lasso problem and apply the glmnet software
(Friedman and others, 2010). We transform the sum in first part of the objective into matrix form
yflat − Xdiagbflat by defining Xdiag as a block-diagonal n × pK matrix with Xk along the diagonals. The
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Algorithm 1 Block co-ordinate descent for the joint lasso
1: procedure BlockDescentL2(niter , X , Y , βinit , λ, γ , τ )
2: i← 0
3: β ← βinit

4: while not_converged AND i < niter do
5: for all j in 1:p do
6: for all k in 1:K do
7: β

temp
j,k ← DescentUpdateL2(Xk , yk , β, j, k , γ , τ ) using equation (2.6)

8: βj,k ← sgn(β
temp
j,k ) ∗max(β

temp
j,k − λ

xT
j,k xj,k+nk γ

∑
k ′ �=k τk ,k ′

, 0)

9: i← i + 1

vector bflat is a flattened version of B with stacked βk vectors, and similarly for yflat . So we have:

Xdiag =
⎛
⎜⎝

X1

. . .
XK

⎞
⎟⎠ bflat =

⎛
⎜⎝

β1
...

βK

⎞
⎟⎠ yflat =

⎛
⎜⎝

y1
...

yK

⎞
⎟⎠

Now we move the �2 fusion penalty into the first squared term by defining the augmented matrix X aug
diag ,

and augmented vector yaug
flat , such that

b̂flat = arg min
bflat

‖yaug
flat − X aug

diagbflat‖2
2 + λ‖bflat‖1 (2.7)

where
X aug

diag =
(

Xdiag

�

)
yaug

flat =
(

yflat

�0
)

with � a pK(K − 1)/2× pk matrix encoding the pair-wise fusion constraints, and �0 a pK(K − 1)/2× 1
vector of zeros. Each block �k ,k ′ , k , k ′ ∈ [1, K], k < k ′ of p rows of � corresponds to the fusion constraint
between two coefficient vectors βk and βk ′ , with:

�k ,k ′(l, m) =

⎧⎪⎨
⎪⎩

γ τk ,k ′ if l = p(k − 1)+ m

−γ τk ,k ′ if l = p(k ′ − 1)+ m

0 otherwise.

(2.8)

We can see that (2.7) is a classical lasso problem, to which glmnet can be directly applied.

2.5.2. Proximal-gradient approach for fused L1 penalty. Optimizing equation (2.2) by block gradient
descent, while possible, is highly inefficient due to having to deal with the discontinuities in the objective
function space. In Chen and others (2010), the authors describe a proximal relaxation of this problem that
introduces additional smoothing to turn the objective function fL1(B) into a continuously differentiable
function f μ

L2(B). Chen and others (2010) deal with the multi-task regression setting (with common X for
each task); it is straightforward to adapt their procedure for the subgroup regression setting with different
Xk per subgroup.

It is notationally convenient to first introduce a graph formulation of the fusion penalties. We will
think of the fusion constraints in terms of an undirected graph G = (V , E) with vertex set V = {1 . . . K}
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corresponding to the subgroups and edges between all vertices. Then the �1 penalised objective function
can be written as:

fL1(B) =
∑

k

{
1

nk
‖yk − Xkβk‖2

2

}
+ ‖BC‖1 (2.9)

where the last term includes both sparsity and fusion penalties, via the matrix C = (λIK , γ H ), with IK

the identity matrix of size K , C a K × |E| matrix (|E| = (K
2

)
in this case), and where for any k ∈ V and

e = (m, l) ∈ E:

Hk ,e =

⎧⎪⎨
⎪⎩

τm,l if k = m

−τm,l if k = l

0 otherwise.

(2.10)

Note that unlike in Chen and others (2010), we require the explicit sum over k in the objective to
account for different sample sizes nk in different groups1.

The graph formulation allows for zero edges by setting τk ,k ′ to zero. We have implicitly assumed in
the formulation of (2.1) and (2.2) that the relationship between subgroups is represented by an undirected
graph. However, (2.9) is completely general, and it would be straightforward to incorporate a directed
graph in our model. We have not pursued this avenue here, as there is no reason to suspect directionality
in the subgroup relationships for the applications we consider below, and including directionality would
double the number of tuning parameters τk ,k ′ that need to be considered.

Following Chen and others (2010), we can introduce an auxiliary matrix A ∈ Q = {A′| ‖A′‖∞ ≤ 1,
A′ ∈ Rp×(K+|E|)}. Because of duality between �1 and �∞, we can write ‖BC‖1 = max‖A‖∞≤1〈A, BC〉. A
smooth approximation of ‖BC‖1 is then obtained by writing:

fμ(B) = max
‖A‖∞≤1

〈A, BC〉 − μd(A) (2.11)

where μ is a positive smoothness parameter, and d(A) ≡ 1
2‖A‖2

F , with ‖ · ‖F the Frobenius norm. They
show that for a desired accuracy ε, we need to set μ = ε

p(K+|E|) . Theorem 1 in Chen and others (2010)
gives the gradient of fμ(B) as 
fμ(B) = A∗CT , where A∗ is the optimal solution of (2.11). Replacing
‖BC‖1 by fμ(B) in equation (2.9), we obtain

f̃L1(B) =
∑

k

{
1

nk
‖yk − Xkβk‖2

2

}
+ fμ(B) (2.12)

which is now continuously differentiable with gradient


f̃L1(B) =
∑

k

{
1

nk
X T

k (XKβk − yk)

}
+ fμ(B). (2.13)

1 It would be possible to reformulate the first part of the objective in matrix form Ydiag − XdiagBdiag by defining Xdiag as a
block-diagonal matrix as in Section 2.5.1, defining Bdiag as a pK × K matrix with βk along the diagonals and similarly ydiag as an
n × K matrix with yk along the diagonals; however, this formulation is neither practical nor intuitive, and the gain in notational
simplicity is negligible.
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Chen and others (2010) further show that A∗ = S(BC/μ) where function S truncates each entry of A∗

to the range [-1,1] to ensure that A∗ ∈ Q. An upper bound LU of the Lipschitz constant L can be derived
as:

LU = max
k

(λmax(X
T
k Xk))+ λ2 + 2 ∗ γ 2 maxk∈V dk

μ
(2.14)

where λmax(M ) is the largest eigenvalue of M and dk =∑K
k ′ τk ,k ′ .

With the derivation of the gradient in (2.13) and the Lipschitz bound in (2.14), we can now apply
Nesterov’s method (Nesterov, 2005) for optimizing (2.12). The procedure is summarized in Algorithm 2.
For more details on the proximal approach see Chen and others (2010).

Algorithm 2 Proximal gradient optimization for the joint lasso
1: procedure Proximal(niter , X , Y , Binit , λ, γ , τ , LU , μ)
2: i← 0
3: W 0 ← Binit

4: while not_converged AND i < niter do
5: Compute 
f̃L1(W i) according to (2.13).
6: Bi ← W i − 1

LU

f̃L1(W i)

7: Zi ←− 1
LU

∑i
j=0

j+1
2 
f̃L1(W f )

8: W i+1 ← i+1
i+3 Bi + 2

i+3 Zi

9: i← i + 1

3. SIMULATION STUDY

To test the performance of the proposed approach, we simulated data from a model based on characteristics
of a recent drug response study, the Cancer Cell Line Encyclopedia (CCLE; Barretina and others, 2012).
We base our simulation on real data in order to approximately mimic the correlation structure typical of
human gene expression data; otherwise the set-up is generic and essentially the same issues would apply
in many disease settings. To simulate data, we first estimated means and covariance matrices μk , �k for
each of K = 9 subgroups (the eight cancer types with the latest sample sizes in CCLE plus a ninth for
all other cancer types; covariances were estimated using the graphical lasso). For each group k , we then
sampled features from the multivariate normal N (μk , �k). For a given total sample size n, subgroup sizes
were consistent with those in the original data. We used a random subset of 200 gene expression levels
(i.e. the dimensionality was fixed at p = 200). This parametric approach allowed us to vary sample sizes
freely, including the case of total n larger than in the original dataset.

We are interested in the situation in which it may be useful to share information between subgroups. But
we are also interested in investigating performance in settings that do not agree with our model formulation
(the extreme cases being where subgroups are either entirely dissimilar or identical). Let V = {1 . . . K} be
the set of subgroup indices (here, K = 9).We set regression coefficients to be identical in a subset V0 ⊆ V of
the subgroups, such that the size K0 = |V0| of the subset governs the extent to which information sharing via
the joint lasso could be useful. Specifically, if K0 = K , all subgroups have the same regression coefficients
(i.e. favoring a pooled analysis using a single regression model) and at the other extreme if K0 = 1 all
groups have differently drawn coefficients. Intermediate values of K0 give differing levels of similarity.

For a given value K0, we defined membership of V0 by considering the differences between the
subgroup-specific models for the features. Specifically, we choose the K0 groups that minimized the
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sum of symmetrised KL divergences between subgroup-specific models. A coefficient vector was then
drawn separately for each subgroup k /∈ V0 and one, shared coefficient vector drawn for all k ∈ V0.
Each draw was done as follows. We first sampled a binary vector b of length p from a Bernoulli, i.e.
bi ∼ Bernoulli(0.1). Then we drew βi ∼ Ntrunc(0, 1) if bi = 1 and set βi = 0 otherwise, where Ntrunc(0, 1)

denotes a standard Normal with the interval (−0.1, 0.1) excluded (this is to ensure non-zero coefficients
are not very small in magnitude). Note that in the case of K0 = 1, all groups have separately drawn
coefficients and the between-subgroup KL divergence plays no role.

We compare the joint lasso with pooled and subgroup-wise analyses. These are performed using
classical lasso (we use the glmnet implementation) on respectively the whole dataset or each subgroup
separately.

The top row of Figure 1 shows performance when varying the number K0 of subgroups with shared
coefficients, with the total number of samples fixed at n = 250. Here, a smaller value of K0 corresponds to
less similarity between subgroup-specific coefficients in the underlying models. At intermediate values of
K0 the joint lasso offers gains over pooled and subgroup-wise analyses. This is because the pooled analyses
are mis-specified due to the inhomogeneity of the data, while the subgroup-wise analyses, although cor-
rectly specified, must confront limited sample sizes since they analyze each subgroup entirely separately.
In contrast, the joint lasso is able to pool information across subgroups, but also allows for subgroup-
specific coefficients. Importantly, even at the extremes of K0 = 1 (separately drawn coefficients for each
subgroup) and K0 = 9 (all subgroups have exactly the same coefficients), the joint lasso performs well.
This demonstrates its flexibility in adapting the degree of fusion.

The bottom row of Figure 1 shows performance as a function of total sample size n. Here, the number
of subgroups with identical coefficients is fixed at K0 = 4. This gives a relatively weak opportunity
for information sharing, since 5/9 groups have separately drawn coefficients. Since the true βk ’s are not
identical, the pooled analysis is mis-specified and accordingly even at large sample sizes, it does not catch
up with the other approaches. As expected, subgroup-wise analyses perform increasingly well at larger
sample sizes. However, at smaller sample sizes the joint lasso shows some gains.

The �1 and �2 fusion approaches seem similar in performance. Note, however, that our �2 implementation
leverages the glmnet package and is more computationally efficient than the �1 approach.

4. ALZHEIMER’S DISEASE: PREDICTION OF COGNITIVE SCORES

Here, we use data from the ADNI (Mueller and others, 2005) to explore the ability of the joint lasso to
estimate regression models linking clinical and genetic features to disease progression, as captured by
cognitive test scores. We emphasize that the purpose of this section is to illustrate the usefulness of the
proposed method for data analysis and prediction. Prediction of AD and its progression remains an open
topic and the wider applied themes are beyond the scope of this article.

In 2014, ADNI made a subset of its data available for a DREAM challenge (Allen and others, 2016) and
we use these data here. The dataset consists of a total of n = 767 individuals who were followed up over at
least 24 months. Cognitive function was evaluated using the mini-mental state examination (MMSE). At
baseline, individuals were classified as either cognitively normal (CN), early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI), or diagnosed with Alzheimer’s disease (AD). These
form clinically-defined subgroups for our analysis. For the present analysis, we apply the method using
the genetic data (single nucleotide polymorphisms or SNPs) and clinical profile only (we do not include
neuroimaging data).

The goal is to predict the rate of decline in cognitive ability, as quantified by the slope of MMSE scores
over a 24-month period. The total number of SNPs available is ∼107. Filtering by linkage disequilibrium
reduces this to ∼2 × 106. For computational and expository ease, we pre-selected 20 000 of this latter
group that gave the smallest residuals when regressed with the clinical variables against responses in the
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Fig. 1. Simulated data performance. Top row: Varying K0, where the number of subgroups is fixed at K = 9 of which
K0 have shared coefficients in the underlying data-generating model (see text for details of simulation set-up). A
smaller K0 corresponds to less similarity between underlying subgroup-specific models, with K0 = 1 representing the
case where all subgroups have separately drawn coefficients, while K0 = 9 represents an entirely homogenous model
in which each subgroup has exactly the same regression coefficients. The total sample size is fixed at n = 250. Left
panel: Weighted root mean squared error (RMSE). RMSE is weighted by subgroup sizes. Right panel: Area under
the ROC curve (AUROC) with respect to the true sets of active variables with non-zero coefficients). Bottom Row:
Varying sample sizes, where the number of subgroups is fixed at K = 9 of which K0 = 4 have shared coefficients in
the underlying data-generating model (see text for details of simulation set-up). Left panel: Root mean squared error
(RMSE; weighted by subgroup sizes). Middle panel: Area under the ROC curve (AUROC); with respect to the true
sets of active variables with non-zero coefficients. Right panel: Computational time taken in log seconds.

training set. We note that the filtering step biases our analyses and estimates of out-of-sample error, but
we emphasize that our goal here is not to propose a solution to the AD prediction problem but rather to
compare the relative performance of various approaches (here all using the same fixed set of pre-selected
features).

Figure 2 (left) shows root mean squared error (RMSE) separately for each of the four subgroups. The
joint lasso offers substantial gains compared with pooled and subgroup-wise analyses (the latter performed
very badly and are not shown in the figure). The biggest gain with both fusion approaches is for the AD
subgroup. A notable difference between �1 and �2 fusion is in the LMCI subgroup, where the �1 fusion
performs significantly better than pooled, while �2 fusion only provides a marginal improvement. We also
performed weighted fusion analysis (not shown), where the tuning parameters τk ,k ′ were set using the
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Fig. 2. Alzheimers disease prediction results, ADNI data. Left panel: Box plots showing difference in RMSE of joint
lasso with different fusion penalties compared with the pooled linear regression model (higher values indicate better
performance by the joint lasso). [Subgroup-wise analysis performed less well than pooled and is not shown; boxplots
are over 10-fold cross-validation.] Right panel: Scatter plots show predicted and observed 24-month slopes for each
of the standard and joint lasso regression models. All predictions were obtained via 10-fold cross-validation.

distance between the means of each subgroup (in the space of genetic and clinical variables). Weighting
did not appear to improve performance.

Figure 2 (right) shows scatter plots of predicted MMSE slopes versus the true slopes. The predictions
were obtained in a held-out fashion via 10-fold cross-validation (CV), as were the RMSE and Pearson
correlations shown. We see that predicted slopes from the �1 approach better match the observed slopes,
with the large improvement in Pearson correlation mostly driven by a few outliers in AD and LMCI.
Overall the joint lasso improves on the pooled and group-wise approaches.

We further used the estimates of the effect sizes for the SNP data to perform a pathway enrichment
analysis using the KEGG database (Kanehisa and Goto, 2000). The results are presented in Figure 1 of
the supplementary material available at Biostatistics online. We show that increased fusion allows for
the identification of common enriched pathways among the subgroups that would not be identified in a
group-wise approach.

Figure 3 shows a comparison of the estimated regression coefficients themselves. The subgroup-wise
approach is much sparser than the other methods, likely due to the fact that it must operate entirely
separately on each (relatively small-sample) subgroup. In addition to loss of prediction power given finite
training samples, this is another drawback of the group-wise approach, which is otherwise likely better
specified than simple pooling. The pooled approach finds more influential variables but obviously there
can be no subgroup-specificity. The joint lasso selects more variables than the subgroup-wise analysis,
but there are many instances of subgroup-specificity in the estimates. The �1 fusion penalty seems to have
allowed for more differences between the subgroups than the �2 penalty, with several instances where only
one subgroup contains a non-zero coefficient. This likely explains the better performance on some of the
outliers in AD and LMCI.

5. ALS: PREDICTION OF DISEASE PROGRESSION

ALS is an incurable neurodegenerative disease that can lead to death within three to four years of onset.
However, about ten percent of patients survive more than 10 years. Prediction of disease progression
remains an open question. We use data from the PROACT database, specifically data that were used in the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy035#supplementary-data
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Fig. 3. Alzheimer’s disease data, estimated regression coefficients. Heatmap showing estimated regression coefficients
for a representative subsample of the SNPs. Absolute coefficients are thresholded at e−2 to improve readability.

2015 DREAM ALS Stratification Prize4Life Challenge (data were retrieved from the PROACT database
on June 22, 2015). As above, our aim is not to propose a solution to the prediction problem per se but
rather to provide a case study exploring the use of the joint lasso in a moderate-dimensional, clinical data
setting. In contrast to the Alzheimer’s example above, here the data are less high-dimensional and the
subgrouping less clear cut (see below).

The data consist of observations from n = 2393 patients. Each patient was enrolled in a clinical
trial and followed up for a minimum of 12 months after the start of the trial. Disease progression is
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Fig. 4. ALS prediction results. Box plots showing difference in RMSE of the joint lasso compared with the pooled
linear regression model (higher values indicate better performance by the joint lasso). [Subgroup-wise analysis
performed less well than pooled and is not shown; boxplots are over 10-fold cross-validation.]

captured by a clinical scale called the ALS Functional Rating Scale (ALSFRS). The task is to predict the
slope of the ALSFRS score from 3 to 12 months (after the start of the trial). For each patient, available
information includesALSFRS scores for the 0–3 month period, demographic information, and longitudinal
measurements of clinical variables. We follow the featurization and imputation procedures devised by
Mackay and Fang (see Küffner and others, 2015) and obtain a total of p = 615 features.

Subgroups were defined as follows. The first subgroup consists of patients with disease onset before
the start of the trial. The second subgroup consists of patients for whom onset was after the start of the
trial and who have negative ALSFRS slope. The third subgroup of patients also had onset after the start
of the trial but positive ALSFRS slope. Thus, the subgroups reflect severity of onset.

Figure 4 shows (held-out) RMSEs by subgroup; we see that the largest improvement in prediction
performance is in subgroup 1. The joint lasso approach leads to a modest improvement. Overall, the �2

approach seems to perform slightly better than the �1 approach. In particular, there is a slight decrease in
performance compared to the pooled method for �1 fusion in subgroup 3. The difference between weighted
and unweighted fusion is negligible and was not included in the figure.2

6. PREDICTION OF THERAPEUTIC RESPONSE IN CANCER CELL LINES

The Cancer Cell Line Encyclopedia (CCLE, Barretina and others, 2012) is a panel of 947 cancer cell lines
with associated molecular measurements and responses to 24 anti-cancer agents. Here, we use these data
to explore group-structured regression. We treat the area above the dose-response curve as the response
and use expression levels of ∼20 000 human genes as features. We treat the cancer types as subgroups k .
After discarding cell lines with missing values, we arrive at n ∼ 500 samples.

Figure 5 (top) shows results over all 24 responses (anti-cancer agents). We observe that for most
responses the joint lasso with �2 fusion approach shows either improved or similar prediction performance
to pooled in terms of RMSE (weighted by subgroup size). In contrast, the �1 fusion approach only shows
improved performance in a small number of drugs; for most drugs, the performance is indistinguishable
from the pooled approach. This indicates that �1 fusion over-regularizes in this example, forcing all

2 This dataset is different from the one reported in (Küffner and others, 2015), with larger variance in the slopes, and so RMSE
values are not directly comparable; however, we note that performance for our methods compares favorably with that reported in
the reference.
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Fig. 5. Cancer cell line therapeutic response prediction. Top panel: Difference in weighted RMSE between the joint
lasso with L1 and L2 fusion penalty and a pooled analysis. Results shown over 24 responses (anti-cancer agents)
using data from the Cancer Cell Line Encyclopedia (CCLE); the dashed vertical lines at zero indicate no difference,
boxplots to the right indicate improvement (lower RMSE) over pooled. Bottom panels: Cancer cell line therapeutic
response prediction, broken down by subgroup (cancer type) for agents PD-0332991 and ZD-6474.

coefficients to be the same, and reverting to the pooled model.Weighted fusion shows a similar performance
to unweighted fusion (not shown).

Figure 5 (bottom) shows results broken down by subgroup for two examples (responses PD-0332991
and ZD-6474). In the former case, the joint lasso largely outperforms pooled and subgroup-wise analyses.
In the second, pooled is the best performer, although the joint lasso performance is similar in most
subgroups.

7. CONCLUSIONS

Advances in data acquisition and storage are changing the nature of biomedical studies. Datasets are often
heterogenous, with samples spanning multiple disease types (or other biological or medical contexts)
that may be related but also expected to have differences with respect to underlying biology. Large,
heterogeneous data give opportunities to study similarities and differences between related pathologies
and to gain power in high-dimensional estimation by pooling information across larger sets of samples.
Indeed, many large datasets should arguably be thought of as comprising several smaller datasets, that have
similarities but that cannot be assumed to be identically distributed. Statistically efficient regression in
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such settings will require ways to pool information where useful to do so, whilst retaining the possibility of
subgroup-specific parameters and structure (such as sparsity patterns). We proposed a penalized likelihood
approach called the joint lasso for high-dimensional regression in the group-structured setting that provides
group-specific estimates with global sparsity and that allows for information sharing between groups.

We proposed two variants of the joint lasso, with an �1 and �2 fusion penalty respectively. The main
theoretical difference between the two approaches is that the �1 fusion approach has a discontinuity at
βk = β ′k , which encourages “sparsity of the differences” (Tibshirani and others, 2005), or in other words,
encourages the coefficients in different subgroups to be exactly the same. In practice, we have found that
in our simulation studies there was little difference in predictive performance between the two types of
penalty, while the real data applications varied as to which variant performed better. In the ALS and CCLE
examples, the �2 approach performed better in terms of improvement over the pooled approach, while
in the Alzheimer’s dataset, the �1 approach lead to a greater improvement. We conclude that the choice
of penalty will be data-dependent, and will be influenced by whether the �1 prior assumption of equality
of coefficients between pairs of subgroups makes sense for the problem setting. In cases where this is
not known, we would recommend starting by applying the �2 approach, which is less computationally
expensive due to the absence of discontinuities in the fusion penalty.

In any given application, even when there are good scientific reasons to suspect differences in regression
models between subgroups, it is hard to know in advance whether the nature of any differences is such that
a specific kind of joint estimation would be beneficial. For example, if sample sizes are small and groups
only slightly different, pooling may be more effective, or if the groups are entirely different, fusion of the
kind we consider may not be useful. This means that in practice, either simple pooling or subgroup-wise
analysis may be more effective than the joint lasso. In our approach, the tuning parameter γ (set by cross-
validation) determines the extent of fusion in a data-adaptive manner, and we saw in several examples that
this appears successful in giving results that are at worst close to the best of pooling and subgroup-wise
analyses. For settings with widely divergent subgroup-specific sample sizes nk , it may be important to
allow tuning parameters to depend on nk (we did not do so) and to consider alternative formulations that
allow for asymmetric fusion.

An appealing feature of the joint lasso is that it allows for subgroup-specific sparsity patterns and
parameter estimates that may themselves be of scientific interest. We discussed point estimation, but did
not discuss uncertainty quantification for subgroup-specific estimates. A number of recent papers have
discussed significance testing for lasso-type models (see e.g. Wasserman and Roeder, 2009; Lockhart and
others, 2014; Städler and Mukherjee, 2016) and we think some of these ideas could be used with the
models proposed here.

8. SOFTWARE AVAILABILITY

The R code used for the experiments in this paper has been made available as R package fuser on
CRAN: https://cran.r-project.org/web/packages/fuser. Scripts for reproducing the results in this paper can
be obtained at: http://fhm-chicas-code.lancs.ac.uk/dondelin/SubgroupFusionPrediction.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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