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ARTICLE INFO ABSTRACT
Keywords: Ventricular volume (VV) is a widely used structural magnetic resonance imaging (MRI) biomarker in Alzheimer’s
Alzheimer’s disease disease (AD) research. Abnormal enlargements of VV can be detected before clinically significant memory de-
Cognitively unimpaired subjects cline. However, VV does not pinpoint the details of subregional ventricular expansions. Here we introduce a
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Ventricular surface

Multivariate tensor-based morphometry
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ventricular morphometry analysis system (VMAS) that generates a whole connected 3D ventricular shape model
and encodes a great deal of ventricular surface deformation information that is inaccessible by VV. VMAS
contains an automated segmentation approach and surface-based multivariate morphometry statistics. We ap-
plied VMAS to two independent datasets of cognitively unimpaired (CU) groups. To our knowledge, it is the first
work to detect ventricular abnormalities that distinguish normal aging subjects from those who imminently
progress to clinically significant memory decline. Significant bilateral ventricular morphometric differences
were first shown in 38 members of the Arizona APOE cohort, which included 18 CU participants subsequently
progressing to the clinically significant memory decline within 2 years after baseline visits (progressors), and 20
matched CU participants with at least 4 years of post-baseline cognitive stability (non-progressors). VMAS also
detected significant differences in bilateral ventricular morphometry in 44 Alzheimer’s Disease Neuroimaging
Initiative (ADNI) subjects (18 CU progressors vs. 26 CU non-progressors) with the same inclusion criterion.
Experimental results demonstrated that the ventricular anterior horn regions were affected bilaterally in CU
progressors, and more so on the left. VMAS may track disease progression at subregional levels and measure the
effects of pharmacological intervention at a preclinical stage.

1. Introduction would more likely achieve therapeutic success (Brookmeyer et al. 2007;
Sperling et al. 2011a). Advances in neuroimaging biomarkers based on

Alzheimer’s disease (AD) is the most prevalent neurodegenerative positron emission tomography (PET), structural magnetic resonance
disease. By 2050, 1 in 85 persons worldwide will be living with it, imaging (MRI) and cerebral spinal fluid (CSF) imaging methods
which will consume enormous social resources (Brookmeyer et al. (Sperling et al. 2011a; Jack et al. 2016) provide evidence of AD pa-
2007). Failure of clinical trials in symptomatic patients has led to the thophysiology in vivo. Structural MRI biomarkers are the mainstay of
belief that capturing brain changes and intervening at preclinical stages AD imaging research as well as clinical diagnosis (Sperling et al. 2011b;
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Tosun et al. 2016). MRI biomarkers include whole-brain (Chen et al.
2007; Frisoni et al. 2010; Cuingnet et al. 2011), entorhinal cortex
(Cardenas et al. 2011; Zhou et al. 2013; Li et al. 2014), hippocampus
(Reiman et al. 1998; Pardoe et al. 2009; Shi et al. 2013a; Li et al.,2016;
Saeed et al. 2018; Dong et al. 2019), and temporal lobe volumes (Hua
et al. 2010; Coupé et al. 2019), as well as ventricular expansion (Jack
et al., 2008; Thompson et al., 2006; Wang et al., 2011). Ventricular
expansion reflects diffuse brain atrophy (Madsen et al., 2013, 2015).
Owing to the high contrast between the CSF and surrounding brain
tissue on T1-weighted images, the lateral ventricles can be measured
more reliably than other brain structures (Chou et al. 2010). These
ventricular characteristics make ventricular expansion measures de-
tectable at early and potentially preclinical AD stages (Apostolova et al.
2012; Roussotte et al. 2014a).

Ventricular expansion can be described by ventricular volume (VV)
(Weiner 2008; Roussotte et al. 2014b, a; Madsen et al. 2015; Coupé
et al. 2019) and ventricular surface morphometry (Thompson et al.
2004a; Wang et al. 2010; Gutman et al. 2013; Shi et al. 2015). Accel-
erating VV is associated with AD-related neuropathological progression
and can be detected prior to clinically significant memory decline
(Weiner 2008; Apostolova et al. 2012; Roussotte et al. 2014a; Madsen
et al. 2015; Coupé et al. 2019). However, with VV alone cannot pin-
point the deformation details at the sub-regional level. We propose that
ventricular morphology offers the possibility of being a more sensitive
indicator of the details of subregional ventricular expansions which
may differ between clinical subgroups.

Surface-based ventricular morphology biomarkers derived from
ventricular anatomical models, such as radial distances (RD, distances
from the medial core to each surface point) (Thompson et al. 2004a;
Ferrarini et al. 2006) and tensor-based morphometry (TBM) (Chung
et al., 2003, 2008; Shi et al. 2015), are useful in overcoming partial
volume effects and identifying detailed point-wise correlations between
structural deformations and neurodegenerative progression of AD. RDs
were estimated in order to track subfield morphology along the ven-
tricular surface normal directions (Thompson et al. 2004a; Wang et al.
2011; Apostolova et al. 2012; Gutman et al. 2013; Roussotte et al.
2014b, a). Deformations of ventricular subfields associated with cog-
nitive decline can be located and visualized using a 3D RD field
(Thompson et al. 2004a). With the help of RD mapping, age related
expansions of frontal and body/occipital horn portions of the lateral
ventricles were found in cognitively unimpaired (CU) subjects
(Apostolova et al. 2012). Radial expansion of ventricular temporal horn
surfaces was faster in AD than in CU subjects (Thompson et al. 2004a).

Surface TBM (Thompson et al. 2000; Chung et al., 2003, 2008) is
able to quantify brain deformations within surfaces. It has been applied
to detect regional differences in brain surface morphometry between
clinical groups (Shi et al. 2015). However, TBM is limited in its accu-
racy of modeling relatively small-scale structures (Chou et al. 2008). To
overcome this limitation, we developed the multivariate TBM (mTBM)
method and applied it to HIV/AIDS subjects and healthy controls
(Wang et al. 2010). This method gave better effect sizes for detecting
ventricular morphometry differences than other TBM-based methods,
including analysis of the Jacobian determinant, the largest and smallest
eigenvalues of the surface metric, and the pair of eigenvalues of the
Jacobian matrix (Wang et al. 2010, 2011). To comprehensively capture
deformations along the surface normal directions and within surfaces,
we developed multivariate morphometry statistics (MMS) combining
mTBM and RD to detect brain abnormalities associated with neurode-
generative diseases (Dong et al., 2019; Shi et al., 2014, 2015; Wang
et al., 2011; Li et al.,2016). Our previous studies (Wang et al. 2010,
2011) demonstrated that surface-based MMS gained improved statis-
tical power compared to other TBM-based methods.

Few studies have revealed ventricular morphometry abnormalities
of CU progressors who imminently progressed to clinically significant
memory decline. Previous studies of ventricular morphometric mod-
eling (Thompson et al. 2004a; Ferrarini et al. 2008; Chou et al. 2008;
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Wang et al. 2011; Apostolova et al. 2012; Roussotte et al. 2014b)
mapped only part of anatomical ventricular surfaces, with coverage of
inferior or posterior horns being incomplete. In this work, we propose a
complete ventricular morphometry analysis system (VMAS), which is
based on MMS proposed by our previous methods (Wang et al. 2010,
2011), but includes an automated ventricular segmentation method
(Zhang et al. 2016), together with an efficient morphometric expan-
sion/atrophy visualization analysis module (Yao et al. 2018; Dong et al.
2019). The proposed VMAS can capture a whole connected 3D ven-
tricular surface characteristic as well as subregional deformations. We
hypothesize that our VMAS will detect and visualize ventricular mor-
phometry abnormalities of CU progressors who subsequently pro-
gressed to clinically significant memory decline within 2 years post-
baseline, compared to CU non-progressors. We test and validate this
hypothesis in two independent CU cohorts, using cross-sectional
structural MRI and the VMAS to compute bilateral ventricular mor-
phometries and visualize ventricular morphometric expansions at sub-
regional levels that are related to memory decline.

2. Materials and methods
2.1. Subjects

Two cohorts were used for testing the performance of the VMAS.
The first is the Arizona APOE cohort: 38 subjects from an imaged sub-
cohort of 280 drawn from the 26-year longitudinal Arizona APOE co-
hort study (Caselli et al. 2004, 2009). The subjects selection met the
criterion adopted in our prior work (Stonnington et al. 2018): CU
progressors had both MRI and FDG PET data while still cognitively
unimpaired at the epoch approximately 2 years prior to progression to
clinically memory impairment; CU non-progressors had at least 4 years
over which they remained cognitively unimpaired and matched to
progressors for sex, age, education and APOE allele dose. Then we
found 18 CU progressors and matched 20 CU non-progressors in the
Arizona APOE cohort. Among these 18 progressors, sixteen were
eventually diagnosed with amnestic mild cognitive impairment (aMCI),
one with amnestic and visuospatial MCI, and one with mild stage AD
dementia. AMCI diagnosis fulfilled published criteria (Albert et al.
2011; McKhann et al. 2011). The Arizona APOE cohort was approved by
the Mayo Clinic and Banner Good Samaritan Institutional Review
Boards. After a complete description of the study was given to the
subjects, written informed consent was obtained.

The second cohort is drawn from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI is the
result of efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations. Subjects have been re-
cruited from over 50 sites across the U.S. and Canada. The primary goal
of ADNI is to test whether biological markers, such as serial MRI and
PET, combined with clinical and neuropsychological assessments, can
measure the progression of MCI and early AD. Subjects originally re-
cruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org. In this
study, study participants were drawn from ADNI-1 data base utilizing
the same inclusion criteria described above for the Arizona APOE co-
hort. From ADNI-1, we found 18 participants who developed clinically
significant memory impairment, i.e. aMCI, in approximately 2 years
and 26 age, sex, education and APOE-matched non-progressors re-
mained cognitively unimpaired for at least 4 years.

2.2. Overview of VMAS

The current work proposes the VMAS to study the ventricular ab-
normalities of CU progressors compared to CU non-progressors during
the preclinical stage, as shown in Fig. 1. This system consists of ven-
tricular segmentation, ventricular surface reconstruction, and ven-
tricular surface MMS analysis.
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(a) Individual MRI Scans (b) Registration

(g) Group Comparison Analysis

(f) Ventricular Surface Registration &
mTBM Estimation
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(d) Ventricle Surface
Reconstruction

(e) Ventricle Surface Division

Fig. 1. An illustration of the novel surface-based ventricular morphometry analysis system. First, individual MRI scans (a) were linearly registered into a standard
space (MNI152) (b). Second, the registered images were segmented into three brain tissue types (the gray matter, white matter, and CSF); a group-wise CSF template
was created from all individual CSF masks, and the group-wise ventricular template were subsequently obtained from the group-wise CSF template (c). Third, binary
ventricular masks were segmented and extracted, then ventricular surface meshes were constructed and smoothed (d). Fourth, the whole ventricular surface was cut
into three sub-structures (e). Fifth, each sub-ventricular surface was conformally mapped to a rectangle in the parameter domain, and vertex-wise multivariate
morphometry statistics (MMS) were estimated on these mapped surfaces (f). Last, the morphometric variations of ventricular surfaces between groups were eval-
uated, and significantly different subregions were shown in the form of a p-map (non-blue regions: p < 0.05) of the comparison analysis (g). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

First, individual MRI scans were linearly registered into a standard
space (MNI152) by using a FSL software package (Jenkinson et al.
2012). Second, the registered images were segmented into three brain
tissue types (the gray matter, white matter and cerebrospinal fluid
(CSF)) using a modified Gaussian mixture model (SPM8 packages,
http://www.fil.ion.ucl.ac.uk/spm/). A group-wise CSF template was
then created by applying the geodesic shooting algorithm (Ashburner
and Friston 2011), which learns the minimal deformation from all of
the individual CSF segmentations to an averaged template. Third, based
on this averaged CSF template, we extracted the ventricular structure
by mapping a probability ventricular mask, i.e., the automatic lateral
ventricle dellneatioN (ALVIN) binary mask (Kempton et al. 2011), onto
the template. A binary ventricular template of our dataset was formed,
and ventricular boundaries were visually inspected. The deformation
matrices from the estimation of group-wise CSF template were then
used to wrap the ventricular template back to the individual space.
With a topology preserving level-set method (Han et al. 2003) and
marching cubes algorithm (Lorensen and Cline 1987), ventricular sur-
face meshes were reconstructed according to the shape of each in-
dividual ventricular volumetric template. Before geometric analysis of
these reconstructed ventricular surfaces, we applied a two-step mesh
smoothing method (Yi et al. 2016) to remove noise and topologically
irregular structures. Fourth, due to the naturally occurring 3-horn
shape, the whole ventricular surface was cut into three sub-structures
by the holomorphic 1-forms segmentation method (Wang et al. 2010).
Fifth, sub-ventricular surfaces were independently registered to stan-
dard regular maps, and vertex-wise MMS of deformation fields of the
surface registration were estimated on these registered surfaces (Wang
et al. 2011; Zhang et al. 2016). These MMS can be regarded as the

vertex-wise geometry features. Finally, we conducted vertex-wise sta-
tistical analysis of MMS to compare ventricular morphometry differ-
ences between CU progressors and CU non-progressors. Expansive di-
rections of these significant ventricular subregions were analyzed using
RD statistics and mTBM statistics separately. Additionally, we also
make effect size analysis of VV and our proposed MMS measures. The
entire ventricular morphometry analysis pipeline is publicly available
at http://gsl.lab.asu.edu/software/ventricle/.

2.2.1. MRI registration and ventricle segmentation

With the FSL software package (Jenkinson et al. 2012), T1 MRI
images were linearly registered into a standard space (MNI152) to re-
move the effect of brain size. Then the registered images were parcel-
lated into three brain tissue types (the gray matter, white matter, and
CSF) using a modified Guassian mixture model (SPM8 packages, http://
www.fil.ion.ucl.ac.uk/spm/) to estimate the tissue type probability of
each voxel based on a prior probability map. After doing tissue seg-
mentation for all subjects, we estimated a group-wise CSF template
through the geodesic shooting algorithm (Ashburner and Friston 2011),
which introduced the minimal distortion of mappings from the source
CSF image f(x) to the estimated averaged CSF template u(x), e.g.,
f(p,(x)) = u(x). Essentially, in the first step, the initial CSF template
was set as the mean shape and intensity of the individual CSF tissue
images and updated iteratively. During each iteration, the objective
function is minimized by a proper initial velocity field vy and the final
object function is expressed as:

E = Litvoe + L S PG ( (9, (0) - ()P

2 202 (€))]

where the first term measures the image distortion during the mapping
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while the second term evaluates accuracy of the mapping for all voxels.
Here, ¢; is a forward diffeomorphism from subject to template para-
meterized by vg and Jf (x) is the corresponding Jacobin tensor. L in the
first term is a linear differential operator which can be understood as a
regularization of the deformation and is defined as:

ILvoI? = ./x'ew (%IIDv+(Dv)TII2 + Atr (Dv)? + A3lvI?)dx @

The term associated with 4; controls the image shearing and
stretching. The term weighted by 1, controls local volume expansion
and contraction. The last term with 1; denotes the absolute displace-
ment of voxels. Details of optimizing Eq. (1) can be found in (Ashburner
and Friston 2011). A group average of all deformed shapes is computed
after each round of iteration and set as the template for the next
iteration. Eventually, a stable result of CSF template is derived after
several iterations, e.g. typically 5 to 6 iterations, and is regarded as the
group-wise CSF template. As a part of the CSF, the group-wise ven-
tricular template was subsequently obtained by mapping a probability
ventricular mask onto the group-wise CSF template. In this study, the
Automatic Lateral Ventricle dellneatioN (ALVIN (Kempton et al. 2011))
binary mask was applied to exclude CSF tissues outside the ventricular
masks. Once the group-wise ventricular template is extracted, with the
help of deformation fields from the previous optimization process, we
inversed the image registration and segmented the individual ven-
tricular structures from the original 3D brain images.

2.2.2. Ventricular surface reconstruction and registration

Based on segmented binary volumetric masks, we extracted ven-
tricular boundaries with a topology preserving level-set method (Han
et al. 2003) and constructed triangular surface meshes with marching
cubes algorithm (Lorensen and Cline 1987). Later, the surfaces were
further smoothed using a two-step mesh smoothing method, i.e., com-
bination of “progressive meshes” and Loop subdivision, which had
proved to be feature-preserving while effectively reducing the noise and
partial volume effect (Yi et al. 2016).

We needed to parameterize the ventricular surface with 2D intrinsic
geometry properties (Thompson et al. 2004a; Wang et al. 2011). Since a
ventricular surface has a complex geometric structure, i.e., a “multiple-
arm” shape, we cut and modeled the whole ventricular surface into
three horns using the holomorphic 1-forms method (Wang et al. 2007,
2010). Three horns, including anterior horn, posterior horn and inferior
horn, were automatically located and separated from each ventricular
surface. This holomorphic 1-forms method induced conformal grids
which demonstrated the angle preserving property on the tube-like
subregional surfaces (Wang et al. 2007, 2010). Basically, we first fol-
lowed our previous work (Shi et al. 2015) to locate a singularity point
(zero point) which is a geometric landmark of ventricle, and is struc-
turally consistent across subjects. Based on this landmark, a Euclidean
conformal parameterization was computed resulting in the 3-horn de-
composition. Next, constrained harmonic maps were computed to re-
spectively register each of the ventricular sub-surfaces to a standard
map. The harmonic mapping t can be expressed as below:

75(5) = B(S2), 71 (85) = $(8S,), 5t =0 3

Here 7; and 7, are conformal parameterizations that respectively
map surface S; and S, to a square disc R% The map ¢ from surface S; to
surface S, can be obtained by¢ = 7°t°z; .

2.2.3. Ventricular surface multivariate morphometry statistics (MMS)
Three ventricular horns are tube-like shapes. To improve morpho-
metric analysis, our previous study (Wang et al. 2011) proposed MMS
measure to capture differences along all possible directions. MMS
consists of RD and mTBM. The RD describes morphometric changes
along the surface normal direction (Pizer et al. 1999; Thompson et al.
2004a, b). The mTBM captures deformations within surfaces such as
rotation, dilation, and shears with surfaces that are perpendicular to the
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surface normal direction (Leporé et al. 2008; Wang et al. 2010). After
ventricular surface registration and conformal parameterization, RD
was defined as the distance from each parametric surface point to the
center of 3D positions of the iso-u curves (red curves illustrated on
ventricular surfaces of Fig. 1) in the parameter domain (Wang et al.
2011).

We calculated the vertex-wise surface mTBMs, which can be re-
presented as a 3 x 1 feature. MTBM is a “Log-Euclidean metric”
(Arsigny et al. 2006) on the set of deformation tensors S, i.e., a3 x 1
positive definite matrix (log(S)). More specifically, the deformation
tensors S is computed as S = (J7J)'/2, where J is the Jacobian matrix
(Wang et al. 2010). Suppose there are two surfaces A = [a;, a,, az]
andB = [b;, b,, b3], which are isometrically embedded on the Euclidean
space, the discrete derivative map J from A to B is approximated
asJ = [a3 — a1, & — a][b3 — by, by — by]7!. Eventually, TBM is defined
as\/detJ, where detJ is the determinant of Jacobian matrix and mTBM
can be expressed as log\/]]_T . Finally, MMS for each vertex on the in-
dividual ventricular surface was formed as a 4 x 1 vector by combining
the mTBM and RD statistics. That is, each individual ventricle can be
represented as a W X 4 feature matrix, W is the vertices number of a
ventricle surface.

2.2.4. Ventricular surface MMS smoothing

The mesh smoothing process introduced in subsection 2.2.2 is used
to reduce the noise from image acquisition, segmentation, and partial
volume effects in surface reconstruction (Shi et al. 2013a). The re-
maining noise and noise introduced in subsequent processes still affect
the signal noise ratio (SNR) in the surface features and in the final
statistical analysis. Thus, the heat kernel smoothing algorithm (Chung
et al. 2005; Shi et al. 2015) was introduced to refine the ventricular
surface features. Referring to our previous work (Shi et al. 2015), key
parameters of the heat kernel smoothing algorithm were set as:
smoothing parameter 0 = 1 and number of iterations m = 10.

2.2.5. Group-wise ventricular surface morphometry analysis

The Hotelling’s T test (Hotelling 1931; Cao and Worsley 1999) was
performed to evaluate the morphometric variations of the smoothed
ventricular surfaces between CU progressors and non-progressors on
each vertex. Statistical results were corrected for multiple comparisons
using the permutation test (Wang et al. 2010). Basically, we calculated
the Mahalanobis distance based on the true group labels first. Then we
randomly assigned the object surfaces into two groups which had the
same number of subjects as in the true group and re-computed the
group distance on each surface point. This process repeated 10,000
times with the outcome of 10,000 permutation values on each vertex. A
probability (uncorrected p value) on each surface point was computed
as a ratio, i.e., percentage of permutations when the estimated per-
mutation values was greater than the true group t value. After that,
given a pre-defined statistical threshold, i.e. p < 0.05, we defined a
feature to be the number of surface points with uncorrected p value
lower than this threshold. The feature could be regarded as a real effect
in the true experiment, and by comparing it to the features derived from
the random groupings, we obtained a ratio that stood for the fraction of
the time an effect of similar or greater magnitude to the real effect
occurred in the random assignments. This ratio, the overall (corrected)
significance, provided a global significance level of the map.

After we calculated the significant variations on the ventricular
surface, we could apply directional analysis (Yao et al. 2018; Dong et al.
2019) to study the correspondence between VV enlargement and ven-
tricular morphometry expansion. The direction (atrophy or expansion)
of group differences were analyzed along the surface normal direction
and within surfaces at each surface point. We mapped RD and the de-
terminant of the Jacobian matrix (detJ), i.e., the TBM (Davatzikos et al.
1996; Thompson et al. 2000; Chung et al. 2008), at each significant
surface vertex k of subject group 1 (CU progressors) and group 2 (CU
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non-progressors) in a difference map according to the following for-
mula:

N;
CMvert X ver
N N, ()]

Rk

where Verf and Verzkj are the RD or detJ for ith subject in group 1 and jth
in group 2, and N; and N, are the number of subjects in each group.
Under the significant level (p < 0.05), R* > 0 indicates that CU pro-
gressors have an enlargement along the normal direction or within
surfaces at a given surface point k contrast to CU non-
progressors;R¥ < 0 indicates that CU progressors have an atrophy along
the normal direction or within surfaces at a given surface point k in
contrast to CU non-progressors.

2.2.6. Effect size analysis

The effect size method, Cohen’s d (Cohen 2013), can determine the
degree of ventricular deformations in CU progressors compared to CU
non-progressors. Hedge’s g is an alternative of Cohen’s D where dif-
ferent sample sizes exist, so we use Hedge’s g (Eq. (5)) to calculate the
effect sizes of ventricular volume measures (Grissom 2014), where my
and m, are the mean VV values of CD progressor and non-progressor
groups respectively, n; and n, are the sample sizes of each group, SD;
and SD, are the standard deviations of each group. The Hedge’s g and
Cohen’s d statistics can be interpreted by levels: low effect (< 0.5),
medium effect (< 0.8) and high effect (> 0.8) (Geuter et al. 2018).

Hedgesg = M, SD;,

‘pooled

[(n — 1)SD? + (n, — 1)SD?
ooled = \/
m+n—2 5)

MMS is a multivariate measure. The above effect size methods
cannot be directly applied. The study of (Sapp et al. 2007) pointed out
that Mahalanobis distance can provide a multivariate measure of effect.
Within the significant deformation subregions, we make vertex-wise
effect size statistics using Mahalanobis distance (Eq. (6)), where M; and
M, are the mean 4 X 1 MMS vector per ventricular surface vertex of CD
progressor and non-progressor groups respectively, S is their corre-
sponding 4 X 4 covariance matrix. The Mahalanobis distance D? is the
multivariate analogue of the univariate Cohen’s d effect size, it can be
interpreted by levels: small effect (=0.25), medium effect (=0.5) and
high effect (> =1) (Stevens 2001).

D* = (M; — Mp)'S™' (M, — M) (6)

3. Results
3.1. Study samples

Demographic information for the Arizona APOE cohort and ADNI
cohort are summarized in Table 1. Within each cohort, group differ-
ences of gender and APOE-¢4 genotype were estimated using chi-square
tests, group differences of age and education were calculated by t-tests
(Crivello et al. 2010; Dong et al. 2019). Inferential analysis demon-
strated that the CU progressors and non-progressors have no significant
differences on sex, age, education, and relevant APOE genotype.

3.2. Ventricular volume

Since VV measure is an effective measurement for studying AD
pathological progress (Jack Jr. et al. 2008; Reiter et al. 2017; Sgrensen
et al. 2017), we conducted a VV comparison analysis of CU progressors
vs. non-progressors using t-test on both cohorts. Similar to prior ap-
proaches used to compute brain volume for AD diagnosis (Pennanen
et al. 2004; Sandstrom et al. 2006; Chupin et al. 2007, 2009; Pardoe
et al. 2009), the VVs were computed on the smoothed ventricular
structures after they were linearly registered to the MNI imaging space
(Patenaude et al. 2011; Shi et al. 2013b). Table 2 shows the volume
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Table 1
Demographic characteristics of Arizona APOE and ADNI cohorts at the time of
baseline MRI scan.

CU progressors CU non-progressors P-Value
Arizona APOE cohort
Baseline sample size n =18 n = 20
Sex (M/F) 7/11 7/13 0.80
£4 Genotype (N) 13:03:02 13:04:03 0.89
% (HM:HT:NC) (72:17:11) (65:20:15)
Age 68.75 = 4.65 66.76 = 3.29 0.13
Education 16.44 + 1.69 15.50 = 3.33 0.29
ADNI cohort
Baseline sample size n =18 n =26
Sex (M/F) 15/3 16/10 0.11
e4 Genotype (N)(HM:HT:NC) 0:07:11 0:06:20 0.26
Age 79.64 = 4.16 77.60 = 3.91 0.10
Education 15.83 + 3.07 16.62 * 2.55 0.36

Sex and genotype p-values were calculated by chi-squared tests, age and edu-
cation p-values were calculated by t-tests. HM = 4 homozygote; HT = &4
heterozygote; NC = €4 non-carrier.

Table 2
Bilateral ventricular volumes of CU progressors and non-progressors at base-
line.

LV volume (cm®)  p-value RV_volume (cm®)  p-value
(mean + SD) (mean *= SD)
Arizona APOE cohort
CU progressors 53.6 = 15.0 0.017 51.8 + 18.2 0.047
CU non-progressors  42.7 + 11.8 41.5 = 109
ADNI cohort
CU progressors 48.6 + 10.8 0.018 47.3 +* 11.0 0.013
CU non-progressors  41.2 *+ 8.6 39.2 £ 95

Volume values are mean and (SD, standard deviation) when applicable. Volume
comparison p-values were calculated by t-test. LV: left ventricle; RV: right
ventricle. CU: cognitively unimpaired.

means (standard deviations) of the CU progressors and non-progressors,
at baseline, prior to clinically significant memory decline in the CU
progressors. In both cohorts, bilateral VVs of the CU progressors were
significantly larger than the non-progressors. Therefore, abnormal en-
largements in VVs of CU progressors can be detected two years before a
clinically significant memory decline.

3.3. Ventricular morphometry

After ventricular abnormalities of CU progressors were detected
using the VV measure, we expected to further reveal abnormal sub-
regional expansions on ventricular surfaces of the CU progressors with
VMAS. Fig. 2 shows the p-maps of CU progressors vs. non-progressors at
particular regions of the bilateral ventricles. Non-blue colors show
vertices with statistical differences at the nominal 0.05 level, un-
corrected for multiple comparisons. In the two independent cohorts, we
observed consistent deformation patterns of ventricular subregions in
the CU progressors, which were mainly on the anterior horn of both
ventricles and more on the left ventricle than the right side. We then re-
ran analyses with a permutation test to correct for multiple compar-
isons. In the Arizona APOE cohort (20 CU non-progressors vs. 18 CU
progressors), we found overall significant morphometric differences on
the left ventricle (LV, p = 0.01) and the right ventricle (RV, p = 0.03),
as shown in Fig. 2(a). In the ADNI cohort (26 CU non-progressors vs. 18
CU progressors), we also found overall significant morphometric dif-
ferences on the LV (p = 0.01) and RV (p = 0.02), as shown in Fig. 2(b).

3.4. Directional ventricular morphometry

Additionally, we analyzed the directions of surface deformations
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(b) ADNI Cohort: CU Non-progressors (N=26) vs. CU Progressors (N=18)

Fig. 2. Subregional differences on the ventricular surfaces of CU progressors and non-progressors in two independent cohorts. Color indicates level of p value,
uncorrected, for group comparisons at particular regions. When a permutation test was run to correct for multiple comparisons, for the Arizona APOE cohort (a) there
were significantly overall morphometric differences between the CU non-progressors and progressors on the left (p = 0.01) and right (p = 0.03) ventricles; a similar
effect was found in the ADNI cohort (b, left ventricle, p = 0.01, and right ventricle, p = 0.02).

using RD and mTBM metrics. Consistent with VV enlargement results,
these significantly abnormal ventricular regions of CU progressors are
expansive along the normal direction or within surfaces compared to
CU non-progressors in both the Arizona APOE and ADNI cohorts. The
studied regions (non-blue areas) in Figs. 3 and 4 are the statistically
significant regions from group difference studies shown in Fig. 2(a) and
(b). They are identified by using the proposed statistics, i.e. MMS, the
combination of RD and mTBM. Here, we extend our observation in a
way to emphasize the deformation directions. It is worth noting that the
enhanced statistical power gained by additional directional elements in
mTBM cannot be visualized by TBM. Even so, within the detected sig-
nificant regions, RD and mTBM convey a rather similar expansive
pattern in most parts, indicated by the fact that most of the red regions
are overlapped. Few inverse associations in some (green) regions pre-
sented that these regions are atrophy (Figs. 3 and 4a) measured by RD
but expansive (Figs. 3 and 4b) measured by TBM, and vice versa. The
similarity between panels (a) and (b) in Figs. 3 and 4 helps demonstrate
the largely consistent observations from RD and surface TBM, i.e., the
expansion along the normal direction (measured by RD) may also result
in surface area expansive (measured by TBM). In Fig. 4, these findings
were reproduced in ADNI cohort. These directional analyses demon-
strated that RD may be a good complement to mTBM. MMS may il-
lustrate the ventricular subregional deformations comprehensively.

3.5. Cumulative distribution analysis of the ventricular morphometry

To further validate which lateral ventricle is more sensitive to the
progress of AD pathology, the cumulative distribution functions (CDF)
of the contrast p-values are plotted against the corresponding p-value
that would be expected, under the null hypothesis of no group differ-
ence, as has been used in our prior work (Wang et al. 2010, 2011, 2013;
Shi et al. 2013b, 2014; Dong et al. 2019). For null distributions, the CDF
of p-values is expected to fall approximately along the line (y = x)
(Wang et al. 2010). Greater effect sizes are represented by larger de-
viations (the theory of false discovery rates gives the formulation for
thresholds that control false positives at a known rate).

Fig. 5 shows CDF of the p-values from bilateral ventricular mor-
phometry comparisons of CU progressors vs. CU non-progressors in the
two cohorts, respectively, plotted against the expected p-values under
the null hypothesis (blue dashed line) of no group differences among
the comparisons. The deviations of the statistics from the null dis-
tribution generally increased from RV abnormalities (green line) to LV
abnormalities (red line) in CU subjects, suggesting that the LV has
greater effect sizes to track AD pathologic progress in the preclinical
stage compared to the RV.

3.6. Effect sizes of VV and MMS measures

Effect sizes of VV analysis is calculated using Eq. (5). Table 3 shows
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(a) Directional analysis with RD on Arizona APOE Cohort: CU Non-progressors (N=20) vs. CU Progressors (N=18)

R

L

(b) Directional analysis with mTBM on Arizona APOE Cohort: CU Non-progressors (N=20) vs. CU Progressors (N=18)

Fig. 3. Directional analysis in non-blue regions (p < 0.05) of CU progressors compared to non-progressors in Arizona APOE cohort. Red and green colors highlight
vertices with significant ventricular expansions and atrophies along the surface normal directions (a) and within surfaces (b), respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the effect sizes of bilateral VV comparisons on two cohorts. VV measure
has medium effect sizes (> 0.5 and < =0.8) in distinguishing CU
progressors and non-progressors.

Within the significant deformation subregions, effect sizes of MMS
comparisons are calculated using Eq. (6). Fig. 6 shows the vertex-wise
effect size maps of bilateral MMS comparisons on two cohorts. Most of
the effect sizes are > 0.8 (red regions). Yellow subregions represent
large (D?= > 1) effect sizes. These effect size results demonstrate that
ventricular MMS has added value compared to VV.

4. Discussion

After analyzing cross-sectional structural MRI images of two in-
dependent CU cohorts, our results consistently show that CU pro-
gressors have larger ventricular expansions mainly in the anterior horns
(greater on the left ventricle) compared to CU non-progressors. These
results support our hypothesis that our completely automated VMAS
can detect ventricular morphometry abnormalities of CU progressors
compared to CU non-progressors prior to clinically significant memory
decline. These ventricular morphometric abnormalities did not only
mirror VV estimates in two independent cohorts, but they also detailed
the abnormal subfields caused by AD. To our knowledge, this is the first
study to use the surface-based ventricular morphometry approach to
successfully detect ventricular subregional abnormalities of CU pro-
gressors two years before their progression to clinically significant
memory decline. Our study is among the first to describe a completely
automated VMAS capable of generating a whole connected 3D

ventricular shape model.

4.1. Ventricular volumetric analysis in cognitively unimpaired subjects

Lateral ventricular boundaries (CSF/brain) have high contrast from
adjacent tissue, which facilitates ventricular segmentation in MRI scans,
so that ventricular measures may be the most reliable and robust for
studying AD pathophysiologic progression (Ferrarini et al. 2008; Chou
et al. 2008; Madsen et al. 2013, 2015). Previous studies (Weiner et al.
2015; Madsen et al. 2015; Coupé et al. 2019) demonstrated VV mea-
sures can detect ventricular enlargements associated with AD prior to
clinically significant memory decline. Here, we estimated the VV dif-
ferences between CU progressors and non-progressors in two in-
dependently CU cohorts. Our results are consistent with those of pre-
vious studies (Weiner 2008; Coupé et al. 2019), showing that abnormal
ventricular expansions are prior to future clinically cognitive decline in
CU progressors. This knowledge will facilitate subject enrollment, in a
timely fashion, in clinical trials aimed at prevention of AD process (Jack
et al. 2004; Weiner 2008; Apostolova et al. 2012; Roussotte et al.
2014a; Madsen et al. 2015; Coupé et al. 2019). Additionally, our results
from two cognitively unimpaired cohorts indicate the left ventricle
volume is larger than the right, so we infer that the left ventricle is more
severely affected than the right during the pre-clinical stage. Consistent
with this, others have found a larger left VV in MCI patients compared
to CUs (Apostolova et al. 2012; Madsen et al. 2015).
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(a) Directional analysis with RD on ADNI Cohort: CU Non-progressors (N=26) vs. CU Progressors (N=18)

R

L

(b) Directional analysis with mTBM on ADNI Cohort: CU Non-progressors (N=26) vs. CU Progressors (N=18)

Fig. 4. Directional analysis in non-blue regions (p < 0.05) of CU progressors compared to non-progressors in ADNI cohort. Red and green colors highlight vertices
with significant ventricular expansions and atrophies along the surface normal directions (a) and within surfaces (b), respectively. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version of this article.)

4.2. Ventricular shape modeling in cognitively unimpaired subjects

It is difficult to parameterize the ventricular surface because of its
‘multiple-arm’ structural property (Wang et al. 2010). To capture more
deformation details of the ventricular structure, some studies developed
surface-based ventricular morphometry analysis methods based on RD
measures to track deformations roughly along the surface normal di-
rection, and found anterior and body/posterior horn portions of the
lateral ventricles had age-related expansions (Thompson et al. 2004a;
Apostolova et al. 2012). Other studies developed TBM-based methods
to track ventricular deformations within surfaces (Thompson et al.
2007; Hua et al. 2008; Shi et al. 2015), the study of (Shi et al. 2015)
applied the TBM biomarker to distinguish ventricular shapes of 71 MCI
converters from 62 MCI stable controls, and these group different re-
gions close to the temporal lobe and posterior cingulate. Our previous
study (Wang et al. 2011) indicated mTBM provided better effect sizes
for detecting ventricular morphometric differences than TBM measure
in 804 subjects (184 CE, 391 MCI and 229 CU). The proposed VMAS
applied MMS including RD and mTBM to detect abnormal deformations
along the ventricular surface normal directions and within the ven-
tricular surfaces of CU progressors, which have not been extensively
studied. Our results demonstrated that pre-symptomatic CU progressors
have more expansive ventricular anterior subfields, and the left ven-
tricle is more prominent in this regard than the right.

To our knowledge, it is the first study to use the surface-based
ventricular morphometry approach to successfully identify ventricular

abnormalities in pre-symptomatic CU progressors. Several brain ima-
ging-based AD studies (Thompson et al. 2004b; Styner et al. 2005;
Ferrarini et al. 2008; Chou et al. 2009; Morra et al. 2009; Apostolova
et al. 2010; Costafreda et al. 2011) demonstrated that surface-based
biomarkers outperform volume measures. Regional brain deformations
associated with AD involve wide range of brain structures, the well-
known structures are hippocampus, ventricle and cortical thickness
(Frisoni et al. 2010; Cuingnet et al. 2011; Pettigrew et al. 2016; Reiter
et al. 2017; Sgrensen et al. 2017). Together with this work, we devel-
oped a series of surface-based biomarkers of different brain structures
for AD research (Wang et al. 2010, 2011; Fan et al. 2018; Dong et al.
2019). Our latest work (Dong et al. 2020) has indicated that combining
these three biomarkers could empower the prediction of AD progres-
sion. The current work also lays down a solid foundation for our future
comprehensive AD structural biomarkers in the preclinical stage. Ad-
ditionally, previous studies of ventricular morphometric modeling
(Apostolova et al., 2012; Chou et al., 2008; Ferrarini et al., 2008;
Roussotte et al., 2014; Thompson et al., 2004; Wang et al., 2011, 2013)
mapped only part of anatomical ventricular surfaces, with coverage of
inferior or posterior horns being incomplete. This work proposes an
automated ventricular surface segmentation method which can gen-
erate a whole connected 3D ventricular model, which benefits tracking
more ventricular subregional information.
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Fig. 5. Cumulative distribution functions of the p-values from bilateral ven-
tricular morphometry comparisons of CU progressors vs. non-progressors in two
independent cohorts, plotted against the expected p-values under the null hy-
pothesis (y = x, blue dash line) of no group differences among the comparisons.
In the false discovery rate methods, any cumulative distribution plot that rises
steeply is a sign of a significant signal being detected, with curves that rise
faster denoting higher effect sizes. The steep rise of the cumulative plot relative
to p-values that would be expected by chance can be used to compare the de-
tection sensitivity of different statistics derived from the same data. The de-
viations of the statistics from the null distribution generally increased from
right ventricle (RV) abnormalities (green line) to left ventricle (LV) abnorm-
alities (red line) in the CU subjects, suggesting that the LV is more sensitive to
AD pathologic progress in the preclinical stage compared to the RV. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 3
Effect sizes of ventricular volumes of CU progressors and non-progressors at
baseline.

LV volume effect RV volume effect

size size
Arizona APOE cohort
CU progressors vs. CU non- 0.738 0.700
progressors
ADNI cohort
CU progressors vs. CU non- 0.774 0.800
progressors

Effect size values were calculated by Hedges’ g. LV: left ventricle; RV: right
ventricle. CU: cognitively unimpaired.

NeuroImage: Clinical 27 (2020) 102338

4.3. Limitations and future work

Despite the promising results are obtained by applying our auto-
mated VMAS on MRIs of CU progressors and non-progressors, there are
three important caveats. First, this work used limited sample sizes to
estimate ventricular morphometry abnormalities of CU progressors. We
will further validate our algorithm in other large brain image cohorts,
such as ADNI-2 (Jack et al. 2015), UK Biobank (Sudlow et al. 2015) and
Adolescent Brain Cognitive Development (ABCD) study (Jernigan and
Brown 2018). And we will apply VMAS to compare and correlate with
other well-known biomarkers like amyloid-status (Wu et al. 2018) and
tau PET biomarkers (Brier et al. 2016; Gordon et al. 2019). Second, due
to the age difference in two cohorts, the identified expansive regions
across cohorts are not identical. We can observe extended significantly
different areas in the elder ADNI cohort. It may indicate that the in-
creased enlargement areas in the elder CU progressor group. The study
of (Worker et al. 2018) applied the linear mixed effects model to track
the sensitive hippocampal subregion univariate volume differences in
CU and AD populations. In future work, to suppress cohort hetero-
geneity and keep the general deformation subregions, we will explore
the linear mixed effects model (Avilés 2001; Worker et al. 2018) on
multivariate morphometry statistics. Third, VMAS integrated RD and
mTBM for improved statistical power. The current RD computation
relies on surface conformal parameterization and on iso-u curves (Wang
et al. 2011). Our recent work (Mi et al. 2018) proposed a novel method
to compute regularized Wasserstein means. The computed Wasserstein
means of surface is a skeleton which carries global shape information.
Therefore, the radial distance defined on the Wasserstein means may be
more robust and accurate. Our future work will integrate the robust RD
estimate method (Mi et al. 2018) into the VMAS. We expect that by
combining the new RD statistical method and mTBM, the VMAS may
gain more statistical power at detecting localized ventricular anato-
mical expansions of CU progressors.

5. Conclusion

This work proposed a novel automated ventricular morphometry
analysis system. There are several advantages of this system. First, the
individual ventricle mask is derived from a common template which
reflects common and special ventricular structural variations. Second, it
generates a whole connected 3D ventricular shape model which bene-
fits the surface-based morphometric analysis. Finally, it works on an
automated pipeline, without subjective interventions during the pro-
cess. The VMAS was test-retested on two independent cognitively un-
impaired cohorts, and showed that ventricular morphometric abnorm-
alities of the CU progressors can be detected prior to imminent
progression to clinically significant memory decline, with LV surface
statistics presenting higher effect sizes than RV.
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Fig. 6. Illustrations of the effect size maps of CU progressors compared to non-progressors in Arizona APOE cohort and ADNI cohort.
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