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Abstract.
Background: Disease progression prediction based on neuroimaging biomarkers is vital in Alzheimer’s disease (AD)
research. Convolutional neural networks (CNN) have been proved to be powerful for various computer vision research
by refining reliable and high-level feature maps from image patches.
Objective: A key challenge in applying CNN to neuroimaging research is the limited labeled samples with high dimensional
features. Another challenge is how to improve the prediction accuracy by joint analysis of multiple data sources (i.e., multiple
time points or multiple biomarkers). To address these two challenges, we propose a novel multi-task learning framework
based on CNN.
Methods: First, we pre-trained CNN on the ImageNet dataset and transferred the knowledge from the pre-trained model to
neuroimaging representation. We used this deep model as feature extractor to generate high-level feature maps of different
tasks. Then a novel unsupervised learning method, termed Multi-task Stochastic Coordinate Coding (MSCC), was proposed
for learning sparse features of multi-task feature maps by using shared and individual dictionaries. Finally, Lasso regression
was performed on these multi-task sparse features to predict AD progression measured by the Mini-Mental State Examination
(MMSE) and the Alzheimer’s Disease Assessment Scale cognitive subscale (ADAS-Cog).
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Results: We applied this novel CNN-MSCC system on the Alzheimer’s Disease Neuroimaging Initiative dataset to pre-
dict future MMSE/ADAS-Cog scales. We found our method achieved superior performances compared with seven other
methods.
Conclusion: Our work may add new insights into data augmentation and multi-task deep model research and facilitate the
adoption of deep models in neuroimaging research.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent
neurodegenerative brain disease worldwide [1, 2].
Clinical trial failures in symptomatic patients have led
to the belief that capturing brain changes and thera-
peutically intervening at earlier disease stages would
be more likely to achieve disease modification [3].
Various modalities of biomarkers have been used for
early identification of brain changes related to AD and
its earlier symptomatic stage, mild cognitive impair-
ment (MCI), including the brain structural atrophy
measured by magnetic resonance imaging (MRI)
[4–6], metabolic alterations in the brain measured by
fluorodeoxyglucose positron emission tomography
(FDG-PET) [7, 8], and pathological amyloid depo-
sitions measured through cerebrospinal fluid (CSF)
and amyloid-PET [3, 9]. Of these, abnormal structural
MRI is considered as a typical marker of neurodegen-
eration and retains a close relationship with cognitive
performance through the clinical phases of MCI and
dementia [3]. MRI is more widely available, less
invasive, and more affordable for clinical applica-
tions than other imaging biomarker modalities. To
date, the inevitable deformations of hippocampus,
ventricle, and cortical thickness are well captured
by structural MRI (Fig. 1) [10–13]. Prior work [3,
9, 12, 14–16], including our own study in a cog-
nitively unimpaired brain imaging cohort (Arizona
APOE cohort) [10], indicated that MRI hippocam-
pal atrophy accelerates 20 + years prior to incident to
MCI. Thus, structural MRI is promising as a potential
preclinical AD biomarker. However, MRI biometrics
do not yet reliably predict diagnosis and prognosis
in early AD stages especially in individual patients
[2, 17–20].

Convolutional neural networks (CNN) are capa-
ble of learning comprehensive feature maps from
images [21]. CNN has been successfully applied to
a variety of computer vision and medical imaging
applications including image classification [22], seg-
mentation [23], and disease diagnosis [24]. It has the
potential to improve the predictability of AD progres-

sion [21]. Li et al. [25] proposed a CNN framework
for early prognosis of AD dementia based on the
baseline hippocampal MRI data, and demonstrated
improved performance for predicting progression to
AD dementia. However, there are still few CNN
studies on modeling AD progression. One issue is
the limited training data in the AD research domain
while transfer learning has been proven to be a highly
effective technique for limited medical image analy-
sis. Kermany et al. [26] successfully applied CNN
with transfer learning to classify images for macular
degeneration and diabetic retinopathy and distinguish
bacterial and viral pneumonia on chest X-rays. Xu et
al. [27] designed a deep model of CNN with transfer
learning and achieved a good performance in dis-
tinguishing histopathology images of low and high
tumor mutational burden patients. CNN with trans-
fer learning, therefore, has potential for AD dementia
diagnostic modeling based on MR images.

After using CNNs with transfer learning, we con-
front an additional challenge that is high dimensional
feature maps derived from small number of individ-
ual biomarkers based on MR images. To address this
so called “large p, small n” problem, sparse cod-
ing has been applied. Sparse coding is an effective
way of learning a small number of basis vectors
termed dictionary to represent high dimensional fea-
tures effectively and concisely [28–30]. However
traditional dictionary learning algorithms confront
challenges of handling very large training sets or
dynamic training data changing over time, such as
MR image sequences accompanying AD progres-
sion [30]. Studies of [17, 31–33] demonstrated that
joint analysis of multi-tasks (i.e., multiple time points
or biomarkers) improved the prediction performance
and may be used for tracking AD progression.

To track AD progression measured by cognitive
scores, Zhang and Shen [18] proposed Multi-Modal
Multi-Task learning to jointly predict multiple vari-
ables from multi-modal data. However, they excluded
conditions of missing values in both modalities and
tasks. The study of [17] proposed Multi-Task Learn-
ing formulations by considering the prediction at each
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Fig. 1. Three promising brain structure measures of the structural MR images used for clinical diagnosis of Alzheimer’s disease: (a)
Hippocampal contractions; (b) Ventricle expansions; (c) Cortical thickness reductions.

time point as a task. It demonstrated that Multi-Task
Learning outperformed single-task learning algo-
rithms including ridge regression and Lasso for AD
progression. However, their approaches treated dic-
tionary learning for all tasks in the same manner,
which was suboptimal for modeling AD progres-
sion. To address the above two issues, our previous
study [32] proposed a two-stage Multi-task Stochas-
tic Coordinate Coding (MSCC), stage 1 involved
multi-source dictionary learning to utilize the com-
mon and individual sparse features in multi-tasks. In
stage 2, a Multi-Task Learning method was devel-
oped to solve the missing values issue. Experimental
results demonstrated that MSCC had an improved
prediction accuracy and speed efficiency for future
AD clinical score predictions compared to other sim-
ilar algorithms.

To explore the statistical power of the combina-
tion of CNN with transfer learning and multi-task
sparse coding, we developed an advanced deep model
CNN-MSCC to predict AD progression measured
by the Mini-Mental State Examination (MMSE)
[34] and the Alzheimer’s Disease Assessment Scale
cognitive subscale (ADAS-Cog) [35] scores using
multi-task imaging biomarkers. We hypothesized that
our system may produce accurate AD progression
modeling results while offering the flexibility to work
with structural imaging features from both longitu-
dinal data and multiple regions-of-interest (ROIs).

To validate our hypothesis, we designed two sets
of experiments where we applied our framework to
study the structural MRI data from Alzheimer Dis-
ease Neuroimaging Initiative (ADNI) [36, 37] and
compared our approach with seven other similar
methods. In Experimental I, we aimed to use longitu-
dinal (baseline, 6-months, 12-months) hippocampal
structural measures to predict MMSE/ADAS-Cog
scales of 24-months subjects. In Experiment II, we
applied the proposed framework on three kinds of
baseline structural features (hippocampal morphom-
etry, lateral ventricular morphometry, and cortical
thickness) to predict MMSE/ADAS-Cog scales of
varied time points (6-months, 12-months, and 24-
months).

MATERIALS AND METHODS

Subjects

Data for testing the performances of our proposed
framework and comparison methods were obtained
from the ADNI database (http://adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI is to
test whether biological markers such as serial MRI
and positron emission tomography (PET), combined
with clinical and neuropsychological assessment can

http://adni.loni.usc.edu
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Table 1
Demographic characteristics and longitudinal neuropsychological scores of the subjects

Baseline sample size of each group AD (n = 186) CU (n = 229) MCI (n = 399)

Male/Female 98/88 119/110 255/144
Age 75.36 ± 7.57 75.97 ± 5.04 74.85 ± 7.37
Education 14.69 ± 3.12 15.96 ± 3.05 15.54 ± 3.24
MMSE (Baseline) 23.28 ± 2.05 29.09 ± 1.05 27.01 ± 1.79
MMSE (6-months) 20.88 ± 6.50 27.96 ± 5.47 25.06 ± 6.40
MMSE (12-months) 17.69 ± 8.78 26.72 ± 8.13 23.69 ± 8.40
MMSE (24-months) 13.36 ± 9.87 25.67 ± 9.46 19.16 ± 11.40
ADAS-Cog (Baseline) 29.03 ± 7.66 9.55 ± 4.34 18.71 ± 6.28
ADAS-Cog (6-months) 28.05 ± 12.70 9.21 ± 5.04 18.63 ± 8.89
ADAS-Cog (12-months) 27.34 ± 16.46 7.83 ± 5.13 18.15 ± 10.08
ADAS-Cog (24-months) 24.79 ± 21.15 8.20 ± 5.63 16.75 ± 13.09

AD, Alzheimer’s disease; CU, cognitive unimpaired; MCI, mild cognitive impairment; MMSE, Mini-
Mental State Examination; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale.

measure the progression of MCI and early AD. The
structural MR images were acquired from 1.5T scan-
ners. The raw MR images and MMSE/ADAS-Cog
scales were downloaded from the public ADNI web-
site (http://adni.loni.usc.edu/).

In this work, all of these performance compari-
son analysis have been conducted on ADNI-I dataset
which including 837 subjects, the selection criteria
can refer our previous study [38], the identification
numbers of subjects were included in Supplemen-
tary Material A. There were 837 baseline subjects
between 68–82 years of age, 733 subjects in the 6th
months, and 676 subjects in the 12th months, and
544 subjects in the 24th months. There were 814
baseline subjects having MMSE/ADAS-Cog scores,
including 1) 186 AD subjects: baseline MMSE
scores between 20–26, 2) 399 MCI subjects: baseline
MMSE scores between 24–30, and 3) 229 cognitive
unimpaired (CU) subjects: baseline MMSE scores
between 24–30. The demographics of subjects used
in our experiments are shown in Table 1.

Proposed pipeline

In this section, we introduce the CNN-MSCC
framework which predicts future MMSE/ADAS-Cog
based on previous image patches from multiple time
points or multiple ROIs. We pre-trained the CNN
model on the ImageNet dataset [22, 39]. Surface mea-
sures of hippocampi, lateral ventricle, and cortical
thickness were estimated from individual structural
MR images [6, 40]. Surface maps were first con-
structed for these ROIs, and image patches were
further extracted from these surface maps [29, 41, 42].
With the transfer learning strategy, the pre-trained
CNN network was adopted as a feature extractor for

the following multi-task learning process (i.e., differ-
ent time points or ROIs) [31]. We further employed
MSCC to conduct the multi-task learning to simulta-
neously refine sparse features and dictionaries [32].
Finally, we employed the sparse codes generated
from MSCC to perform the Lasso and predict the
future MMSE/ADAS-Cog scores [43]. The entire
pipeline of our proposed framework is illustrated in
Fig. 2.

MR image preprocessing

Hippocampal surfaces were firstly segmented and
reconstructed from individual MR images using
FIRST software [44] and marching cube method
[45]. Then, we computed hippocampal conformal
grids on the Euclidean domain with holomorphic
1-form functions [46]. With these conformal grids,
we transferred the original 3D hippocampal struc-
ture into 2D vertex-based features. The benefit of
the conformal parameterization is that it helped com-
pute both surface intrinsic and extrinsic geometry
features, and dramatically simplified the implemen-
tation of surface fluid registration algorithm [47]. We
further applied the inverse consistent surface fluid
registration method to register hippocampal surfaces
across subjects. After the surface registration, we
introduced consistent image-grid like mesh struc-
tures on all hippocampal surfaces, for each subject,
a 90,000-dimensional mesh structure represented
mTBM of the hippocampal (HP) surfaces. To reduce
the high mesh dimension, we can treat the surface-
based feature structure as the pixel-grid and build
patch structures. Quadrilateral patches were adopted
here to improve the computational efficiency. Specif-
ically, with the rectangular surface parameterization

http://adni.loni.usc.edu/
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Fig. 2. An illustration of the proposed CNN-MSCC framework. The CNN model was pre-trained on the ImageNet dataset (a). The pre-trained model was modified as a feature extractor for brain
structural MR image patches based on transfer learning strategy (b) and deep feature maps were extracted from varied structural measures or time slots (c). MSCC was adopted to generate the
sparse features from deep feature maps (d). Finally, Lasso regression was applied on the sparse features to predict future MMSE and ADAS-Cog scores (e).
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Fig. 3. Visualization of selected surface patches on a pair of the
hippocampal surfaces. In this figure, we show some randomly
selected surface patches with different amounts of overlapping.
The zoom-in pictures show some overlapping areas between sur-
face patches. We generate a series of square windows on each side
of hippocampus.

obtained in our surface fluid registration [47], taking
advantage of the regular grid-like mesh structure, we
randomly generated a number of square windows (50
× 50 vertices) on each registered surface to obtain
a collection of small surface patches with different
amounts of overlaps. We choose 132 patches on each
hippocampus because it will cover all the vertices on
each side of hippocampus. The procedure is in fact
equivalent to applying a low-pass filter on the orig-
inal meshes. As a result, the geometrical structures
are still present while surface feature variances are
reduced. We performed the same procedure to com-
pute patches on both lateral ventricular and cortical
surfaces. Finally, we represent the original bilateral
hippocampal surface features with 264 overlapping
patches [29]. It is worth noting that even though we
randomly select patches on all subjects, because of
the registered surfaces, the patches we select in each
task are in fixed locations on each hippocampus. Fig-
ure 3 shows an example of patch selection on a pair
of the hippocampal surfaces. As these patches are
allowed to overlap, a vertex may be contained in sev-
eral patches. The zoom-in windows in Fig. 3 show
overlapping areas of selected patches. In this way, we
can still keep the surface spatial structure and learn
the mesh structures.

Further, we created surface mesh models of the
lateral ventricles using our multi-atlas fluid image
alignment (MAFIA) method that combines multi-
ple fluid registrations to boost accuracy [48]. To
model the lateral ventricular surfaces, we automat-
ically located and introduced three cuts, based on the
topology of the lateral ventricles, in which several
horns are joined together at the ventricular “atrium”
or “trigone” [6]. With the holomorphic flow seg-
mentation method, each lateral ventricular surface
was automatically partitioned into three pieces [46].

These three pieces are roughly three horns of the
lateral ventricle: anterior horn, posterior horn, and
inferior horn. The surface segmentation was done
by tracing curves that went through the zero point
and had equal parameter coordinates. Then we regis-
tered each segmented surface of the lateral ventricular
surfaces across subjects using constrained harmonic
maps and computed mTBM features. For each sub-
ject, a 308,247-dimensional mTBM statistics were
computed from registered ventricular surfaces. We
randomly generated a number of square windows
(50 × 50) on each registered surface to obtain a
collection of small surface patches with different
amounts of overlaps, 1,713 image patches on each
ventricular surface were chosen.

We adopted FreeSurfer [40] to compute cortical
thickness on each point of cortical surfaces. For calcu-
lating cortical thickness, MR images were segmented
into white matter and pial cortical surfaces using
FreeSurfer. Then the cortical thickness was computed
by deforming the white matter surface to the pial
surface. The deformation distance was taken as the
cortical thickness. A spherical parameterization for
each pial surface was also produced with FreeSurfer.
The spherical parameter surface and weighted spher-
ical harmonics [49] were further used to register pial
surfaces across subjects and each subject had the
same dimension (161,800) cortical thickness. Finally,
the spherical parameter surface was the canonical
space from which patches were selected. Similar to
our prior work [41], we computed circular patches
on the cortical surface. Specifically, 1,798 patches of
individual cortical thickness were chosen.

Among the three processing pipelines, FreeSurfer
is publicly available and we have published
our pipelines to compute both hippocampal and
ventricular surface features on our web site
(http://gsl.lab.asu.edu/software/). In the next section,
we will take image patches extracted from the above
three kinds of biomarkers as the input of the proposed
CNN-MSCC method.

CNN with transfer learning

The architecture of a general CNN consists of
the input layer, the output layer, and hidden layers
between input and output layers. The input to the
CNN is an image, and the outputs are class cate-
gories such as dementia or non-dementia. The hidden
layers of a CNN consist of convolutional layers, pool-
ing layers, fully connected layers, normalized layers,
and activation function [50]. Convolutional layers

http://gsl.lab.asu.edu/software/


Q. Dong et al. / CNN-MSCC for Cognitive Decline Prediction 977

are the necessary part of CNN and make a convo-
lution operation on the input image, emulating an
individual neuron perception of visual stimuli. Each
unit (neuron) in a subsequent convolutional layer has
local shift-invariant inter-connections with its recep-
tive units in the preceding layer. These connections
are trained by the back-propagating (BP) algorithm
[51]. Pooling layers was introduced into the CNN
for down-sampling outputs of the prior layer with
max-pooling or average-pooling strategy [52]. Fully
connected layers are usually added at the end of
CNN where every neuron in fully connected neurons
connects every neuron in the previous layer for gen-
erating a distribution over classes [53]. The sample
size of neuroimaging data is typically small com-
pared to those in computer vision, so transfer learning
is proposed to overcome this problem. One strategy
of transfer learning [26] is as follows: 1) using a
feed-forward approach to fix the optimized weights
in the lower levels (convolutional and pooling lay-
ers) trained from general images with large size; 2)
retraining the upper levels (fully connected layers)
with the BP algorithm; 3) using the fine-tuned CNN
to perform medical image analysis.

Our first goal here is to explore whether the trans-
fer learning framework of CNN can be generalized
to biological image studies. In this study, we took
AlexNet structure [22] as the initial CNN model,
which contains 7 layers, including convolutional lay-
ers with fixed filter sizes (see Table 2). We employed
rectified non-linearity, max-pooling on each layer in
this model. We pre-trained the CNN model on the
ImageNet dataset [54], containing millions of labeled
natural images with thousands of categories, and
removed the last fully-connected layer (this layer’s
outputs are the 1000 class scores for a different task
like ImageNet). The transferred CNN was used to
extract high-level features from rescaled and resized
brain surface patches of the training data. Finally,
the fine-tuned CNN were used to refine feature maps
of surface-based biomarkers of the test set [37]. We
implemented the CNN model using the Caffe tool-
box [55]. The network was trained on an Intel (R)
Xeon (R) 48-core machine, with 2.50 GHZ proces-
sors, 256 GB of globally addressable memory, and a
single Nvidia Tesla K40 GPU.

Multi-task stochastic coordinate coding

Feature maps from CNN are fed to our proposed
MSCC algorithm. Given feature maps from T dif-
ferent tasks: {X1, X2, . . . , XT }, our objective is to

Table 2
The architecture of pre-trained CNN used in this study

Deep layer Function Neurons

1 Convolutional 290400
2 Pooling Layer 186624
3 Convolutional r 64896
4 Convolutional 64896
5 Convolutional 43264

Pooling Layer 9216
6 Fully Connected 4096
7 Fully Connected 4096

learn a set of sparse codes {Z1, Z2, . . . , ZT } for each
task where Xt ∈ R

p × nt , Z� ∈ R
�t × nt and t ∈ {1, . . . ,

T}. p is the feature dimension of each subject, nt is
the number of subjects for Xt and �t is the dimension
of each sparse code in Zt . Online dictionary learning
methods (ODL) [30] is one possible solution to learn
the sparse codes Zt by Xt individually, the detail of
ODL is summarized into Algorithm 1. The learn-
ing process runs κ (a fixed constant) iterations until
there are no more changes on dictionary (D) and Z.
Xt = (x1, x2, . . . , xn ) is a finite training patch set of
one subject, where Xt ∈ R

p × n, each xi ∈ R
p is an

image patch with p dimension. By using ODL, we
obtain a set of dictionaries {D1, . . . , DT } but there is
no correlation between learned dictionaries.

Algorithm 1 Online Dictionary Learning and Sparse Coding

Input: Sample dataset: Xt = (x1, x2, . . . , xn) ∈ R
p × n.

Output: Dictionary D ∈ R
p × � and sparse codes

Z = (z1, z2, . . . , zn) ∈ R
� × n

1: for k = 1toκdo
2: Get an image patch xi from Xt .
3: Update sparse code zi by: minzi

1
2 ||xi− Dzi| |22 + λ|| zi| |1.

4: Update the dictionary D by: minD
1
2 | |xi−Dzi ||22+λ| |zi ||1.

5: Normalize the dictionary by each column of D.
6: end for

Another solution is to construct the subjects
{X1, . . . , XT } into one matrix X to obtain the dic-
tionary D. However, if there is no latent common
information shared by the same subject during dif-
ferent tasks, only one dictionary D is not enough
to show the variation among features from differ-
ent tasks. To address this challenge, we integrate
the idea of multi-task learning into the online dic-
tionary learning method [17, 18, 56, 57] and propose
a novel dictionary learning algorithm—MSCC—to
learn the sparse codes of subjects from different tasks.
The MSCC framework is non-convex. However, it
becomes a convex problem when we fix D to update Z
or fix Z to update D. Our latest study provides a suffi-
cient argumentation about the convergence of MSCC
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during the sparse codes and dictionary learning pro-
cess. It is time-consuming in the optimization process
of dictionary learning initialized by random patches.
Empirically, the iteration may take thousands of steps
to converge. However, we observe that after a few
steps, the support of the coordinates, i.e., the loca-
tions of the non-zero entries becomes very stable,
usually after less than ten steps. We tested the con-
vergence time by running MSCC on a single-GPU,
four-core 3.10 Ghz computer. The computation time
is 0.188 hours.

For the subject feature matrix Xt of a particu-
lar task, MSCC learns a dictionary Dt and sparse
codesZt .Dt is composed of two parts:Dt = [D̂t , Dt]

where D̂t ∈ R
p × �̂, Dt ∈ R

p × �̄t and �̂ + �t = �t .
D̂t is the same among all the learned dictionaries
{D1, . . . , DT } while Dt is different from each other
and only learned from the corresponding subjects’
feature matrix Xt . Objective function of MSCC can
be reformulated as follows:

min
D1,...,DT ∈�t

Z1,...,ZT

T∑
t=1

1

2
‖Xt-[D̂t, Dt]Zt‖2

F

+λ

T∑
t=1

‖Zt‖1, subject toD̂1 = . . . = D̂T (1)

where�t =
{
Dt ∈R

p×�t :∀j∈1, . . . , �t,
∥∥[Dt]j

∥∥
2≤1

}
(t = 1, 2, . . . , T ) and [Dt]j is the jth column of Dt .
There is no limitation of the task numbers (less or
more than three). In this paper, we only take three
time points and three well-known biomarkers as
examples. Figure 4 illustrates the framework of
MSCC with feature maps of structural measures
from three different tasks, which are represented
as X1, X2 and X3, respectively. For longitudinal
MMSE/ADAS-Cog scales predictions, the input
order of multi-task biomarkers is the actual time
order of disease progress. Each time point is a spe-
cific task in our formulation. Through the multi-task
learning process of MSCC, we obtain the dictionary
and sparse codes for features from each time point t:
Dt and Zt . In MSCC, a dictionary Dt is composed
by a shared common part D̂t and an individual part
Dt . In this example D̂1, D̂2 and D̂3 are the same.
For the individual part of dictionaries, MSCC learns
a different Dt only from the corresponding feature
matrix Xt. We vary the number of columns �t in Dt

to introduce the variant in the learned sparse codes
Zt . As a result, the dimensions of learned sparse

codes matrix Zt are different from each other.
The initialization of dictionaries in MSCC is crit-

ical to the entire learning process. We propose a
random patch method to initialize the dictionaries
from different tasks. The main idea is to randomly
select l image patches from n subjects {x1, x2, . . . ,
xn } to construct D ∈ R

p × �. In MSCC, the way we
initialize D̂t is to randomly select �̂ subjects’ features
from feature matrices across different tasks {X1, . . . ,
XT }. Similarly, for the individual part of each dic-
tionary, we randomly select �̄ subjects’ features from
the corresponding matrix Xt to construct Dt .

Algorithm 2 Multi-task Sparse Coordinate Coding

Require: Samples from different tasks: {X1, X2, . . . , XT },
XT ∈ R

p × nt

Ensure: Dictionaries and sparse codes for each tasks:
{D1, . . . , DT } and {Z1, . . . , ZT }

1: for k = 1toκdo
2: for each image patch xt(i) ∈ Xt, i ∈ {1, . . . , nt} and

t ∈ {1, . . . , T }.
3: Update D̂

k

t : D̂
k

t = �.
4: Update Zk+1

t (i) and index set Ik+1
t (i) by a few steps of CCD:

5:
[
Zk+1

t (i), Ik+1
t (i)

]
= CCD

(
D̂

k

t , D
k

t , xt(i), Ik
t (i), Zk

t (i)
)

.

6: Update the D̂t and Dt by one step SGD:

7:
[
D̂

k+1
t , D

k+1
t

]
= SGD

(
D̂

k

t , D
k

t , xt(i), I
k+1
t (i), Zk+1

t (i)
)

.

8: Normalize D̂
k+1
t and D

k+1
t based on the index set Ik+1

t (i).

9: Update the shared dictionary � : � = D̂
k+1
t .

10: end for
11: end for
12: end for

After initializing dictionary Dt for each time point,
we set all the sparse codes Zt to be zero in the begin-
ning. The key steps of MSCC are summarized in
Algorithm 2, k denotes the epoch number where
k ∈ {1, . . . , κ}, � represents the shared part of each
dictionary Dt which is initialized by the random patch
method. For each subject’s patch xt(i) extracted from
Xt , we learn the ith sparse code Zk+1

i (i) from Zt by
several steps of Cyclic Coordinate Descent (CCD)
[58]. Then we use learned sparse codes Zk+1

t (i)

to update the dictionaries D̂
k+1
t and D

k+1
t by one

step Stochastic Gradient Descent (SGD) [59]. Since
Zk+1

i (i) is very sparse, we use the index set Ik+1
i (i)

to record the location of non-zero entries in Zk+1
i (i)

to accelerate the update of sparse codes and dictio-
naries, � is updated in the end of kth interaction to

ensure D̂
k+1
t is the same among all the dictionaries.

After we pick an image patch xt(i) from the sample
xt at the time point t, we fix the dictionary and update
the sparse codes by following the ODL method [30].
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Fig. 4. Illustration of the learning process of MSCC on ADNI datasets from multiple tasks.

Then the optimization problem we need to solve
becomes the following equation:

min
Zt (i)

F (Zt(i))= 1

2
‖xt(i)-[D̂t , Dt]Zt(i)‖2

2+λ‖Zt(i)‖1

(2)
It is known as the Lasso problem [43]. Coordinate

descent [58] is known as one of the state-of-the-art
methods for solving this problem. In this study, we
perform the CCD to optimize Eq. (2). Empirically, the
iteration may take thousands of steps to converge. It
is time-consuming in the optimization process of dic-
tionary learning. However, we observe that after a few
steps, the support of the coordinates, i.e., the locations
of the non-zero entries in Zt(i), becomes very stable,
usually after less than ten steps. In this study, we per-
form P steps CCD to generate the non-zero index
set Ik+1

t , recording the non-zero entry of Zk+1
t (i).

Then we perform S steps CCD to update the sparse
codes only on the non-zero entries of Zk+1

t (i), accel-
erating the learning process significantly. SCC [60,
61] employs a similar strategy to update the sparse
codes in a single task. For the multi-task learning, we
summarize the updating rules as follows:

(a) Perform P steps CCD to update the locations
of the non-zero entries Ik+1

t (i) and the model
Zk+1

t (i).
(b) Perform S steps CCD to update the Zk+1

t (i) in
the index of Ik+1

t (i).

The detailed optimization procedure [32, 60, 61]
is reported in Supplementary Material B.

Performance evaluation protocol

To evaluate the proposed framework, we randomly
split the data into training and testing sets using an
8 : 2 ratio, i.e., models were constructed on 80% of
the data and evaluated on the remaining 20% of
the data. We also used 10-fold cross validation to
select key parameters and avoid data bias during
the training. Lastly, we evaluated the overall pre-
diction performance using normalized mean square
error (nMSE), weighted correlation coefficient (wR),
and root mean square error (rMSE) for task-specific
regression performance measures [17]. The three per-
formance measures are defined as follows:

nMSE(Y, Ŷ ) =
∑t

i=1
‖Yi−Ŷi‖2

2/σ(Yi)∑t

i=1
ni

,

wR(Y, Ŷ ) =
∑t

i=1
Corr(Yi,Ŷi)ni∑t

i=1
ni

,

rMSE(y, ŷ) =
√

‖y−ŷ‖2
2

n
.

(3)

For nMSE and wR, Yi is the ground truth of tar-
get task i and Ŷi is the corresponding predicted value,
σ(Yi) is the standard deviation of Yi , Corr is the Pear-
son correlation coefficient between two vectors and
ni is the number of subjects of task i. For rMSE,
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y is the ground truth of the target at a single task
and ŷi is the corresponding prediction by a prediction
model. The smaller nMSE and rMSE, as well as the
bigger wR mean the better prediction performances,
nMSE and wR are used to evaluate the overall perfor-
mances of the proposed system across multiple times
points, rMSE is used to evaluate CNN-MSCC perfor-
mance of each time point. We reported the mean and
standard deviation based on 40 iterations of experi-
ments on different splits of data. We compared the
proposed model with seven other methods, which are
as follows:

• CNN-R: CNN learned surface feature without
transfer learning, followed by Lasso regression.

• MSCC-R: The proposed multi-task dictionary
learning algorithm followed by Lasso regres-
sion.

• OLSC-R: The single-task dictionary learning
[30] followed by Lasso regression.

• cFSGL: A multi-task algorithm called convex
fused sparse group Lasso [17].

• L21: A multi-task algorithm called L2,1, norm
regularization with least square loss [62].

• Lasso: A single task method called Lasso regres-
sion [43].

• Ridge: A single task method called Ridge regres-
sion [63].

Paired sample t-test was applied to compare
performances (rMSE/nMSE and wR) between CNN-
MSCC and seven other similar methods [64] and the
statistical p values were corrected for false discovery
rate (FDR) [65].

RESULTS

This section explains how to configure key param-
eters of the proposed system CNN-MSCC and
provides performance comparisons between CNN-
MSCC and other state-of-the-art methods.

We designed two different experiments to vali-
date our proposed CNN-MSCC framework. In the
first experiment (Experiment I), we applied CNN-
MSCC to predict MMSE/ADAS-Cog scores of
24-months using HP image patches of baseline,
6-months, and 12-months. In the second experi-
ment (Experiment II), we applied the CNN-MSCC
to predict MMSE/ADAS-Cog scales of multi-
time slots (6-months, 12-months, and 24-months)
using image patches of baseline multi-ROIs (hip-
pocampal/ventricle mTBM and cortical thickness).
Comparison analyses were performed between CNN-
MSCC and seven other similar methods in each
experiment. To fit the pre-trained CNN model,
patches of size 50 × 50 are extracted and resized to
size of 227*227 input sample. There are either HP
patches from multi-time slots (Experiment I) or three
kinds of baseline structural patches (Experiment II).
The image patch amount of each time point and struc-
tural measure are shown in Table 3.

Key parameter estimation

In this work, we estimate two key parameters of
CNN-MSCC on longitudinal HP image patches and
then use the optimized parameters throughout the
paper.

The first key parameter is the amount pre-trained
CNN layers for transferring learning. In this work,
we aimed to get feature maps related with AD
from image patch-based features using the well pre-
trained CNN. With the transfer learning technique,
the AlexNet architecture pre-trained on the Ima-
geNet dataset [66] was tested on longitudinal HP
image patches. CNN consists of multiple layers of
feature maps, and each layer is a different repre-
sentation of the input data. We used the HP image
patches of three time points (baseline, 6-months, and
12-months) as inputs to predict MMSE/ADAS-Cog
scales of 24-months. We studied their performances
when working with different network layers (detailed
in Table 2) of CNN-MSCC.

Table 3
The image patch amounts of two experimental datasets

Baseline 6-months 12-months

Longitudinal Hippocampal
patches (individual patch
number * subjects)

220968 (264 * 837) 193512 (264 * 733) 178464 (264 * 676)

Hippocampal surfaces Ventricular surfaces Cortical thickness
Three baseline structural

patches (individual patch
number * subjects)

220968 (264 * 837) 2867562 (3426 * 837) 1504926 (1798 * 837)
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Fig. 5. Comparison of 24-months’ MMSE/ADAS-Cog prediction models with different CNN layers (both with and without MSCC
part—CNN-MSCC versus CNN-R), in terms of root mean square error (rMSE) on hippocampal patches of baseline, 6-months, and 12-months.
MMSE, Mini-Mental State Examination; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; CNN, Convolutional
Neural Network; MSCC, Multi-task Stochastic Coordinate Coding; CNN-R, CNN-Regression.

To verify the role of MSCC part, we also com-
pared the performance of CNN-MSCC with the
performance without MSCC part (CNN-R). The
results are provided in Fig. 5. We observed that
both CNN-MSCC and CNN-R with 6 network lay-
ers outperformed the others measured by rMSE.
The discriminative power increases from the 4 to
6 layers, and then drops afterwards as the depth
of network increases. One reasonable explanation
about this observation is the lower layers do not fully
capture the surface features and the higher layers
captured features that overfit to the training image
patches. Therefore, in this paper, we used the 6th
layer’s features (4096) as the number of rows for
all the dictionaries. Additionally, we also noted that
CNN-MSCC outperformed CNN-R with different
layer settings. It indicates that MSCC part helps to
improve the prediction performance.

The second key parameter is the proportions of
common and individual parts in the dictionary of
MSCC algorithm. The dictionary of MSCC algorithm
includes common and individual parts for consid-
ering the constant and varied features of multi-task
learning. It is necessary to evaluate the optimal pro-
portions of the two parts in the dictionary. We still
used the longitudinal HP image patches of three
time points (baseline, 6-months, and 12-months) as
inputs to predict MMSE/ADAS-Cog scales of 24-
months and adopted 6-layers of CNN in the proposed
algorithm. We set the dictionary size to be 2000
and partitioned the dictionary by different propor-

tions: 250 : 1750, 500 : 1500, 1000 : 1000, 1500 : 500,
and 1750 : 250, where the left number is the size of
common part while the right number is the size of
individual part for each dictionary. To verify the role
of CNN part of the proposed method, we also cal-
culated the performance of an algorithm MSCC-R
without the CNN part. Figure 6 shows the rMSEs as
the performance measures of two methods MSCC-
R and CNN-MSCC on the longitudinal HP data.
The rMSEs of MMSE/ADAS-Cog scales are low-
est when we divide the dictionary in half. So, in
all experiments, we use the ratio of 1000 : 1000 as
the proportion of common and individual parts for
all the dictionaries. Additionally, we observed that
CNN-MSCC outperformed MSCC-R with different
dictionary proportion settings. This indicates that
CNN part also helps to improve the prediction perfor-
mance. So, the combination of optimized CNN and
MSCC is expected to have a promising performance
on AD progression prediction. In the follow-up exper-
iments, we will further validate this expectation.

Experiment I: CNN-MSCC on longitudinal HP
surface patch features

Studies demonstrate that the hippocampal struc-
ture is a primary biomarker in the longitudinal
structural MRI analysis of AD progression [11,
67–70] and significant hippocampal deformations
related with AD pathology can be detected even
before observing obviously lower MMSE/ADAS-
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Fig. 6. Comparison of 24-months’ MMSE/ADAS-Cog prediction performances with different dictionary settings of MSCC, in terms of root
mean square error (rMSE) on hippocampal patches of baseline, 6-months and 12-months. MMSE, Mini-Mental State Examination; ADAS-
Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; CNN, Convolutional Neural Network; MSCC-R, Multi-task Stochastic
Coordinate Coding Regression.

Fig. 7. Scatter plots of actual versus predicted MMSE/ADAS-cog values of 24-months using CNN-MSCC based on hippocampal patches of
baseline, 6-months, and 12-months. MMSE, Mini-Mental State Examination; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive
Subscale; CNN, Convolutional Neural Network; MSCC, Multi-task Stochastic Coordinate Coding; rMSE, root mean square error; CORR,
Correlation coefficients.

Cog scores [10, 11, 71, 72]. In Experiment I,
we used previous longitudinal HP patches (base-
line, 6-months, and 12-months) to predict future
MMSE/ADAS-Cog scales at the 24-months point.
Image patches with size 50 × 50 were extracted
from individual hippocampal mTBM feature maps
of three tasks (baseline, 6-months, and 12-months),
and we had 220968, 193512, and 178464 individ-
ual HP image patches for three tasks respectively.
Using these image patches as the input of CNN-
MSCC, we got three sets of feature sparse codes of

baseline, 6-months, and 12-months. We used individ-
ual 12-months sparse codes learned by CNN-MSCC
as Lasso design matrices to train and test the 24-
months MMSE/ADAS-Cog scales with 8 : 2 subjects
ratio, because the 12-months sparse codes contain
both common features along with time points (base-
line, 6-months, and 12-months) and task-specific
features of 12-months. Figure 7 shows scatter plots
of CNN-MSCC for the predicted values versus the
actual values for MMSE/ADAS-Cog on the testing
data.
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To estimate the performance of CNN-MSCC on
this application, we randomly split the training data
and testing data as the 8 : 2 ratio and ran 40 itera-

Fig. 8. Comparison analysis of our proposed method and seven
other similar methods on 24-months MMSE/ADAS-Cog scale
prediction performances using hippocampal image patches of
baseline, 6-months, and 12-months in terms of root mean square
error (rMSE). Paired sample t-test was applied to estimate the sig-
nificant outperformances of the proposed method CNN-MSCC.
The asterisk above green boxplot shows that, for MMSE scale
predictions, CNN-MSCC has significantly smaller (p < 0.05, cor-
rected) rMSEs compared to CNN-R, OLSC-R, cFSGL, L21,
Lasso, and Ridge, while there is no significant rMSEs difference
for the contrast of CNN-MSCC versus MSCC-R. The asterisk
above blue boxplot shows that, for ADAS-Cog scale predictions,
CNN-MSCC has significantly smaller rMSEs (p < 0.05, corrected)
compared to all other methods.

Fig. 9. Weighted correlation coefficient (wR) between predicted
and actual MMSE/ADAS-Cog scales of 6-months, 12-months,
and 24-months (M06, M12, and M24) on testing data using
CNN-MSCC based on baseline multi-cortical image batches.
Paired sample t-test was applied to estimate the significant
outperformances on MMSE/ADAS-Cog scale predictions of 24-
months. The asterisks above blue boxplots show that wRs on
MMSE/ADAS-cog score predictions of 24-months are signifi-
cantly higher (p < 0.05) than wRs of 6-months and 12-months.

tions of each method, then we could apply paired
sample t-test with lower-tailed hypothesis to compare
the rMSEs performances of CNN-MSCC with seven
other similar methods on the longitudinal HP dataset.
All the p values were corrected by FDR. The rMSEs
of 24-months MMSE/ADAS-Cog scale predictions
are shown in Fig. 8. Statistical results indicate that, for
MMSE scale predictions, CNN-MSCC has signifi-
cantly smaller rMSEs (p < 0.05) compared to CNN-R,
OLSC-R, cFSGL, L21, Lasso, and Ridge, while there
is no significant rMSEs difference (p = 0.3459) for
CNN-MSCC versus MSCC-R. For ADAS-Cog scale
predictions, CNN-MSCC has significantly smaller
rMSEs (p < 0.05) compared to all the other methods.
All the eight methods demonstrate that the rMSEs of
MMSE predictions are better than ADAS-Cog pre-
diction.

Experiment II: CNN-MSCC on multiple baseline
cortical structural surface patch features

Ventricular mTBM and cortical thickness are
another two important biomarkers for tracking the
AD progression [6, 11, 70, 73]. In Experiment
II, we used the baseline structural image patches,
including hippocampal mTBM features, ventricular
mTBM features, and cortical thickness of 837 sub-
jects to predict the MMSE/ADAS-Cog variations
of future time points (6-months, 12-months, and
24-months). After preprocessing these MRI data,
we have 220968, 2867562, and 1504926 individ-
ual image patches corresponding to three kinds of
baseline structural measures respectively. Using the
CNN-MSCC framework, we got three sets of fea-
ture sparse codes. Since each subject has three sparse
codes, we combined these three sparse codes as Lasso
design matrix to train and test the 6-months, 12-
months, and 24-months MMSE/ADAS-Cog scales
with 8 : 2 subjects’ ratio. This process was repeated
40 times. Figure 9 shows the boxplots of wRs
between the predicted and the actual MMSE/ADAS-
Cog scales of 6-months, 12-months, and 24-months.
Using paired t-test with higher-tailed hypothesis
between wRs of different time points, we found
wRs on MMSE/ADAS-Cog score predictions of 24-
months are significantly higher (p < 0.05) than wRs
of 6-months and 12-months. These improved wRs
on 24-months benefited from MSCC method to iter-
atively learn features from previous time points.

Then we further compared our results with those
of seven other state-of-the-art methods on the
baseline multi-cortical dataset. Similarly, as in pre-
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Fig. 10. Comparison analysis of CNN-MSCC and seven other similar methods on longitudinal MMSE/ADAS-Cog prediction performances
using baseline image patches of multiple ROIs in terms of normalized mean square error (nMSE) (a), weighted correlation coefficient
(wR) (b), and root mean square error (rMSE) at 6-months, 12-months, and 24-months (M06, M12, and M24) (c). The asterisks above
green boxplots and blue boxplots show that, for MMSE/ADAS-Cog scale predictions, CNN-MSCC has significantly smaller nMSEs/rMSEs
(p < 0.05, corrected), and larger wRs (p < 0.05, corrected) compared to all other seven similar methods.

vious experiments, we randomly split the baseline
training data and testing data as the 8 : 2 ratio and
ran 40 iterations of each method, then we could
apply paired sample t-test with lower-tailed hypothe-
sis to compare the rMSE/nMSE performances and
with higher-tailed hypothesis to compare wR per-
formances of CNN-MSCC with seven other similar
methods. Figure 10 shows the comparison results
of our proposed method and seven other similar
methods on longitudinal MMSE/ADAS-Cog pre-
diction performances using baseline image patches
of multiple ROIs in terms of normalized mean
square error (nMSE, see Fig. 10a), weighted cor-
relation coefficient (wR, see Fig. 10b) and root
mean square error (rMSE, see Fig. 10c) at 6-months,
12-months, and 24-months (M06, M12, and M24).
With paired sample t-test and FDR correction, we
observed CNN-MSCC significantly outperform other
similar methods with smaller (p < 0.05, corrected)
rMSEs/nMSEs and higher (p < 0.05, corrected) wRs

on future MMSE/ADAS-Cog scale predictions.
Additionally, all the methods show apparently lower
nMSE/rMSE when predict MMSE scales compared
to predict ADAS-Cog scales. That is, neuroimaging
features have closer relationship with MMSE scales
compared to ADAS-Cog scales. These results support
our hypothesis that a combination of features from
multiple ROIs may enhance the statistical power in
future cognitive measure regression.

Sex/gender is one of the strongest predictors of
AD, and women have twofold increased risk of AD
than men after 65 years old [74, 75]. We applied
CNN-MSCC to predict future MMSE/ADAS-Cog
scales of males and females using baseline multi-
task biomarkers. Paired sample t-test was applied
to estimate performance differences between male
and female groups. We observe that the female
group has significantly smaller rMSEs (p < 0.05) on
MMSE/ADAS-Cog scale predictions at 6-months
compared to the male group, while no statistical
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Fig. 11. MMSE/ADAS-Cog prediction performances of male and female groups using the proposed CNN-MSCC method and baseline
patches of multiple ROIs in terms of root mean square error (rMSE) at 6-months, 12-months, and 24-months (a) and (b), normalized mean
square error (nMSE) (c), and weighted correlation coefficient (wR) (d). The asterisks above green boxplots in (a) and (b) show that female
group have significantly smaller rMSEs (p < 0.05) on MMSE/ADAS-Cog scale predictions at 6-months compared to the male group.

difference is observed on rMSEs with 12-months
and 24-months prediction and the overall nMSE and
wR values (see Fig. 11). It may demonstrate that
CNN-MSCC has a slightly higher effect size to pre-
dict female MMSE/ADAS-Cog scales than the male
group. Our research show that female may have
stronger connections between structural changes and
future cognitive decline. It may provide some evi-
dence supporting the existing research [74–76] that
reported the female is more vulnerable to AD than
the male.

DISCUSSION

This work has two main findings. First, we
have demonstrated a novel system that integrates
deep transfer learning and multi-task sparse coding

research for enhanced AD progression model-
ing. CNN [24, 25] is good at extracting accurate
neuroimaging characteristics of special neurode-
generative disease and the extracted neuroimaging
features are in a high dimension as opposed to small
sample size as known as “large p, small n” prob-
lem. While our proposed multi-task learning method
MSCC can represent these high dimensional features
and jointly analyze multi-task sparse features. One
of the major discoveries of the current work is that
the integration of both methods achieves improved
statistical power. To the best of our knowledge, CNN-
MSCC is the first deep model transfer learning from
the large scale annotated natural images to brain sur-
face statistics. Second, the surface mTBM, which is
computed from the conformal grid and carries rich
information on local surface geometry, is applica-
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ble to deep models for AD progressive prediction.
Although surface-based morphometry achieved great
success in population-based analyses to discover
the general trend of disease burden and progres-
sion [6, 77–79], few studies have investigated the
use of surface-based morphometry features for brain
disease diagnosis on an individual basis [80–82].
This work validated the feasibility of surface mTBM
[83], as imaging biomarkers for prediction of future
MMSE/ADAS-Cog scales decline. This discovery
is in line with several of our prior studies [6, 80].
The newly combined surface statistics practically
encode a great deal of neighboring intrinsic geome-
try information that would otherwise be inaccessible
or overlooked. The surface-based computer-aided
diagnosis research may become more powerful by
adopting these patch analysis-based multivariate
statistics.

CNNs are considered as one of the most successful
deep models for identifying, classifying, and quan-
tifying patterns in medical images [53, 84]. There
are still relatively few CNN studies on AD diag-
nosis due to limited training data. Transfer learning
technique has proven to be a highly effective tech-
nique for addressing a lack of data in AD research
domain and it leverages data from another domain.
ImageNet includes millions of labeled natural images
[54]. However, because of the substantial differences
between natural and medical images, transfer learn-
ing is unsuitable to be applied directly [66]. Studies of
[26, 66] demonstrated that fine-tuning the transferred
CNNs on medical images could decrease overfit-
ting of the pre-trained CNNs and was a practical
way to reach the best performance for the medical
image application at hand. Therefore, in this study, we
pre-trained CNN structures on ImageNet database.
After we pre-trained the CNN model on the Ima-
geNet dataset, we removed the last fully connected
layer (this layer’s outputs are the 1000 class scores
for ImageNet). The dimension of ImageNet image
is 227*227*3, while the dimension of our mTBM
patch features is 50*50*3. We rescaled the surface
mesh features to 227*227*3. Then the CNN on the
surface mesh features was fine-tuned. Our results
demonstrate that the transferred CNNs with optimal
layers are capable to extract higher level features from
image-patches of biomarkers and gain performance
improvement for AD progressing modeling.

After using CNN with transfer learning tech-
nique, image patches of biomarkers were transformed
to high dimensional feature maps. On one hand,
to address the problem of high dimensional fea-

ture maps derived from small number of image
patches, it is necessary to apply the sparse cod-
ing method to generate a small number of basis
vectors termed dictionary to represent high dimen-
sional features effectively and concisely [30, 60, 85].
On the other hand, multi-task sparse features con-
tain complementary information for tracking AD
progression measured by MMSE/ADAS-Cog scales
[17, 18], so we need to effectively integrate these
features together. Previous studies concatenated dif-
ferent kinds of features into a longer feature vector
or applied multi-task learning method to fuse them
together [18]. The study of [86, 87] reported that
multi-task learning method performed better than
feature concatenation method. However, if there is
no latent common information shared by the same
subject during different time points [17], only one
dictionary from multiple-kernel method is not enough
to show the variation among features from different
time points. To address this challenge, we integrate
the idea of multi-task learning into the online dictio-
nary learning method [17, 57, 88] and propose the
novel dictionary learning algorithm MSCC to learn
multi-task sparse codes of subjects.

In our proposed model, we innovatively intro-
duce the common part of dictionaries to capture the
interrelationships between multi-task learning. As
expected, CNN-MSCC outperformed several sim-
ilar methods. To verify the common part role of
multi-task dictionary, we tested the performances of
CNN-MSCC versus CNN-separate task stochastic
coordinate coding (CNN-STSC) that is without the
common dictionary part. As shown in Fig. 12, CNN-
MSCC with common dictionary part outperforms
CNN-STSC without common dictionary part with
significantly smaller rMSEs (p < 0.05) on MMSE
scale predictions at three time points, with signifi-
cantly smaller rMSEs (p < 0.05) on ADAS-Cog scale
predictions at 6-months and 12-months, and with sig-
nificantly larger wRs (p < 0.05) on ADAS-Cog scale
predictions. The experimental results validated the
gained statistical power by adding the common part of
dictionaries. However, we did not observe significant
rMSE differences on ADAS-Cog scale predictions at
24-months. Neither did we have significant nMSE
differences on MMSE/ADAS-Cog scale predictions,
nor significant wRs differences on MMSE scale
predictions. MMSE/ADAS-Cog scale predictions of
6-months are based on the common and individual
sparse features at baseline, while MMSE/ADAS-Cog
scales of 12-months are based on the updated com-
mon sparse features along with time points (baseline
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Fig. 12. MMSE/ADAS-Cog prediction performances of CNN-MSCC and CNN-STSC on baseline patches of multiple ROIs in terms of root
mean square error (rMSE) at 6-months, 12-months, and 24-months (a) and (b), normalized mean square error (nMSE) (c), and weighted
correlation coefficient (wR) (d). The asterisks above green boxplots in (a) show that CNN-MSCC has significantly smaller rMSEs (p < 0.05)
on MMSE scale predictions at three time points compared to CNN-STSC. The asterisks above green boxplots in (b) show that CNN-MSCC
has significantly smaller rMSEs (p < 0.05) on ADAS-Cog scale predictions at 6-months and 12-months compared to CNN-STSC. The asterisk
above the green boxplot in (d) shows that CNN-MSCC has significantly larger wRs (p < 0.05) on ADAS-Cog scale predictions compared to
CNN-STSC.

and 6-months) and task-specific features of 6-months.
Similarly, MMSE/ADAS-Cog scales of 24-months
are based on the updated common sparse features
along with time points (baseline, 6-months, and 12-
months) and task-specific features of 12-months.
This accumulate learning capability makes the pre-
diction performances at 6-months, 12-months, and
24-months stable.

Despite the promising experimental results, four
caveats remain. First, this work aims to propose
one comprehensive framework which includes CNN
structure for image feature extractions, multi-task
sparse coding algorithm for feature fusions and Lasso
regression model for future cognitive scale predic-
tions. We select AlexNet as the CNN part, the

proposed automatic system outperformed 7 similar
methods. In future work we would like to make com-
parison analysis of our proposed CNN-MSCC system
based on kinds of well-known CNN structures, e.g.,
[89, 90], and expect the performance will be further
improved. Second, transfer learning is still empirical
and it lacks theoretical interpretations about what to
transfer, how to transfer, and when to transfer [91].
It is still a mystery that machine learning systems
can work on brain images while they were trained in
other image domains. Even so, our work still demon-
strated that the optimized CNN-MSCC model may
extract reliable features for AD progression predic-
tion and validate the feasibility to apply deep models
on surface-based neuroimaging features. Third, as
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one of the useful data augmentation methods, transfer
learning is not the only one to apply deep models in
a small size dataset. Other ongoing methods, such as
one-short/few shot learning, horizontal flips, random
crops, and principal component analysis (PCA) are
also promising ways to go [92–96]. These strategies
have been shown to capture important characteristics
of natural and medical images. In our future work,
we will keep exploring other data augmentation tech-
niques to build deep neural networks with our surface
features and compare their performances with the
current transfer learning strategy. Fourth, our current
model does not consider the temporal information,
another work from our group enforces the sparsity
of the sparse codebook representation by represent-
ing neighboring feature resemblance to improve the
smoothness of prediction over the longitudinal neigh-
boring time points. In future work, we will try to
study the integration of the resemblant model with
CNN and compare its performance with our current
results.

Conclusions

This study proposed a novel deep learning system,
CNN-MSCC, for AD clinical score predictions using
multi-task image patches. By leveraging the transfer
learning, we were able to apply a pre-trained CNN
models to study brain images. We also innovatively
proposed a multi-task stochastic coordinate coding
(MSCC) algorithm for the multi-task learning which
may integrate patched-based brain surface features
from longitudinal or multiple ROIs. Our prelimi-
nary experimental results and performance analyses
showed that our proposed system may outperform
other similar methods and showed a promising accu-
racy for future MMSE/ADAS-Cog scale predictions.
The proposed system may aid in expediting the diag-
nosis of AD progression, facilitating earlier clinical
intervention and resulting in improved clinical out-
comes.

In future, we will continue our deep model-based
brain imaging research [97], optimize our methods
and investigate their capability on longitudinal brain
multimodality imaging datasets. There are various
opportunities to generalize and enhance our current
study for AD research. For example, there are many
other neuroimaging biomarkers from modalities such
as PET, functional MRI, magnetoencephalography,
and electroencephalogram, which have been widely
studied for AD diagnosis [98–100]. Since our pro-
posed system is capable to refine and fuse features

from multi-task biomarkers so we may also fuse these
data in our system. The current work applied the pro-
posed CNN-MSCC model to predict AD progression
measured by MMSE/ADAS-Cog scales successfully.
We may investigate more AD clinical assessments,
such as Functional Assessment Questionnaire, the
Clock Test, and the Rey Auditory Verbal Learning
Test [101]. The gained experience may shed new
lights the correlation between brain images and var-
ious AD clinical assessments and eventually help set
up standards for subject recruitments in AD clinical
trials [102].
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