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a b s t r a c t 

Measures of change in hippocampal volume derived from longitudinal MRI are a well-studied biomarker of dis- 
ease progression in Alzheimer’s disease (AD) and are used in clinical trials to track therapeutic efficacy of disease- 
modifying treatments. However, longitudinal MRI change measures based on deformable registration can be con- 
founded by MRI artifacts, resulting in over-estimation or underestimation of hippocampal atrophy. For example, 
the deformation-based-morphometry method ALOHA ( Das et al., 2012 ) finds an increase in hippocampal vol- 
ume in a substantial proportion of longitudinal scan pairs from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) study, unexpected, given that the hippocampal gray matter is lost with age and disease progression. We 
propose an alternative approach to quantify disease progression in the hippocampal region: to train a deep learn- 
ing network (called DeepAtrophy) to infer temporal information from longitudinal scan pairs. The underlying 
assumption is that by learning to derive time-related information from scan pairs, the network implicitly learns 
to detect progressive changes that are related to aging and disease progression. Our network is trained using two 
categorical loss functions: one that measures the network’s ability to correctly order two scans from the same 
subject, input in arbitrary order; and another that measures the ability to correctly infer the ratio of inter-scan 
intervals between two pairs of same-subject input scans. When applied to longitudinal MRI scan pairs from sub- 
jects unseen during training, DeepAtrophy achieves greater accuracy in scan temporal ordering and interscan 
interval inference tasks than ALOHA (88.5% vs. 75.5% and 81.1% vs. 75.0%, respectively). A scalar measure 
of time-related change in a subject level derived from DeepAtrophy is then examined as a biomarker of disease 
progression in the context of AD clinical trials. We find that this measure performs on par with ALOHA in discrim- 
inating groups of individuals at different stages of the AD continuum. Overall, our results suggest that using deep 
learning to infer temporal information from longitudinal MRI of the hippocampal region has good potential as a 
biomarker of disease progression, and hints that combining this approach with conventional deformation-based 
morphometry algorithms may lead to improved biomarkers in the future. 
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. Introduction 

Alzheimer’s Disease (AD) is characterized by accelerated loss of brain
ray matter compared to “normal ” aging, particularly in the medial
emporal lobe (MTL). In clinical trials of disease-modifying treatments
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ng a smaller cohort and/or shorter trial duration to detect a signifi-
ant change due to treatment ( Ard and Edland, 2011 ; Jack et al., 2010 ;
perling et al., 2011 ; Weiner et al., 2015 ). 

While there is little debate that longitudinal structural MRI is a crit-
cal biomarker for AD clinical trials and disease development estima-
ions ( Cullen et al., 2020 ; Lawrence et al., 2017 ; Lorenzi et al., 2015b ),
t remains an open question on how to optimally extract measures of
hange from MRI scans. The straightforward approach of measuring the
olume of the hippocampus (or other structure of interest) at multiple
ime points independently and then comparing them longitudinally suf-
ers from relatively high coefficient of variability in these measurements
 Leow et al., 2006 ; Schuff et al., 2009 ). Atrophy measures obtained di-
ectly from comparing longitudinal MRI scans, e.g., by means of de-
ormable registration, tend to be more sensitive to disease progression,
hus reducing several-fold the size of study cohort and/or the duration
equired in the clinical trials ( Fox et al., 2011 ; Resnick et al., 2003 ;
einer et al., 2015 ). 
In recent years, different methods have been developed to estimate

trophy of the hippocampus and other brain structures affected early
n AD from longitudinal MRI ( Cash et al., 2015 ; Pegueroles et al.,
017 ; Xiong et al., 2017 ). One of the most widely used techniques
s deformation-based morphometry (DBM, also known as tensor-based
orphometry) ( Das et al., 2012 ; Holland et al., 2095 ; Hua et al., 2016 ,
008 ; Reuter et al., 2012 ; Vemuri et al., 2015 ; Yushkevich et al., 2009 ),
hich uses deformable registration to obtain a deformation field map-
ing locations in the baseline image to corresponding locations in the
ollow-up image and estimates the change in structures such as the
ippocampus by integrating the Jacobian determinant of the deforma-
ion field over the hippocampus segmentation in the baseline image
 Hua et al., 2012 ; Lorenzi et al., 2013 ; Reuter et al., 2010 ). Another
idely used method is the boundary shift integral (BSI) ( Gunter et al.,
003 ; Leung et al., 2010 ; Prados et al., 2014 ), in which the displace-
ents of the boundary of a structure of interest, and subsequently, the

hange in its volume, are inferred by examining the changes in intensity
haracteristics near the structure’s boundary. A number of DBM, BSI,
nd related longitudinal atrophy estimation techniques were compared
n a common dataset by Cash et al. (2015) . A challenge in evaluating at-
ophy techniques is that the ground truth (actual atrophy) is unknown.
 common strategy is to examine differences in atrophy rates between

ndividuals at different stages of AD progression, with the hypothesis
hat a more sensitive method would detect greater differences in the
ates of hippocampal atrophy between cohorts with different severity
f disease, e.g., clinical AD (greatest atrophy rate), early and late mild
ognitive impairment (eMCI and lMCI) and normal controls (NC, most
table) ( Cash et al., 2015 ; Fox et al., 2011 ). Additionally, same-subject
RI scans taken a short interval of time apart ( < 2 weeks) are used

o evaluate the stability of atrophy estimation methods, since no atro-
hy is expected to take place over such a short time. The evaluation
y Cash et al. (2015) suggests that DBM-style and BSI-style techniques
chieve roughly comparable performance for estimating longitudinal at-
ophy. These techniques remain the state-of-the-art for longitudinal at-
ophy estimation today. 

Neurodegenerative changes in the hippocampus on longitudinal MRI
an be obscured by differences in MRI signal that are unrelated to dis-
ase progression, such as different amounts of head motion, change in
lice plane orientation, susceptibility artifact, and changes in scanner
ardware and software. These differences can appear as subtle shifts in
he borders of anatomical structures, particularly when these borders
re not very strongly defined in the first place. Conventional techniques
ike DBM and BSI, which rely on image registration and image inten-
ity comparisons to derive atrophy measures, are likely to misinterpret
hese confounding differences as increases or decreases in hippocampal
olume, adding to the overall variance of the measurements. Measure-
ents of atrophy rate in the hippocampus in older adults are expected

o be negative (i.e., the volume is reduced over time) ( Fox et al., 2011 ).
owever, the state-of-the-art DBM pipeline Automatic Longitudinal Hip-
2 
ocampal Atrophy software/package (ALOHA) ( Das et al., 2012 ) reports
ositive atrophy rates in 26% of beta-amyloid-negative (A-) NC, 23% of
eta-amyloid-positive (A + ) eMCI (A + eMCI), and 17% of A + lMCI lon-
itudinal scan pairs from Alzheimer’s Disease Neuroimaging Initiative
ADNI) ( Mueller et al., 2005 ). Since it is unlikely for the hippocam-
al gray matter to increase in volume in aging, positive atrophy rate
easurements in DBM are likely in part caused by registration errors

ssociated with non-biological factors such as motion and MRI artifact.
The emergence of deep learning (DL) and fast computational power

ed to a new generation of algorithms that outperform many traditional
nes in computer vision and medical image analysis ( Krizhevsky et al.,
012 ; Simonyan and Zisserman, 2015 ). While there have been a number
f DL papers focused on diagnosing AD and predicting future disease
rogression (summarized in the Discussion) based on cross-sectional
maging data, most of them are predicting current or future diagno-
is ( Lee et al., 2019 ; Ortiz et al., 2017 ), or, when considering specific
egions in the brain that are mostly related to AD progression, more
ocused on the ventricle and whole brain white/gray matter volume
 Azvan et al., 2020 ; Nguyen et al., 2020 ). To our knowledge, there has
een no research using DL to track disease progression from longitudinal
RI from the earliest onset of AD – the MTL region. Yet sensitive mea-

ures for tracking disease progression, particularly in the earliest stages
f the disease, are of critical importance for reducing the cost and du-
ation of clinical trials in AD. In a clinical trial of a disease-modifying
reatment for AD, the experimental arm of the trial would be expected to
ndergo slower rates of disease progression than the placebo arm, and
he size and duration of the trial are determined by the ability to detect
 statistically significant difference in rates of progression between the
rial’s arms. If gains attained by adoption of DL in other domains could
e extended to the domain of AD disease progression quantification, the
otential impact on the cost and duration of AD clinical trials could be
ubstantial. 

In this paper, we propose a new deep learning paradigm for quan-
ifying progressive changes from longitudinal MRI. Since the true rate
f disease progression for each person is unknown, it is not possible to
each a deep learning network to directly infer measures of progressive
hange, such as hippocampal atrophy, from longitudinal scans. Instead,
e teach a deep learning network to infer temporal information from
airs of longitudinal MRI scans. We begin by teaching the network to in-
er temporal order from same-subject scan pairs, i.e., to determine which
can has an earlier acquisition date. We assume that to do so success-
ully, the network must implicitly extract information about progressive
hanges in the input scans, since we do not expect other factors (e.g., mo-
ion, noise, scanner parameters) to differ systematically with respect to
cquisition date in a large, well-calibrated, multi-site longitudinal imag-
ng study. We find that a standard 3D ResNet architecture ( Chen et al.,
019 ) is highly accurate in assigning temporal order to scan pairs. But
e also find that such a network responds similarly to scan pairs with

mall amounts of change and to scan pairs with large amounts of change,
.e., the network responds more to the directionality of change than to its
agnitude. To make the network (i.e., the activation values in its output

ayer) response more sensitive to the magnitude of time-related change,
e modify the training setup to embed two copies of our network with

hared weights in a super-network. This super-network takes two pairs
f same-subject scans as the input and infers which pair of scans has
 longer inter-scan interval, in addition to also inferring the temporal
rder of each input pair, as before. At test time, the network trained in
his fashion can infer temporal order from scan pairs with greater ac-
uracy than hippocampal atrophy rate measures from the state-of-the-
rt deformation-based morphometry pipeline ALOHA. It also achieves
igher accuracy than ALOHA-derived hippocampal atrophy at the task
f inferring interscan interval ratios from pairs of scan pairs in the test
et. 

All experiments in this paper use longitudinal T1-weighted MRI from
he ADNI study ( Jack et al., 2008 ), rigidly aligned in a “half-way ” im-
ge space, and cropped to the hippocampal region. A five-fold cross-
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Table 1 

Characteristics of the selected ADNI2/GO participants whose T1-weighted MRI scans were 
used for the DeepAtrophy and ALOHA experiments. All subjects had 2 to 6 scans between 
0.25 and 5.5 years from the baseline. The split of the dataset into training and test subsets 
across five cross-validation experiments is detailed in Supplemental Table S1. Abbrevia- 
tions: n = number of subjects; A + /A- = beta-amyloid positive/negative; NC = cognitively 
normal adults; eMCI = early mild cognitive impairment; lMCI = late mild cognitive impair; 
Edu = years of education; MMSE = Mini-Mental State Examination; ALOHA = Automatic 
Longitudinal Hippocampal Atrophy software/package; F = female; M = male. 

A- NC ( n = 171) A + NC ( n = 83) A + eMCI ( n = 133) A + lMCI ( n = 105) 

Age (years) 72.1 (6.1) 75.4 (5.8) ∗ ∗ ∗ ∗ 73.8 (7.0) ∗ 72.3 (6.7) 
Sex 86F 85M 56F 27M 54F 79M 50F 55M 

Edu (years) 16.9 (2.4) 16.1 (2.7) ∗ 15.8 (2.9) ∗ ∗ ∗ 16.6 (2.6) 
MMSE 29.1 (1.3) 29.0 (1.1) 28.0 (1.6) ∗ ∗ ∗ ∗ 27.0 (1.9) ∗ ∗ ∗ ∗ 

Notes : ∗ , p < 0.05; ∗ ∗ , p < 0.01; ∗ ∗ ∗ , p < 0.001; ∗ ∗ ∗ ∗ , p < 0.0001. Independent two ‐sample 
t ‐test (continuous variables with normal distribution, for age and education), Mann–Whitney 
U test (continuous variable with non-normal distribution, for MMSE) and contingency 𝜒2 

test (for sex) were performed. All statistical comparisons are with the A- NC group. Standard 

deviation is reported in parenthesis. 
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alidation is performed to evaluate the proposed pipeline and results
re reported pooled across the five folds. 

Ultimately, our goal is to extract a single measure of progressive
hange from longitudinal MRI scans that would be analogous to mea-
ures yielded by DBM, e.g., annualized hippocampal atrophy rate. In-
pired by recent brain age prediction studies ( Cole and Franke, 2017 ;
iem et al., 2016 ), which use a mismatch between brain age inferred
rom imaging data and actual chronological age as a biomarker to char-
cterize brain disorders, we formulate such a measure as the mismatch
etween the inter-scan interval predicted by the DL model and the ac-
ual inter-scan interval. Large values of this mismatch measure (termed
redicted vs. actual interscan interval ratio, PAIIR) indicate that our
etwork observes more change than would be expected for that inter-
can interval and are suggestive of accelerated disease progression. In
ur second set of experiments, we evaluate the ability of PAIIR to serve
s a biomarker of disease progression in the context of a hypothetical
arly AD clinical trial, as compared to ALOHA-derived hippocampal at-
ophy measures. We find that the two techniques perform similarly in
his context, motivating future work to combine elements of both con-
entional DBM and deep learning based temporal inference in a single
isease progression detection algorithm. 

. Methods and materials 

.1. Data preprocessing 

Data used in this study were obtained from the Alzheimer’s Dis-
ase Neuroimaging Initiative (ADNI, adni.loni.usc.edu). The ADNI was
aunched in 2003 as a public-private partnership, led by Principal Inves-
igator Michael W. Weiner, MD. The primary goal of ADNI has been to
est whether serial magnetic resonance imaging (MRI), positron emis-
ion tomography (PET), other biological markers, and clinical and neu-
opsychological assessment can be combined to measure the progression
f mild cognitive impairment and early Alzheimer’s disease. For up-to-
ate information, see www.adni-info.org . 

Participants from the ADNI2/GO phases of the ADNI study were in-
luded if they had a beta-amyloid PET scan and at least two longitudinal
1-weighted MRI scans with 1 × 1 × 1.2 mm 

3 resolution. The PET scan
ad to be within 0.5 year of the baseline MRI scan. In total, 492 par-
icipants with 2 to 6 longitudinal T1-weighted MRI scans were included
 Table 1 ). The interval between the baseline scan and the follow-up lon-
itudinal scan ranged from 0.25 to 5.5 years. Participants were grouped
nto four cohorts corresponding to progressive stages along the AD con-
inuum: healthy aging (beta-amyloid-negative cognitively normal con-
rol, A- NC), preclinical AD (beta-amyloid-positive cognitively normal
ontrols, A + NC), early prodromal AD (A + early mild cognitive impair-
3 
ent, A + eMCI), and late prodromal AD ( A + lMCI). The preclinical AD
ohort consists of asymptomatic individuals who are at increased risk of
rogressing to symptomatic disease, and is of elevated interest for clini-
al trials of early disease-modifying interventions ( Sperling et al., 2014 ,
013 ). The age, sex, years of education, and the Mini-Mental State Exam
MMSE) score of the ADNI participants in the four clinical groups are
isted in Table 1 . 

For each scan in each subject, segmentation software ASHS-T1
 Xie et al., 2019 ) was applied to automatically segment the left and
ight medial temporal lobe (MTL) subregions, including the hippocampi.
s a preprocessing step in ASHS-T1, MRI scans were upsampled to
 × 0.5 × 0.6mm 

3 resolution using a non-local mean super-resolution
echnique ( Coupé et al., 2013 ; Manjón et al., 2010 ). The ASHS-T1 seg-
entation was then used to crop out a ∼8.5 × 6.0 × 6.5cm 

3 area from
he upsampled image, centered on the MTL on each side of the brain. 

The dataset contained 4927 pairs of same-subject MRI scans. For
ach pair of longitudinal MRI scans, rigid registration was performed
sing ANTs ( Avants et al., 2007 ) between the cropped MTL regions us-
ng the normalized cross-correlation metric. To ensure that both scans
n a pair are preprocessed identically, the 6-parameter transformation
atrix was factored into two equal matrices, and both scans were re-

ampled into a common half-way space by applying the corresponding
atrix ( Yushkevich et al., 2009 ). To further avoid the possibility of bias
ue to preprocessing, registrations were conducted twice with each one
f the two images in the pair being input once as the “fixed ” image and
nce as the “moving ” image. Thus, for each image pair in their original
pace, two pairs of rigidly aligned images are created. This two-way sym-
etric registration process ensures the subsequent experiments undergo

xactly the same preprocessing and interpolation operation regardless
f the temporal order of the images. The total number of pairwise rigid
egistrations performed was 19,708. Since this was too large a number
o manually check for registration errors, we computed the Structural
imilarity (SSIM) metric ( Wang et al., 2004 ) for each registration, and
ejected pairs with SSIM < 0.6 to guarantee high image quality (e.g. no
inging effect) and alignment. This resulted in 1414 scan pairs (7.2%)
eing rejected. 

Registered image pairs were input to the neural network with the fol-
owing transformations: (a) image intensity was normalized to the unit
ormal distribution; (b) images were randomly cropped to a fixed size
48 × 80 × 64 voxels) around the MTL region segmented by ASHS-T1;
c) during network training, data augmentation was applied in the form
f random flips with 50% probability in each of the three dimensions,
nd thin plate spline transformation with 10 randomly selected points.
ransformations were applied in the same way to both images in an

mage pair. 

http://www.adni-info.org
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1 A continuous loss function, such as the mean square error loss, would in 
principle be a more natural way to implement RISI. However, in our preliminary 
experiments, training often failed to converge using continuous losses, while the 
categorical loss converged consistently. 
.2. Network architecture and training with scan temporal order (STO) 

nd relative inter-scan interval (RISI) losses 

The basic building block of our DL algorithm is a deep convolutional
eural network that takes a pair of longitudinal MRI scans from subject
 as inputs and outputs a vector of 𝑘 activation values. Let the pair of
cans be denoted 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
with the corresponding scan times 𝑡 𝑠 

𝑎 
, 𝑡 𝑠 
𝑏 
, supplied

n no particular order. We denote the network as a function 

 𝜃

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 

)
∶ 𝑅 

𝑁 𝑥 𝑁 𝑦 𝑁 𝑧 × 𝑅 

𝑁 𝑥 𝑁 𝑦 𝑁 𝑧 → 𝑅 

𝑘 , 

here 𝜃 are the unknown network weights and 𝑁 𝑥 , 𝑁 𝑦 , 𝑁 𝑧 are the di-
ensions of the input images. During training, we would like the ele-
ents of the 𝑘 -component vector 𝑌 = 𝑫 𝜃( 𝐼 𝑠 𝑎 , 𝐼 

𝑠 
𝑏 
) to capture the amount

f progressive change between images 𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 
, i.e., the change that is re-

ated to the passage of time. Unfortunately, this “amount of progressive
hange ” cannot be measured directly in training data, so surrogate mea-
ures are required to train the network. 

One possible way to train the network 𝑫 𝜃 to detect progressive
hanges would be to train it to predict the time interval ( 𝑡 𝑠 

𝑏 
− 𝑡 𝑠 

𝑎 
) from

 𝜃( 𝐼 𝑠 𝑎 , 𝐼 
𝑠 
𝑏 
) . For example, the output layer of 𝑫 𝜃 could be formulated to

ave 𝑘 = 1 elements, and training could take the form 

∗ = arg min 
θ

∑
𝑠 

∑
𝑎,𝑏 

(
𝑫 𝜃

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 

)
− 

(
𝑡 𝑠 
𝑏 
− 𝑡 𝑠 

𝑎 

))2 
In principle, after successful training, applying the network to a pair

f scans from a new subject 𝑫 𝜃 would yield the amount of time (positive
r negative) between those scans. However, predicting the inter-scan in-
erval from a pair of scans directly is problematic because different in-
ividuals progress at different rates. For example, the brain of a patient
ith advanced Alzheimer’s disease may experience a similar amount
f neurodegenerative change in one year as a healthy brain would ex-
erience in several years. To accurately predict interscan intervals, the
etwork would not only need to learn to quantify the amount of change
etween scans 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
, but also the rate of disease progression for subject

 . In experiments presented in Supplemental Section S6, we show that
ndeed, designing a network to directly estimate interscan interval along
he lines outlined above is not optimal. 

Instead, we formulate network training in a way that sensitizes the
etwork to the amount of time-related change between input scans but
oes not require the network to guess the rate of change for individual
ubjects. In an aging population, if scans 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
are in chronological or-

er, i.e., 𝑡 𝑠 
𝑏 
> 𝑡 𝑠 

𝑎 
, we would expect 𝐼 𝑠 

𝑏 
to contain more atrophy than 𝐼 𝑠 

𝑎 
,

nd vice versa if the scans are input in reverse chronological order. By
raining the network to classify whether scan pairs 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
are input in

orrect or reverse chronological order, we are indirectly and implicitly
eaching the network to detect changes like atrophy that are associated
ith time. Such training can be formulated by letting the output layer
f 𝑫 𝜃 to have 𝑘 = 2 elements and solving the following problem: 

∗ = 𝑎𝑟𝑔 min 
𝜃

∑
𝑠 

∑
𝑎,𝑏 

𝜉
(
𝑫 𝜃

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 

)
, 𝑠𝑖𝑔𝑛 

(
𝑡 𝑠 
𝑏 
− 𝑡 𝑠 

𝑎 

))
here ξ( 𝐲, c ) denotes the two-class cross-entropy loss, i.e., 

( 𝐲, c ) = { − log 
(
exp 

(
𝑦 1 
)
∕ 
(
exp 

(
𝑦 1 
)
+ exp 

(
𝑦 2 
)))

𝑖𝑓 𝑐 = −1 
− log 

(
exp 

(
𝑦 2 
)
∕ 
(
exp 

(
𝑦 1 
)
+ exp 

(
𝑦 2 
)))

𝑖𝑓 𝑐 = 1 

We refer to this loss as the “scan temporal order ” (STO) loss. To
eiterate, our assumption is that if the network 𝑫 𝜃 is successfully trained
sing the STO loss to classify image pairs as having correct or reverse
emporal order, then the activation values 𝒚 = 𝑫 𝜃( 𝐼 𝑠 𝑎 , 𝐼 

𝑠 
𝑏 
) will contain

nformation about time-related change between the input scans. 
However, to minimize the STO loss during training, the network is

nly required to detect the direction of change between input scans.
hether there is a great deal of time-related change between scans

 

𝑠 
𝑎 
and 𝐼 𝑠 

𝑏 
or just a little bit of time-related change is irrelevant to mini-

izing the STO loss; what matters is the direction of the change. There-
ore, we might expect the activation values 𝒚 = 𝑫 𝜃( 𝐼 𝑠 𝑎 , 𝐼 

𝑠 
𝑏 
) to be similar

hether the subject is an AD patient with scans taken four years apart,
4 
r a healthy adult with scans taken two years apart; as long as the scans
re supplied in the same temporal order. This indeed turns out to be the
ase, as discussed in the Results Section 3.3 ( Fig. 4 , spaghetti plots). 

In order to make the output values of 𝑫 𝜃 sensitive not only to the di-
ection of time-related change but also to the magnitude of this change,
e modify our training setup and introduce an additional loss func-

ion that takes into account the magnitude of the time interval between
cans, but in a way that does not depend on the individual subjects’ rates
f change. We make a second assumption, that for an individual subject
 with three longitudinal scans 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
, 𝐼 𝑠 

𝑐 
, specified in chronological order

 𝑡 𝑠 
𝑐 
> 𝑡 𝑠 

𝑏 
> 𝑡 𝑠 

𝑎 
), the amount of change between 𝐼 𝑠 

𝑎 
and 𝐼 𝑠 

𝑐 
is greater than

he amount of change between 𝐼 𝑠 
𝑎 

and 𝐼 𝑠 
𝑏 

as well as between 𝐼 𝑠 
𝑏 

and 𝐼 𝑠 
𝑐 
.

e make a stronger assumption that within a given subject, the amount
f change between two timepoints is approximately proportional to the
nter-scan interval, i.e., 

𝑐ℎ𝑎𝑛𝑔𝑒 
(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑐 

)
𝑐ℎ𝑎𝑛𝑔𝑒 

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 

) ≈
𝑡 𝑠 
𝑐 
− 𝑡 𝑠 

𝑎 

𝑡 𝑠 
𝑏 
− 𝑡 𝑠 

𝑎 

. 

We emphasize that the function “change ” is used here informally, to
enote time-related changes in the images, and is not something that can
e measured directly. In practice, this assumption may be violated since
isease progression may accelerate or decelerate over time. Nonetheless,
n a typical individual it is reasonable to expect approximately twice as
uch change between scans in year 2 and year 0 of a study than between

cans in year 1 and year 0. 
To sensitize 𝑫 𝜃 to the amount of change between its inputs, we create

 new “super-network ” 𝑺 𝜃,𝜔 that encompasses two copies of the network
 𝜃 with shared weights and takes two pairs of same-subject scans as

nputs ( Fig. 1 ). The network 𝑺 𝜃,𝜔 has the form 

 

2 𝑘,𝑚 
𝜔 

(  
(
𝑫 𝜃

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 

)
, 𝑫 𝜃

(
𝐼 𝑠 
𝑐 
, 𝐼 𝑠 

𝑑 

))
here  

2 𝑘,𝑚 
𝜔 denotes a 2 𝑘 × 𝑚 fully connected layer with weights 𝜔 ,

nd  denotes the vector concatenation operation. The two pairs of in-
uts 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
and 𝐼 𝑠 

𝑐 
, 𝐼 𝑠 

𝑑 
are selected such that 𝑡 𝑎 ≠ 𝑡 𝑏 and/or 𝑡 𝑐 ≠ 𝑡 𝑑 and

o that one interscan interval contains the other, i.e., [ 𝑡 𝑎 , 𝑡 𝑏 ] ⊂ [ 𝑡 𝑐 , 𝑡 𝑑 ] or
 𝑡 𝑐 , 𝑡 𝑑 ] ⊂ [ 𝑡 𝑎 , 𝑡 𝑏 ] . Note that in most cases, the two pairs are formed by
nly three distinct scans, e.g., for a subject with scans in 2010, 2011
nd 2013, the two pairs may be (2010, 2013) and (2013, 2011). The
etwork is trained using a new categorical loss function, called the rel-
tive inter-scan interval (RISI) loss, which is a cross-entropy loss with 𝑚
lasses. 1 These classes correspond to different ranges for the ratio of
nterscan intervals |𝑡 𝑎 − 𝑡 𝑏 |∕ |𝑡 𝑐 − 𝑡 𝑑 |. In our experiments, we use 𝑚 = 4
lasses, corresponding to the ranges [ 0 , 0 . 5 ) , [ 0 . 5 , 1 ) , [ 1 , 2 ) , [ 2 , + ∞) .
he overall expression for our network training has the form 

∗ , ω ∗ = arg min 
θ, ω 

∑
s 

∑
a , b , c , d 

𝜉
(
𝐷 𝜃

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 

)
, sign 

(
𝑡 𝑠 
𝑏 
− 𝑡 𝑠 

𝑎 

))
+ ξ

(
𝐷 𝜃

(
𝐼 𝑠 
𝑐 
, 𝐼 𝑠 

𝑑 

)
, 

sign 
(
𝑡 𝑠 
𝑐 
− 𝑡 𝑠 

𝑑 

))
+ 𝜆 ⋅ 𝜉

( 

𝑆 𝜃,𝜔 

(
𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 
, 𝐼 𝑠 

𝑐 
, 𝐼 𝑠 

𝑑 

)
, 𝑐𝑎𝑡 

( |||𝑡 𝑠 𝑎 − 𝑡 𝑠 𝑏 ||||||𝑡 𝑠 𝑐 − 𝑡 𝑠 𝑑 |||
) ) 

here 𝑐𝑎𝑡 ( 𝑟 ) is a function that maps the continuous ratio 𝑟 to one of
he four categorical ranges defined above; and 𝜆 is a scalar weight. The
rst two cross-entropy ( 𝜉) terms above represent the STO loss being
omputed simultaneously for pairs 𝐼 𝑠 

𝑎 
, 𝐼 𝑠 

𝑏 
and 𝐼 𝑠 

𝑐 
, 𝐼 𝑠 

𝑑 
; and the last cross-

ntropy expression represents the RISI loss. 
Formulating the problem of interscan interval ratio inference as a

lassification problem with the four categories above, as opposed to a
egression problem, is driven by two considerations. On the one hand,
e empirically found the networks with the regression loss much more
ifficult to train. On the other hand, although we expect the relation-
hip between the relative inter-scan interval and the relative amount of
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Fig. 1. Diagram of the DeepAtrophy deep learning algorithm for quantifying progressive change in longitudinal MRI scans. During training, DeepAtrophy consists of 
two copies of the same “basic sub-network ” ( 𝑫 𝜃) with shared weights 𝜃. 𝑫 𝜃 is a 3D ResNet image classification network with 50 layers ( Chen et al., 2019 ; He et al., 
2015 ) and the output layer having 𝑘 = 5 elements. 𝑫 𝜃 takes as input two MRI scans from the same individual in arbitrary temporal order. The outputs from the two 
copies of 𝑫 𝜃 feed into a 2 𝑘 × 𝑚 fully connected layer with weights ω . The resulting “super-network ” 𝑺 𝜃,𝜔 takes as input two pairs of same-subject images, in arbitrary 
order, and with constraint that the inter-scan interval of one scan pair contains the inter-scan interval of the other scan pair. DeepAtrophy minimizes a weighted 
sum of two loss functions: the scan temporal order (STO) loss, which measures the ability of 𝑫 𝜃 to correctly infer the temporal order of the two input scans; and the 
relative interscan interval (RISI) loss, which measures the ability of the super-network 𝑺 𝜃,𝜔 to infer which of the input scan pairs has a longer inter-scan interval. 
During testing, network 𝑫 𝜃 is applied to pairs of same-subject scans. A single measure of disease progression, the predicted interscan interval (PII), is computed 
as a linear combination of the k outputs of 𝑫 𝜃 . The coefficients of this linear combination are obtained by fitting a linear model on the subset of the training data 
(amyloid negative normal control group) with actual inter-scan interval as the dependent variable and outputs of 𝑫 𝜃 as independent variables. 
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2 Note the slight abuse of notation in the expression 𝜉( 𝑫 𝜃( 𝐼 𝑠 𝑎 , 𝐼 
𝑠 
𝑏 
) , sign ( 𝑡 𝑠 

𝑏 
− 𝑡 𝑠 

𝑎 
) ) 

above, which should be read as the application of the cross-entropy function to 
the first two elements of the k-component vector 𝑫 ( 𝐼 𝑠 , 𝐼 𝑠 ) . 
ime-related change between image pairs of most subjects to be approx-
mately linear, it may not be case for every individual. The categorical
oss allows more deviation from the linearity assumption that potentially
ts the actual change trajectory of individual subjects better. 

We emphasize that the objective of training the super-network 𝑺 𝜃,𝜔 

ith the STO and RISI losses is to coerce the network 𝑫 𝜃 to output
ctivation values that capture both the directionality (STO loss) and
agnitude (RISI loss) of the change between its two input images. The

uper-network is only used during training. At test time, only the net-
ork 𝑫 𝜃 is evaluated. This is because at test time, and for application
s a longitudinal biomarker, our goal is to generate measures of change
or pairs of same-subject images, whereas 𝑺 𝜃,𝜔 requires three or more
mages from the same subject. While it may be possible to improve the
ccuracy of 𝑺 𝜃,𝜔 by formulating it as an end-to-end network instead of
he current Siamese-like architecture ( Bertinetto et al., 2016 ) with two
opies of the network 𝑫 𝜃 , doing so would no longer provide us with a
etwork that can measure the amount of time-related change between
 pair of input scans. 

.3. Implementation notes 

In our implementation, 𝑫 𝜃 is based on the ResNet50 deep residual
earning network ( He et al., 2015 ), which is used extensively for image
lassification in computer vision. We used a 3D version of ResNet50 pre-
rained on medical images of multiple organs (not including ADNI data)
amed MedicalNet ( Chen et al., 2019 ). We chose the 50-layer ResNet
5 
rchitecture to avoid under- and over-fitting, which occurred in our pre-
iminary experiments when the 18 or 101-layer architectures were used.
xperiments were conducted on a Titan 2080 Ti GPU with 8 GB mem-
ry. DeepAtrophy training used the learning rate of 0.001, batch size of
5, with 8 epochs, resulting in ~40 h of computation. At each epoch,
ll available combinations of scan pairs ( ∼180,000) as described for the
ISI loss was input to the network only once. 

The number of outputs in the last layer of 𝑫 𝜃 was set to 𝑘 = 5 , with
he first two outputs passed in as input to the STO loss, 2 and all five
utputs being used for the computation of the RISI loss. This hyperpa-
ameter was set on an ad hoc basis; however, we conducted post hoc
xperiments with different values of 𝑘 , which confirmed that the over-
ll network accuracy for our choice ( 𝑘 = 5) was not inferior to a range
f other values examined (Supplemental Section S8). 

Higher weighting of the RISI loss ( λ parameter) encourages the net-
ork to focus more effort on detecting the magnitude of disease pro-
ression, while higher weighting of the STO loss encourages it to fo-
us more effort on detecting the presence/direction of progression. We
hose the weight 𝜆 = 1 after conducting preliminary experiments on a
andom train/test split of the ADNI data and training 𝑺 𝜃,𝜔 with different
eights ( 𝜆 = 0 , 0 . 1 , 1 , 𝑎𝑛𝑑 10 ). These preliminary experiments demon-

trated that lower values of 𝜆 (0, 0.1) resulted in slightly greater ac-
𝜃 𝑎 𝑏 
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uracy of scan temporal order prediction, but also lower sensitivity to
agnitude of change; conversely, a high value of 𝜆 (10) resulted in rel-

tively poor scan order inference (Supplemental Section S7) and 𝜆 = 1
as chosen as a compromise value. 

To avoid any possible bias related to preprocessing, we randomly
hoose for each scan pair the preprocessing result where the first im-
ge in the pair was used as the fixed image during registration or the
reprocessing result where the second image was the fixed image. 

.4. Predicted-to-actual interscan interval ratio (PAIIR) 

DBM and BSI methods yield intuitive quantitative measures, such as
nnualized loss of hippocampal volume, that can serve as disease pro-
ression and treatment response biomarkers for clinical trials. In this
ection, we devise a similar quantitative measure of time-related change
or DeepAtrophy. We follow the example of recent brain-age prediction
tudies ( Cole and Franke, 2017 ; Liem et al., 2016 ), in which the mis-
atch between a person’s actual age and their “brain age ” predicted

rom neuroimaging and/or other biomarkers is used to characterize indi-
iduals in terms of resilience vs. vulnerability to the aging process. Anal-
gously, we define the mismatch between the actual interval between
wo longitudinal scans and the inter-scan interval inferred by DeepAt-
ophy as a candidate measure of disease progression. Consider two in-
ividuals, one with advanced neurodegenerative disease and the other
 healthy older adult, who both have longitudinal scans with inter-scan
nterval Δ𝑡 . The first individual will likely experience a greater amount
f neurodegeneration over this time than the second, which will be re-
ected in the longitudinal scans. If DeepAtrophy is sensitive in detecting
he presence of time-related change in the input scans, we would expect
he output of 𝑫 𝜃 for the first individual to reflect a greater amount of
hange than for the second individual. However, since the output of 𝑫 𝜃

s a k-component vector, we must first transform this vector into a scalar
easure of apparent time-related change. We do so by fitting a linear
odel on a subset A- NC individuals in the training set, with each pair

f scans 𝐼 𝑠 
𝑎 
, 𝐼 𝑠 

𝑏 
treated as an independent observation, the 𝑘 components

f 𝒚 𝒔 
𝒂 , 𝒃 

= 𝑫 𝜃( 𝐼 𝑠 𝑎 , 𝐼 
𝑠 
𝑏 
) treated as independent variables, and the actual in-

erscan interval 𝑡 𝑠 
𝑏 
− 𝑡 𝑠 

𝑎 
treated as the dependent variable: 

 

𝑠 
𝑏 
− 𝑡 𝑠 

𝑎 
= 𝛽0 + 

𝑘 ∑
𝑖 =1 

𝛽𝑖 𝒚 
𝑠 
𝑎,𝑏 
[ 𝑖 ] + 𝜀 

here 𝜀 is a normal random variable with mean zero. When fitting this
odel, we consider scan pairs in arbitrary temporal order, so 𝑡 𝑠 

𝑏 
− 𝑡 𝑠 

𝑎 
may

e positive or negative. For each cross-validation fold, the least squared
t of the model to the data is computed using ∼4600 scan pairs from
he A- NC subset of the training set. At test time, we define the predicted

nterscan interval (PII) for a pair of scans 𝐼 𝑠 ′
𝑎 
, 𝐼 𝑠 ′

𝑏 
for subject 𝑠 ′ as 

 𝐼 𝐼 
(
𝐼 𝑠 ′
𝑎 
, 𝐼 𝑠 ′

𝑏 

)
= 𝛽0 + 

𝑘 ∑
𝑖 =1 

𝛽𝑖 𝒚 
𝑠 ′
𝑎,𝑏 
[ 𝑖 ] , 𝑤ℎ𝑒𝑟𝑒 𝒚 𝑠 ′

𝑎,𝑏 
= 𝑫 𝜃

(
𝐼 𝑠 ′
𝑎 
, 𝐼 𝑠 ′

𝑏 

)
. 

Intuitively, PII is a measure of expected interval between a pair of
cans, under the assumption that the subject is from the A- NC cohort.
or a subject from this cohort, we would expect that, on average, PII
nd the actual interscan interval would be equal. For subjects with more
dvanced disease, we would expect more disease progression over the
ame time interval than in the A- NC cohort, and we would expect PII on
verage to be greater than the actual interscan interval. We can define
he mismatch between PII and actual inter-scan interval as the predicted-

o-actual inter-scan ratio (PAIIR): 

 𝐴𝐼 𝐼 𝑅 

(
𝐼 𝑠 ′
𝑎 
, 𝐼 𝑠 ′

𝑏 

)
= 

𝑃 𝐼 𝐼 
(
𝐼 𝑠 ′
𝑎 
, 𝐼 𝑠 ′

𝑏 

)
𝑡 𝑠 ′
𝑎 
− 𝑡 𝑠 ′

𝑏 

We evaluate the suitability of PAIIR as marker of the rate of disease
rogression and as a surrogate to the conventional DBM-based atrophy
ate measurements. PAIIR values larger than one are suggestive of dis-
ase progression occurring faster than what is expected for the A- NC
6 
roup, and we expect PAIIR to be greater on average in patients in more
dvanced stages of AD. 

.5. Statistical tests 

Experiments used a five-fold cross-validation design. The full set of
ubjects was divided into five approximately equal size subsets ( “folds ”)
nd DeepAtrophy training was repeated five times. The folds were strat-
fied across diagnostic groups, i.e., each fold contained approximately
/5 of the subjects in each group. In each of the training experiments,
ne fold was held out as the test set and the remaining subjects were
ncluded in the training set, with the exception of subjects who only
ad two longitudinal scans (since DeepAtrophy training requires at least
hree scans per subject). Measures of accuracy are averaged across the
ve folds. The number of individuals per group in the training and test
ets for each fold are shown in Supplemental Table S1. 

In the first set of experiments, we compared the accuracy of tempo-
al ordering of scan pairs (explicitly maximized by the STO loss) and
he accuracy of longer vs. shorter interscan interval detection for pairs
f scan pairs (explicitly maximized by the RISI loss) between DeepA-
rophy and ALOHA. For brevity, we refer to these measures as “STO
ccuracy ” and “RISI accuracy ”. Accuracy was computed as the propor-
ion of correct classifications across all scan pairs in the test subsets of
he five cross-validation folds. DeepAtrophy ( 𝑫 𝜃) and ALOHA were ap-
lied to the same set of scan pairs. STO accuracy for DeepAtrophy was
omputed by comparing the predicted class in the STO loss to the actual
can ordering. STO accuracy for ALOHA was computed by comparing
he sign of the annualized hippocampal volume change measure to the
can temporal ordering (i.e., expecting ALOHA to report negative at-
ophy for a pair of scans in correct temporal order). RISI accuracy for
eepAtrophy was calculated by comparing the PIIs and the actual inter-

can intervals of two pairs of scans and determining if the scan pair with
he larger PII also had the larger actual interscan interval. For ALOHA,
he RISI accuracy was calculated by measuring total hippocampal vol-
me change for each scan pair and determining whether the scan pair
ith the larger absolute value of volume change had a longer interscan

nterval. STO accuracy for DeepAtrophy and ALOHA is reported as the
rea under the receiver operating characteristic curve (AUC). To test
or the significance in the difference between AUCs of the two methods,
eLong’s test was performed with the R package “pROC ” ( Robin et al.,
011 ). 

In the second set of experiments, we evaluated the suitability of
he PAIIR measure as a biomarker of disease progression by compar-
ng PAIIR between cohorts at different stages of the AD continuum.
his is similar to how the suitability of DBM-derived atrophy rate
easures is evaluated in the literature ( Cash et al., 2015 ; Fox et al.,
011 ). We compared effect sizes for group comparisons between A +
C, A + eMCI and A + lMCI groups and the A- NC group, respectively,
btained using PAIIR to the corresponding effect sizes obtained using
LOHA annualized hippocampal volume change measures. In addition,
e compared our longitudinal measurements with longitudinal Preclini-

al Alzheimer’s Cognitive Composite (PACC) score, a standard cognitive
est crafted specifically for detecting subtle changes in pre-symptomatic
isease ( Donohue et al., 2014 ). These comparative analyses were car-
ied out in two hypothetical scenarios: a one-year clinical trial and a
wo-year clinical trial. For the one-year scenario, we consider for each
ubject their baseline scan and all available follow-up scans between
80 and 400 days from baseline. For the two-year scenario, we consider
he baseline scan and all available follow-up scans between 400 and 800
ays from baseline. 

Group difference statistics for DeepAtrophy are computed by pool-
ng the subjects across the five cross-validation folds. Thus, for a given
ubject 𝑠 , the PII measurements are obtained by applying the DeepA-
rophy network trained on the four folds that do not contain subject
. Likewise, the linear fitting parameters 𝛽 are estimated using A- NC
ubjects from the four folds that do not contain subject 𝑠. This pooling
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Table 2 

Average accuracy of the DeepAtrophy PAIIR measure and the ALOHA 

( Das et al., 2012 ) hippocampal atrophy rate measure in inferring the 
scan temporal order (STO) of same-subject scan pairs input in arbitrary 
order (STO accuracy). For the ALOHA measure, we consider it to be 
“correct ” if the sign of hippocampal atrophy is negative for scans in- 
put in chronological order, and positive for scans in reverse chronolog- 
ical order. Accuracy is pooled across all five cross-validation folds. Ac- 
curacy is expected to be lower for less impaired groups because there 
is less underlying biological change for the same time interval than in 
more impaired groups. Abbreviations: ALOHA = Automatic Longitudi- 
nal Hippocampal Atrophy software/package; A + /A- = beta-amyloid pos- 
itive/negative; NC = cognitively normal adults; eMCI = early mild cog- 
nitive impairment; lMCI = late mild cognitive impair. 

A- NC A + NC A + eMCI A + lMCI All Groups 

ALOHA 69.7% 74.3% 75.1% 85.2% 75.5% 

DeepAtrophy 85.4% 89.5% 88.6% 92.4% 88.5% 

Table 3 

Comparison of relative inter-scan interval (RISI) inference accuracy for 
DeepAtrophy and ALOHA. Given two pairs of scans from the same sub- 
ject of different interscan-intervals, a method sensitive to underlying bi- 
ological change should be able to correctly detect which scan pair has a 
longer inter-scan interval. Abbreviations: ALOHA = Automatic Longitu- 
dinal Hippocampal Atrophy software/package; A + /A- = beta-amyloid 
positive/negative; NC = cognitively normal adults; eMCI = early mild 
cognitive impairment; lMCI = late mild cognitive impairment. 

A- NC A + NC A + eMCI A + lMCI All Groups 

ALOHA 68.8% 72.7% 76.3% 83.4% 75.0% 

DeepAtrophy 79.3% 81.5% 81.3% 83.3% 81.1% 
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llows us to maximize the amount of data available for group compar-
sons, while ensuring clean separation between training and test subsets
or each deep learning network and each linear model. 

When performing group analyses, each subject was represented by a
ingle summary measure of disease progression, regardless of the num-
er of scans available in the one-year (180–400 days) or two-year (400–
00 days) hypothetical scenario. For subjects who had more than two
cans (or PACC scores) available, we computed summary measures as
ollows. For ALOHA, we used the baseline hippocampal volume from
SHS-T1 and pairwise volume change measures between the baseline

mage and each follow-up image to estimate the hippocampal volume
t each time point and fitted a linear model to these measurements. The
lope of the linear fit was taken as the summary atrophy measure. For
eepAtrophy, we followed a similar approach, using PII instead of vol-
me change, and using zero for the baseline measurement. For PACC,
e also followed this linear fitting approach, however, most subjects
ad only two tests within the 400-day interval. Additionally, all sum-
ary scores (DeepAtrophy, ALOHA, PACC) were corrected for age (at

he time of the baseline scan) by fitting a linear model using all sub-
ects and retaining the residual values from the fitted model, similar
o Xie et al. (2020b) . For each of the above approaches, we conducted
he nonparametric Wilcoxon signed-rank test (one-sided, unpaired) be-
ween the corresponding measure of disease progression in each disease
roup (A + NC, A + eMCI, and A + lMCI) and the A- NC group. 

Additionally, for DeepAtrophy and ALOHA, we estimated the mini-
um sample size required to detect a 25%/year and 50%/year reduc-

ion in the atrophy rate of each disease stage (A + NC, A + eMCI, and A +
MCI) relative to the to the mean atrophy rate of the A- NC group in a
ypothetical clinical trial. This calculation envisions a clinical trial in
hich participants are patients at a given disease stage (e.g., preclinical
D) and the intervention successfully slows disease progression by 25%
r 50% relative to “normal ” brain atrophy in this age group ( Fox et al.,
011 ). The sample size describes the minimal number of participants
n the treatment and placebo arms of the clinical trial needed to detect
 significant difference between the two arms with a two-sided signifi-
ance level 𝛼 = 0.05 and power 1- 𝛽 = 0.8. The sample size is calculated
s 

 = 

[ (
𝑧 1− 𝛼∕2 + 𝑧 𝛽

)
𝑆 𝑃𝐴𝑇 

0 . 25 ∗ 
(
𝐴̄ 𝑃𝐴𝑇 − 𝐴̄ 𝐶𝑇𝐿 

)] 2 

here 𝐴̄ 𝑃𝐴𝑇 and 𝐴̄ 𝐶𝑇𝐿 are the sample means of the patient and control
roup, and 𝑆 𝑃𝐴𝑇 is the sample standard deviation of the patient group.
he 95% confidence interval for each sample size measurement was
omputed with the bootstrap method ( Efron, 1979 ). 

. Results 

.1. Scan temporal order (STO) inference accuracy 

Table 2 reports the mean accuracy of detecting the correct temporal
rder of a single pair of same-subject scans (STO accuracy) for Deep-
trophy and ALOHA algorithms. Accuracy is averaged across the five
ross-validation folds. For each fold, all scan pairs available in the test
ubset were included in the evaluation ( ∼4000 scan pairs per fold), with
o cutoff for the interscan interval. The scan pairs were supplied to the
lgorithms in random temporal order. The same set of pairs was eval-
ated by DeepAtrophy and ALOHA. Overall, the average STO accuracy
or DeepAtrophy was 88.5% across all scan pairs in all five folds, com-
ared to 75.5% for ALOHA. For both methods, STO accuracy was lower
or less impaired groups, as would be expected since there is less under-
ying biological change for the same time interval than in more impaired
roups. The receiver operating characteristic (ROC) plot in Fig. 2 further
ontrasts the ability of DeepAtrophy and ALOHA in inferring scan tem-
oral order. For each individual diagnostic group, the area under the
urve (AUC) for DeepAtrophy is significantly higher than for ALOHA
7 
p-value < 2.2e-16, the smallest positive number distinguishable from
ero in computers). 

.2. Relative inter-scan interval (RISI) inference accuracy 

Table 3 compares the mean accuracy of DeepAtrophy and ALOHA
n the task of inferring which out of two pairs of same-subject scans has
 longer interscan interval (RISI accuracy). This evaluation used data
rom all subjects in the five folds who had at least three scans, with no
aximum cutoff for the interscan interval. The two approaches were

pplied to the same set of input scans. DeepAtrophy has higher RISI ac-
uracy (81.1%) compared with ALOHA (75.0%). This suggests that deep
earning can infer not only the presence, but also the magnitude of dis-
ase progression from a pair of MRI scans. Similarly, Fig. 3 shows the
OC curve in the ability of DeepAtrophy and ALOHA in inferring rela-

ive interscan interval. For A- NC, A + NC and A + eMCI groups, the AUC
f DeepAtrophy is significantly higher than that of ALOHA (p-value <
.2e-16). For A + lMCI group, there is no significant difference ( p = 0.69)
etween ALOHA and DeepAtrophy in the AUC value. 

.3. Visualizing disease progression in individual subjects 

Fig. 4 uses spaghetti plots to visualize the trajectories of DeepAt-
ophy, ALOHA and PACC disease progression measures for individual
ubjects for all scan times. The plots are pooled across all five cross-
alidation folds. For each subject and each method, the plot shows
he corresponding measure (PII for DeepAtrophy, hippocampal volume
hange for ALOHA, score difference for PACC) between the baseline
can and each follow-up scan. For DeepAtrophy, the progression mea-
ure should increase with time (since the PII is expected to be consistent
ith the actual interscan interval), whereas for ALOHA and PACC, the
rogression measure (hippocampal volume, PACC score) is expected to
ecrease with time. Moreover, we expect the relationship between time
nterval and each progression measure to be approximately linear, in ag-
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Fig. 2. Area under the receiver operating characteristic (ROC) curve (AUC) for the scan temporal order (STO) inference experiments using DeepAtrophy and 
ALOHA, pooled across test subsets of the five cross-validation folds. Greater AUC for DeepAtrophy indicates greater accuracy in inferring the temporal order of scans. 
Abbreviations: ALOHA = Automatic Longitudinal Hippocampal Atrophy software/package; MCI = mild cognitive impairment; AD = Alzheimer’s Disease. 
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regate. While it is common to model tissue loss as an exponential decay
rocess ( Wagner et al., 2008 ), at the rates expected in the ADNI cohort
0.5% to 4% a year), the relationship is approximately linear. Indeed,
or ALOHA, we observe a close to linear relationship overall, although
here is a great deal of variation among the individual trajectories. Re-
ecting the lower STO accuracy of ALOHA, a number of trajectories are

n the upper quadrant of the coordinate space, which corresponds to in-
reasing hippocampal volume over time. In contrast, the trajectories of
eepAtrophy are almost entirely in the upper right quartile (consistent
ith its high STO accuracy), but the relationship between the predicted

nterscan interval and time is sublinear, i.e., exhibiting diminishing re-
urns with respect to time, suggesting that DeepAtrophy is sensitized to
hort-term longitudinal changes to a greater extent than to longer-term
hanges. Notably, when the weight of the RISI loss in DeepAtrophy is
educed (shown in spaghetti plots in Supplemental Figure S2), the rela-
ionship becomes even less linear, with PII underestimating the actual
nter-scan interval for longer inter-scan intervals. The diminishing re-
urns observed in the spaghetti plots for PII, especially for low values of
, is much more pronounced than what might be reasonably explained
8 
y disease progression following an exponential model at rates of 0.5%
o 4% a year. This highlights the importance of the RISI loss in teaching
he network to detect not just the directionality of time-related changes
etween longitudinal scans, but also its magnitude. The trajectories for
ACC are much noisier than that of the MRI-based measures. For all
hree measurements, individuals with more severe disease tend to have
rajectories with a higher slope than healthier individuals, suggesting
hat all three measurements can differentiate differences in the rates of
isease progression across the spectrum of AD. 

.4. Group differences in rates of disease progression 

In the remaining experiments, we compare the measures of dis-
ase progression generated by DeepAtrophy, ALOHA and PACC between
roups of ADNI participants at different stages of the AD continuum. The
hree “disease ” groups, i.e., preclinical AD (A + NC), early prodromal
D (A + eMCI) and late prodromal AD (A + lMCI), are compared to the
control ” group (A- NC) using each of the measures. The group analy-
es are performed by pooling together the subjects across the five cross-
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Fig. 3. Area under the receiver operating characteristic (ROC) curve (AUC) for the relative interscan interval (RISI) inference experiments using DeepAtrophy and 
ALOHA, pooled across test subsets of the five cross-validation folds. Greater AUC for DeepAtrophy indicates greater accuracy in inferring which pair of scans has 
a longer acquisition time interval. Abbreviations: ALOHA = Automatic Longitudinal Hippocampal Atrophy software/package; MCI = mild cognitive impairment; 
AD = Alzheimer’s disease. 
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alidation folds, as described in Section 2.5 . Fig. 5 a plots the distribution
f DeepAtrophy, ALOHA, and PACC disease progression measures for
he four groups in the one-year hypothetical clinical trial scenario (scans
etween 180 and 400 days from baseline) and identifies statistically
ignificant group differences with the control group. For all three mea-
ures, the average measure of progression increases with disease sever-
ty. DeepAtrophy detects a difference between preclinical AD and the
ontrol group that is borderline significant ( p = 0.022, one-alternative
ilcoxon rank-sum test, uncorrected). For early and late prodromal AD,

oth DeepAtrophy and ALOHA detect statistically significant differences
elative to the control group (p-value < 0.001, one-alternative Wilcoxon
est, uncorrected). Unlike the MRI-based measures, with PACC, only the
ifference between A + lMCI and controls is significant for the one-year
cenario. Analogous results for the two-year clinical trial scenario are
resented in Fig. 5 b. Here, both DeepAtrophy and ALOHA detected dif-
erences between preclinical AD and controls ( p = 0.011 for DeepAt-
ophy, p = 0.0061 for ALOHA, one-alternative Wilcoxon test, uncor-
ected), with the p-value smaller in absolute terms for ALOHA. Both
 (  

9 
ethods detected significant differences with A- NC in the prodromal
CI groups. Supplemental Figure S1 plots the ROC curves using DeepA-

rophy and ALOHA measures for separation between each patient group
nd the control group. Within each disease group, the ROC curves for
eepAtrophy and ALOHA are very close to each other and AUCs are
ot statistically different between the methods. Overall, the group sep-
ration results do not allow us to conclude that either DeepAtrophy or
LOHA is a “better ” longitudinal biomarker than the other, indeed the

wo measures appear quite comparable to each other. 

.5. Sample size estimation for a hypothetical clinical trial 

Table 4 presents sample size estimates (and 95% confidence inter-
als) for different hypothetical clinical trial scenarios using either Deep-
trophy, ALOHA or PACC to track disease progression. Different clinical

rial scenarios include participants with different severity of AD (pre-
linical AD, early prodromal AD, late prodromal AD), different duration
1 vs. 2 years), and different expected reduction in rate of disease pro-
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Fig. 4. Comparison of (a) DeepAtrophy predicted interscan interval (PII), (b) Automatic Longitudinal Hippocampal Atrophy software/package (ALOHA) volume 
change, and (c) Preclinical Alzheimer’s Cognitive Composite (PACC) score change for individual subjects for all available scans. For DeepAtrophy, the predicted 
interscan interval, as an indicator of brain change, is expected to be above zero. For ALOHA and PACC, the volume/score change is expected to be below zero to 
represent brain atrophy/cognitive decline. Abbreviations: A + /A- = beta-amyloid positive/negative; NC = cognitively normal adults; eMCI = early mild cognitive 
impairment; lMCI = late mild cognitive impairment. 

Table 4 

Sample size estimates (and 95% confidence intervals in parentheses) to power a one-year or two-year clinical trial to detect a 
25%/year or 50%/year reduction (relative to A- NC) in the rate of disease progression of each patient group. See Section 2.5 for 
the sample size calculation. Measurements with a smaller sample size estimates (in absolute terms) are highlighted in bold. Abbre- 
viations: ALOHA = Automatic Longitudinal Hippocampal Atrophy software/package; A + /A- = beta-amyloid positive/negative; 
NC = cognitively normal adults; eMCI = early mild cognitive impairment; lMCI = late mild cognitive impairment; 1 M = 1,000,000. 

1-year trial (180 to 400 days) 2-year trial (400 to 800 days) 
25% reduction 50% reduction 25% reduction 50% reduction 

A + NC DeepAtrophy 3075 (574, 899,750) 769 (146, 284,814) 3597 (681, 764,563) 900 (169, 90,163) 
ALOHA 3175 (778, 524,672) 794 (190, 108,735) 1657 (683, 13,580) 415 (167, 3173) 
PACC 1,658,058 (443,577, > 1M) 414,515 (100,466, > 1M) 21,758 (1998, > 1 M) 5440 (495, > 1M) 

A + eMCI DeepAtrophy 914 (422, 3400) 229 (107, 828) 485 (256, 1178) 122 (64, 298) 
ALOHA 1575 (652, 7672) 394 (169, 2288) 1322 (555, 8372) 331 (134, 1880) 
PACC 38,395 (3781, > 1M) 9599 (912, > 1M) 5888 (1371, > 1M) 1472 (329, 232,773) 

A + lMCI DeepAtrophy 251 (156, 464) 63 (38, 112) 129 (80, 231) 33 (21, 59) 
ALOHA 327 (192, 703) 82 (48, 176) 218 (129, 420) 55 (32, 104) 
PACC 988 (413, 4688) 247 (102, 1140) 267 (149, 631) 67 (37, 158) 
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ression (25% vs. 50%) in trial participants receiving treatment. As de-
cribed in Section 2.5 , the reduction is computed relative to the rate of
rogression in controls. In all scenarios, the sample size calculation is
ased on the statistics (mean and variance) of the four diagnosis groups
lotted in Fig. 5 . For all A + eMCI and A + lMCI scenarios, DeepAtrophy
s associated with a smaller sample size estimate (in absolute terms)
han ALOHA, although 95% confidence intervals overlap. Conversely,
10 
or preclinical AD scenarios, the sample size estimates for ALOHA are
maller than or similar to DeepAtrophy. This might be explained by a
tronger variance in the A- NC group in DeepAtrophy, which may lead
o higher sample size estimates. In all cases, the 95% confidence inter-
als significantly overlap between DeepAtrophy and ALOHA sample size
stimates, so it is not possible to conclude that one set of estimates is
tatistically better than the other. 



M. Dong, L. Xie, S.R. Das et al. NeuroImage 243 (2021) 118514 

Fig. 5. Comparison of the ability of DeepAtrophy PAIIR measure, ALOHA atrophy rate, and PACC score change rate to detect differences in the rates of disease 
progression between normal controls (A- NC) and three disease groups: preclinical AD (A + NC), early prodromal AD (A + eMCI) and late prodromal AD (A + 
lMCI) using follow-up timepoints between (a) 180 to 400 days from baseline (one-year clinical trial scenario) and (b) 400 to 800 days from baseline (two-year 
clinical trial scenario). In each subplot, the Wilcoxon signed-rank test was conducted to compare each patient group with the control group, and the p-values 
were shown for each comparison. Abbreviations: PAIIR = predicted-to-actual interscan interval ratio; ALOHA = Automatic Longitudinal Hippocampal Atrophy 
software/package; PACC = Preclinical Alzheimer’s Cognitive Composite; A + /A- = beta-amyloid positive/negative; NC = cognitively normal adults; eMCI = early 
mild cognitive impairment; lMCI = late mild cognitive impairment; N = number of subjects in the diagnosis group. 
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. Discussion 

In this paper, we considered the problem of quantifying change from
ongitudinal MRI scans in the context of neurodegenerative disease. The
eading solutions to this problem (DBM, BSI) involve using some form of
mage registration to compare scans to each other and deriving a mea-
11 
ure of expansion or contraction in relevant to anatomical structures,
.g., the hippocampus. Such registration-based measures are very sensi-
ive to small shifts in anatomical boundaries caused by progressive neu-
odegeneration. However, they may also misinterpret imaging artifacts,
uch as those caused by subject motion, as atrophy. The relatively high
raction of positive atrophy values (i.e., hippocampal volume increasing
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ver time) reported by the state-of-the-art DBM method ALOHA (25% in
ur dataset) is suggestive of imaging artifacts influencing conventional
ongitudinal measures. 

We set out to design a deep learning approach that would serve as
n alternative to conventional registration-based longitudinal analysis
echniques. Deep learning usually relies on large training datasets, yet
n this problem, the ground truth is unknown, i.e., the true amount of
isease-related change between pairs of MRI scans cannot be estimated
y practical means. Instead, we trained our networks to infer temporal
nformation from longitudinal scan pairs, under the assumption that dif-

erences between images that are correlated with the passing of time are pri-

arily caused by aging and disease progression . If this assumption is true,
hen a network trained to infer scan temporal order and relative inter-
can interval is likely implicitly learning to detect aging and disease
rogression. By using relative measures of time when training the neu-
al network, rather than absolute ones (i.e., using STO and RISI losses
nstead of directly inferring PII from scan pairs), our approach implicitly
ccounts for different rates of disease progression in different individu-
ls. 

Our results in Tables 2 and 3 show that DeepAtrophy can be taught to
emporally order scans and detect shorter vs. longer inter-scan intervals
ith significantly greater accuracy than ALOHA. This suggests that lon-

itudinal scans encompass information about time-related changes that goes

ell beyond what is captured by the displacement of hippocampal bound-

ries . We did not compare DeepAtrophy with other conventional tech-
iques, but recent studies ( Cash et al., 2015 ; Das et al., 2012 ; Xie et al.,
020a ) suggest that ALOHA performs on par with other leading DBM
 Lorenzi et al., 2015a ) and BSI techniques ( Freeborough and Fox, 1997 ;
eung et al., 2010 ). For both DeepAtrophy and ALOHA, temporal infer-
nce accuracy in Tables 2 and 3 generally increases with disease sever-
ty, which is to be expected, since the magnitude of the expected change
n image content is greater in groups that experience higher rates of neu-
odegeneration. Increased sensitivity of the longitudinal measure and
ower frequency of positive atrophy values (i.e., reports of hippocam-
al volume increase) in more affected groups is consistent with other
trophy measurement methods ( Hua et al., 2016 ; Leung et al., 2010 ;
ushkevich et al., 2009 ). 

One critical question is whether the high temporal inference accu-
acy in DeepAtrophy reflects greater sensitivity to progressive biological
hanges (i.e., neurodegeneration), or whether other non-biological fac-
ors that are not independent of time are present. For example, in a
ingle-site longitudinal study, a change in scanner hardware or protocol
arameters at certain points over the duration of the study would result
n differences in image content that are systematic with respect to time,
et not biological (e.g., scans acquired later in the study might have
etter gray/white tissue contrast). A CNN could easily detect this differ-
nce, resulting in high temporal inference accuracy. However, in such a
cenario, we would expect the STO accuracy of the CNN to be high, but
ess so the RISI accuracy. Most importantly, if such a CNN was primarily
etecting factors that are systematic but non-biological, we would not
xpect to observe significant differences in CNN output between less
ffected and more affected individuals. The fact that DeepAtrophy has
igh RISI accuracy ( Table 3 ), performs on par with ALOHA at group
eparation ( Fig. 5 ), and is trained on a multi-site multi-scanner dataset,
akes it unlikely that systematic non-biological factors are driving its

emporal inference accuracy. In future work, it would be informative to
elate data on software and hardware changes at ADNI sites during the
DNI2/GO phases the study to DeepAtrophy measures, and thus deter-
ine to what extent these measures are impacted by these systematic

ut non-biological changes. 
Inconsistent preprocessing of MRI scans input to DeepAtrophy could

rovide another possible explanation of high temporal accuracy re-
orted in Tables 2 and 3 . However, we took great care to make sure
ll scans underwent the same preprocessing, i.e., performing rigid reg-
stration in half-way space ( Das et al., 2012 ; Yushkevich et al., 2009 )
nd randomly assigning the roles of “fixed ” and “moving ” image in reg-
12 
stration. Additionally, in the Supplemental Section S2, we tested Deep-
trophy on nine subjects scanned on the same day. The STO accuracy

n this experiment was close to 50%, i.e., close to chance, which likely
ules out the possibility of preprocessing differences contributing to high
emporal inference accuracy of DeepAtrophy. 

We introduced a scalar measure of mismatch between the inter-scan
nterval inferred by DeepAtrophy from a pair of scans and the actual
nter-scan interval (PAIIR) as a potential biomarker for tracking disease
rogression in AD clinical trials. PAIIR was envisioned as an analogue to
onventional biomarkers like hippocampal atrophy rate in DBM. How-
ver, we found that differences in the age-adjusted PAIIR measure be-
ween amyloid-negative controls and patients at different stages of the
D continuum were on par with the differences in the age-adjusted
LOHA hippocampal atrophy measure ( Fig. 5 , Table 4, and Supple-
ental Figure S1), i.e., no statistically significant differences were de-

ected between the two measures in the ROC analysis, and 95% con-
dence intervals for the sample size estimates in Table 4 overlapped.

t is unclear why DeepAtrophy outperforms ALOHA in terms of STO
nd RISI accuracy yet does not improve on ALOHA for separating pa-
ient groups. One possible explanation is that DeepAtrophy has greater
ensitivity to overall progressive change, but ALOHA has greater speci-
city to disease-related neurodegeneration. Individuals in ADNI may be
ndergoing simultaneous progressive changes: some related to aging,
nd some related to disease. For example, all individuals may undergo
idespread loss of brain tissue that is systematic but generally unrelated

o disease progression. Since DeepAtrophy is not specifically taught to
ecognize disease-related changes, it may “lock on ” the more global sys-
ematic changes, which would be sufficient to infer temporal informa-
ion successfully, but would not be helpful for differentiating groups
t different stages of AD. By contrast, ALOHA measures change in the
ippocampus, a brain structure more specifically linked to neurodegen-
rative diseases. Hence, ALOHA may be less sensitive to time-related
hange (hence lower STO/RISI accuracy) but more attuned to disease-
elated differences in progression. It is conceivable that a strategy that
ombines deep learning-based time inference with anatomy-informed
eformation-based morphometry, i.e., a hybrid DeepAtrophy/ALOHA
ethod, would improve on both ALOHA and DeepAtrophy by boosting

he sensitivity of the former and the specificity of the latter. 
Indeed, ALOHA and DeepAtrophy appear to provide complementary

nformation for separating groups along the AD continuum. In Supple-
ental Section S4, we report the results of stepwise logistic regression

nalysis performed with group (e.g., A + NC vs A- NC) as the depen-
ent variable, and both ALOHA and DeepAtrophy age-corrected pro-
ression measures as independent variables. For analyses involving A +
MCI and A + lMCI groups, both ALOHA and DeepAtrophy measures are
ncluded in the final model (in both 1-year and 2-year clinical trial sce-
arios), although for the analysis involving the A + NC group, only the
LOHA measure is included (in both 1-year and 2-year clinical trial sce-
arios). This suggests that there is promise in combining DeepAtrophy
nd ALOHA in a hybrid method. 

The overall conclusions of the experiments in this study may be
tated as follows: there appears to be time-associated information in
ongitudinal scan pairs that is untapped by conventional DBM measures
ut leveraging this information into a more effective AD disease pro-
ression biomarker will likely require a hybrid approach that combines
xplicit image-based time inference (as in DeepAtrophy) with explicit
ocus on AD-specific brain regions (as in ALOHA). 

.1. Deep learning for AD longitudinal biomarkers 

Current deep learning techniques for AD analysis are focused mainly
n the diagnosis and prediction of structural change or cognitive scores
f AD ( Li and Fan, 2019 ; Parisot et al., 2018 ; Spasov et al., 2019 ;
hang et al., 2017 ). It includes classification of the future AD stages
 Basu et al., 2019 ) or time of conversion from one state to another
 Lee et al., 2019 ; Lorenzi et al., 2019 ), and regression of biomarker
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3 In theory, trajectory of hippocampal volume in neurogenerative disease 
would exhibit exponential decay, however at rates reported for the ADNI popu- 
lation (0.5-4% hippocampal volume loss per year ( Cash et al., 2015 )) and over 
time intervals examined in this paper, such trajectories can be closely approxi- 
mated by a linear function. 
alues, such as cognitive scores and ventricle volumes ( Ghazi et al.,
019 ; Jung et al., 2019 ). Prediction of AD stage and conversion time
ere mainly conducted with Recurrent Neural Networks (RNN), includ-

ng Long-Short Term Memory (LSTM) networks ( Ghazi et al., 2019 ;
ee et al., 2019 ; Li and Fan, 2019 ), in which biomarkers collected at
ach time go through a node of the RNN, and the output of the network
n each later node is the prediction score. In the recent TADPOLE chal-
enge ( Azvan et al., 2020 ), the best performing team overall (ventricle
olume, diagnosis, and cognitive score prediction) uses XGboost method
 Chen and Guestrin, 2016 ); the best performing team in predicting ven-
ricle volume alone uses data-driven disease progression model and
achine learning (linear mixed effect model) ( Venkatraghavan et al.,
018 ). Besides, Generative Adversarial Networks (GAN) have been ap-
lied to generate future images with or without AD pathology on the
hole brain or in the MTL region ( Bowles et al., 2018 ; Ravi et al., 2019 ).

To our knowledge, none of the DL longitudinal MRI analysis methods
mployed deep learning specifically as a means to derive a more effec-
ive disease progression and treatment evaluation biomarker for clini-
al trials for AD. DL-based registration methods in which deformation
elds are generated by a convolutional neural network (CNN) are an
rea of active research ( Balakrishnan et al., 2018 ; Tustison et al., 2019 ;
ang et al., 2017 ). However, the impact of these methods on disease
rogression biomarkers in AD has not yet been evaluated. 

.2. Clinical trial sample size estimates: comparison to the literature 

Studies commonly evaluate longitudinal biomarkers in AD by esti-
ating the sample size needed to power a hypothetical clinical trial in
hich the experimental treatment is expected to reduce the rate of dis-

ase progression by 25% relative to the healthy aging ( Holland et al.,
012a ; Hua et al., 2016 ; Pegueroles et al., 2017 ; Yushkevich et al.,
009 ). Sample size estimates reported in the literature for longitudinal
RI-based biomarkers are generally smaller than for cognitive testing

 Ard and Edland, 2011 ; Cullen et al., 2020 ; Weiner et al., 2015 ; Xie et al.,
020b ), as we also report in Table 4 for the PACC measure. Most sam-
le size estimates reported in the literature involve hypothetical clinical
rials in MCI or AD. In the MIRIAD challenge ( Cash et al., 2015 ), the
mallest reported sample sizes for a hypothetic 12 month clinical trial
n AD were 190 (95% CI: 146 to 268) and 158 (95% CI: 116 to 228) for
eft and right hippocampal atrophy rate measures, respectively. In the
riginal report on ALOHA ( Das et al., 2012 ), a sample size of 269 (based
n a one-sided test, corresponds to 343 for two-sided) was estimated
or a hypothetical one-year trial in MCI (regardless of beta-amyloid sta-
us) using a hippocampal volume atrophy measure derived from longi-
udinal high-resolution T2-weighted MRI; and sample size of 325 (414
wo-sided) when using T1-weighted MRI. In a subsequent comparison of
reeSurfer (FS), Quarc, and KN-BSI T1-MRI analysis methods in Holland
t al. (2012) , the minimum sample size reported for a one-year trial in
ate MCI was 327 (95% CI: 209 to 585). However, even though the sam-
le size in these studies was reported for a one-year trial, the annualized
trophy rates used to estimate these sample sizes used longitudinal scans

ith up to three years follow-up . By contrast, in a hypothetical one-year
linical trial in late MCI, the sample size using DeepAtrophy is estimated
o be 251 (95% CI: 156 to 464), and unlike the above studies, this esti-
ate is based on one-year follow-up data. The corresponding estimate

or ALOHA is 327 (95% CI: 192 to 703). This suggests that DeepAtro-
hy performs on par with the state-of-the-art conventional methods for
isease progression quantification in the context of symptomatic AD. 

Compared to MCI/AD, there has been relatively less work on esti-
ating the sample size needed to power a hypothetical clinical trial

n preclinical AD. Insel et al. (2019) report a sample size of 2000 for
 4-year clinical trial using PACC as the outcome measure. Holland
t al. (2012b) performed sample size estimation for a three-year clin-
cal trial in preclinical AD, where they reported n = 1763 (95% CI:
400, > 100,000]) needed to detect a 25% reduction in longitudinal hip-
ocampus change rate relative to controls, applied to data collected in
13 
 years. However, the sample size estimated for a hypothetical 3-year
linical trial for a 25% reduction in hippocampus volume change by
ertens et al. (2017) is 279 (95% CI: [197, 426]). Xie et al. (2020b) re-
orted the results of the ALOHA analysis described in the current study
nd reported sample sizes consistent with the results in Table 4 . 

.3. Limitations and future work 

Perhaps the main limitation of DeepAtrophy compared to DBM/BSI
echniques is that it provides a holistic interpretation of change over
ime in a longitudinal scan pair and does not shed light on neurode-
eneration in specific anatomical regions. Whereas ALOHA can pro-
ide measures of change in specific anatomical regions (hippocampus,
rodmann area 35), DeepAtrophy yields only a single measure for the
ippocampal region. This limits the interpretability of the DeepAtro-
hy results, which is a common limitation of many deep learning im-
ge analysis approaches. However, existing approaches for interpreta-
ion of deep learning models (e.g., attention mapping, gradient-based
echniques ( Selvaraju et al., 2016 ; Zhang et al., 2018 ), weakly super-
ised learning ( Durand et al., 2017 ), or layer-wise relevance propaga-
ion ( Bach et al., 2015 ; Eitel et al., 2019 )) can be readily applied to
eepAtrophy, and we plan to conduct such analyses in future work. 

Another potential limitation of DeepAtrophy is that its response (PII)
iminishes for longer time intervals. The individual trajectories of PII
lotted in Fig. 4 and Supplemental Figure S7 are non-linear and ex-
ibit diminishing returns over greater time intervals. This is particu-
arly prominent when DeepAtrophy is trained using only the STO loss, in
hich case, the response of the network to scan pairs with longer inter-

can intervals is only slightly greater, on average, than for short inter-
can intervals (Supplemental Figure S2, Panel (a)). Introducing the RISI
oss and increasing its weight makes the trajectories more linear, but this
omes at the cost of reduced STO accuracy, i.e., there is a tradeoff be-
ween accuracy in detecting the presence/directionality of time-related
hange, and the magnitude of the time-related change. By contrast, the
rajectories for the ALOHA hippocampal atrophy rate measure are closer
o linear, as would be expected. 3 The ability of a biomarker to quantify
he magnitude and not just presence of progression is important because
n a clinical trial both the treatment and the placebo cohort are expected
o have disease progression, and the role of a biomarker is to detect a
ubtle difference in rates of progression. In this sense, the PII/PAIIR has
 lower transitivity than ALOHA measures. 

Hyperparameter selection during for DeepAtrophy was performed
n a somewhat ad hoc manner. Some parameters (e.g., 𝑘 , the number of
utputs in the last activation layer of 𝑫 𝜃 , were assigned ad hoc values
nd examined post hoc, as reported in Supplemental Section S8, Table
7). Other parameters (e.g., number of training epochs and 𝜆, the weight
f the RISI loss) were tuned on a single random training/test split of the
ull ADNI dataset. A more elegant and statistically robust strategy would
ave been to optimize the hyperparameters on a held-out validation
et. However, given the sparsity of longitudinal MRI data, particularly
or preclinical AD, we opted to include all the available participants in
he analysis, and to use a cross-validation design, such that DeepAtro-
hy measures computed for each ADNI subject were derived by training
eepAtrophy on distinct subjects. With additional preclinical AD longi-

udinal datasets such as the A4 study ( Sperling et al., 2014 ) becoming
vailable in the future, it will be possible to evaluate whether the results
eported here generalize to new patient populations, scanners, and pro-
ocols. Some of the complexity in terms of hyperparameters was caused
y the need to design the RISI loss as a categorical loss, due to the fail-
re of a continuous regression loss to converge during training. Further
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esearch, including the modification of the underlying image classifica-
ion deep network ( Xie et al., 2020b ), may lead to better trainability of a
egression-type RISI loss, in turn reducing the complexity of the training
etup and perhaps leading to greater sensitivity to disease progression. 

Another limitation of our approach is that it focuses on pairs of scans
t test time. When three or more scans are available, we use linear mod-
ls to infer a summary PAIIR measure from pairwise PAIIR data. Directly
ncorporating multiple scans into the network, perhaps in a recurrent
eural network architecture, may offer additional efficiencies and im-
roved accuracy over the current approach. Lastly, the fact that our ex-
eriments are only carried out in a single region of the brain containing
he hippocampus and surrounding structures is also a limitation. Addi-
ional experiments need to be conducted to determine whether DeepAt-
ophy can detect time-related changes in other brain regions associated
ith AD neurodegeneration or at the whole-brain level. 

Our future work will focus on addressing these limitations, as well as
ombining ALOHA and DeepAtrophy in a common algorithmic frame-
ork. One potential approach would be to construct a single end-to-end
etwork that implements ALOHA functionality as a set of CNN layers,
nd to train such a network to generate atrophy measurements that are
oth faithful to the input data and accurate in terms of temporal in-
erence. The core of ALOHA is diffeomorphic deformable registration,
nd a number of models for implementing registration as a set of CNN
omponents are available in the literature ( Balakrishnan et al., 2018 ;
ustison et al., 2019 ; Yang et al., 2017 ). Such a hybrid network would
ield Jacobian determinant maps and region-specific atrophy measures
imilarly to ALOHA, thus addressing one of the main limitations of Deep-
trophy: its failure to produce anatomically meaningful measures of tis-
ue compression and expansion. However, the registration layers would
e sensitized, through the minimization of STO and RISI-like losses, to
hanges that are systematic with respect to time. 

onclusion 

In this paper, we showed that a deep learning network, DeepAtrophy,
an infer the temporal order of same-subject longitudinal MRI scans,
s well as deduce which pair of same-subject scans has a longer inter-
can interval, with excellent accuracy, significantly improving on that
f a state-of-the-art deformation-based morphometry approach ALOHA.
he design of DeepAtrophy encapsulates the underlying assumption that

n the context of Alzheimer’s disease, image changes that are system-
tic with time are primarily related to aging and/or neurodegenera-
ion. We formulated a summary measure of time-associated change be-
ween longitudinal MRI scans, defined as the mismatch between the
nterscan interval predicted by the DeepAtrophy network and the ac-
ual inter-scan interval, and showed that this mismatch measure sepa-
ates cohorts at different stages along the AD continuum comparably to
he ALOHA-derived hippocampal atrophy rate measure. Our results sug-
est that deep learning based temporal inference may capture longitudi-
al changes that are distinct from those captured by deformation-based
orphometry, and that combining both approaches in a hybrid strategy
ay perhaps lead to a more powerful biomarker for quantifying disease
rogression in AD clinical trials. 
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