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a b s t r a c t 

Brain tissue segmentation from multimodal MRI is a key building block of many neuroimaging analysis 

pipelines. Established tissue segmentation approaches have, however, not been developed to cope with 

large anatomical changes resulting from pathology, such as white matter lesions or tumours, and often 

fail in these cases. In the meantime, with the advent of deep neural networks (DNNs), segmentation of 

brain lesions has matured significantly. However, few existing approaches allow for the joint segmenta- 

tion of normal tissue and brain lesions. Developing a DNN for such a joint task is currently hampered by 

the fact that annotated datasets typically address only one specific task and rely on task-specific imaging 

protocols including a task-specific set of imaging modalities. In this work, we propose a novel approach to 

build a joint tissue and lesion segmentation model from aggregated task-specific hetero-modal domain- 

shifted and partially-annotated datasets. Starting from a variational formulation of the joint problem, we 

show how the expected risk can be decomposed and optimised empirically. We exploit an upper bound 

of the risk to deal with heterogeneous imaging modalities across datasets. To deal with potential domain 

shift, we integrated and tested three conventional techniques based on data augmentation, adversarial 

learning and pseudo-healthy generation. For each individual task, our joint approach reaches compara- 

ble performance to task-specific and fully-supervised models. The proposed framework is assessed on 

two different types of brain lesions: White matter lesions and gliomas. In the latter case, lacking a joint 

ground-truth for quantitative assessment purposes, we propose and use a novel clinically-relevant quali- 

tative assessment methodology. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Traditional approaches for tissue segmentation used in brain 

egmentation / parcellation software packages such as FSL 

 Jenkinson et al., 2012 ), SPM ( Ashburner and Friston, 20 0 0 ) or

iftySeg ( Cardoso et al., 2015 ) are based on subject-specific op- 

imisation. FSL and SPM fit a Gaussian Mixture Model to the MR 

ntensities using either a Markov Random Field (MRF) or tissue 

rior probability maps as regularisation. Alternatively, multi-atlas 

ethods rely on label propagation and fusion from multiple 

ully-annotated images, i.e. atlases, to the target image ( Cardoso 
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t al., 2015; Iglesias and Sabuncu, 2015 ). These methods typically 

equire extensive pre-processing, e.g. skull stripping, correction of 

ias field and registration. They are also often time-consuming and 

re inherently only adapted for brains devoid of large anatomical 

hanges induced by pathology, such as white matter lesions and 

rain tumours. Indeed, it has been shown that the presence of 

esions can significantly distort any registration output ( Sdika and 

elletier, 2009 ). Similarly, lesions introduce a bias in the MRF. 

his leads to a performance degradation in the presence of lesions 

or brain volume measurement ( Battaglini et al., 2012 ) and any 

ubsequent analysis. 

While quantitative analysis is expected to play a key role in 

mproving the diagnosis and follow-up evaluations of patients 

ith brain lesions, current tools mostly focus on quantification 

f the lesions themselves and effectively discard contextual tissue 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Tissue and lesion segmentation, a problem at the intersection of multiple branches of Machine Learning: Multi-Task Learning (tissue + lesion segmentation), Weakly- 

Supervised Learning (missing annotations), Hetero-Modality (missing modalities), Domain Adaptation (different acquisition protocols). 
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nformation. Existing quantitative neuroimaging approaches allow 

he extraction of imaging biomarkers such as the largest diameter, 

olume, and count of the lesions. Such automatic segmentation 

f the lesions promises to speed up and improve the clinical 

ecision-making process but more refined analysis would be feasi- 

le from tissue classification and region parcellation. In particular, 

rain atrophy at a global level ( Popescu et al., 2013; Giorgio and 

e Stefano, 2013 ), at a cerebral level ( Bermel and Bakshi, 2006 ),

nd, even more specifically, at the grey matter level ( Geurts et al., 

012 ) have been correlated with the speed of disease progression 

nd with physical disability ( Fisniku et al., 2008 ). Consequently, 

trophied tissue volumes in the presence of lesions are clinically 

elevant imaging markers ( Dwyer et al., 2018 ). We believe that, 

lthough very few work have addressed this problem yet, a joint 

odel for lesion and tissue segmentation is expected to bring sig- 

ificant clinical benefits. As representative exemplars of the tech- 

ical challenges involved to build such joint models, we focus, in 

his work, on patients with white matter lesions or brain tumours. 

Deep Neural Networks (DNNs) have become the state-of-the-art 

or most segmentation tasks ( Simpson et al., 2019 ) and one would 

ow expect these to be able to jointly perform brain tissue and 

athology segmentation. However, annotated databases required to 

rain DNNs are usually dedicated to a single task (either brain tis- 

ue segmentation or pathology delineation). In addition, the infor- 

ation required for brain tissue or pathology segmentation may 

ome from different scans, leading to hetero-modal (i.e. more than 

ne set of input imaging sequences) datasets. While T 1 -weighted 

mages provide the best grey/white matter contrast for the de- 

ineation of anatomical tissue, T 2 -weighted sequences are usually 

ore sensitive to pathological changes ( Bitar et al., 2006 ). Choice 

f the used sequence or combination of sequences may also dif- 

er across pathologies. T 2 -weighted FLAIR images are often used 

or the assessment of white matter lesions ( Maillard et al., 2013 ) 

hile a combination of T 1 contrast-enhanced (T 1 c), T 2 and FLAIR 

s often preferred for the characterisation of gliomas ( Wen et al., 

010 ). Similarly, the scans may have been acquired with different 

agnetic resonance parameters leading to differences in resolution 

nd contrast among databases. Consequently, the data distribution 

ay differ between the datasets, i.e. the datasets may be domain- 

hifted. Given 1) the large amount of resources, time and exper- 

ise required to annotate medical images, 2) the varying imaging 

equirement to support each individual task, and 3) the availabil- 

ty of task-specific databases, it is unlikely that large databases 

or every joint problem, such as lesion and tissue segmentation, 

ill become available. There is thus a need to exploit existing 

ask-specific databases to address the joint problems. Learning a 

oint model from task-specific hetero-modal and domain-shifted 

atasets is nonetheless challenging. As shown in Fig. 1 , this prob- 

em lies at the intersection of Multi-Task Learning ( Zhang and 
d

2 
ang, 2017 ), Domain Adaptation ( Ben-David et al., 2010; Zhao et al., 

019 ) and Weakly Supervised Learning ( Oquab et al., 2015; Bilen 

nd Vedaldi, 2016; Xu et al., 2014 ) with singularities making indi- 

idual methods from these underpinning fields insufficient to ad- 

ress it completely, as explained in more depth in the related work 

ection 2 . 

Our approach is rooted in all these sub-domains of deep learn- 

ng. The main contributions are summarised as follows: 

1. We propose a joint model that performs tissue and lesion seg- 

mentation as a unique joint task and thus exploits the inter- 

dependence between the lesion and tissue segmentation tasks. 

Starting from a variational formulation of the joint problem, we 

exploit the disjoint nature of the label sets to propose a practi- 

cal decomposition of the joint loss, transforming the multi-class 

segmentation problem into a multi-task problem. 

2. We introduce feature channel averaging across modalities to 

adapt existing networks for our hetero-modal problem. 

3. We develop a new method to minimise the expected risk un- 

der the constraint of missing modalities. Under the assumption 

that the network is not affected by a potential domain shift, we 

show that the expected risk can be further decomposed and 

minimised via a tractable upper bound. To our knowledge, no 

such optimisation method for missing modalities in deep learn- 

ing has been published before. 

4. Given that, in practice, the heterogeneous task-specific datasets 

may have been acquired with different protocols, i.e. they are 

domain-shifted, we integrate several existing DA techniques in 

our framework. These methods are based on data augmentation 

and adversarial training, or pseudo-healthy brain generation. 

5. We demonstrate the performance of our joint approach on 

two clinical use cases: White matter lesions and gliomas. Our 

method outperforms a fully-supervised model trained on a 

smaller fully-annotated dataset for white matter lesions. To as- 

sess the performance of the joint model for tissue and glioma 

segmentation, for which no ground-truth is available, we pro- 

pose a new qualitative evaluation protocol based on the AS- 

PECTS score ( Barber et al., 20 0 0 ). Higher accuracy is obtained

compared to time-consuming pipelines that require to mask the 

lesions using manual annotations. 

6. Experiments show that generating pseudo-healthy annotated 

scans outperforms the other DA techniques, even with very few 

pseudo-healthy annotated scans. 

This work is a substantial extension of our conference pa- 

er ( Dorent et al., 2019b ). Improvements include: 1) Additional 

athematical proofs; 2) integration and validation of three dif- 

erent domain adaptation techniques to cope with domain-shifted 

atasets; 3) new experiments on joint brain tissue and glioma seg- 
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entation; and 4) a new quantitative evaluation protocol for as- 

essing tissue segmentation in the absence of ground-truth. 

. Related work 

Multi-Task Learning (MTL) aims to perform several tasks simul- 

aneously, on a single dataset, by extracting some form of com- 

on knowledge or representation and introducing a task-specific 

ack-end. When relying on DNN for MTL, the first layers of the 

etwork are typically shared, while the last layers are trained for 

he different tasks ( Ruder, 2017 ). MTL has been successfully ap- 

lied to medical imaging for segmentation ( Bragman et al., 2018; 

oeskops et al., 2016 ) combined with other tasks such as de- 

ection ( Saha et al., 2019 ) or classification ( Chen et al., 2019; Le

t al., 2019 ). The global loss function is a weighted sum of task- 

pecific loss functions. Recently, Kendall and Gal (2017) proposed a 

ayesian parameter-free method to estimate the MTL loss weights 

nd Bragman et al. (2018) extended it to spatially adaptive task 

eighting and applied it to medical imaging. Although the afore- 

entioned approaches generate different outputs from the same 

eatures, no direct interaction between the task-specific outputs is 

odelled in these techniques. While a joint tissue and lesion seg- 

entation can be pursued in practice, a strong underpinning as- 

umption is that the two outputs are conditionally independent. 

onsequently, these approaches do not address the problem of ag- 

regating these outputs to generate a joint segmentation. More- 

ver, MTL approaches, such as ( Moeskops et al., 2018; Roulet et al., 

019 ), do not provide any mechanism for dealing with hetero- 

odal datasets or changes in imaging characteristics across task- 

pecific databases. 

Domain Adaptation (DA) is a solution for dealing with domain- 

hifted datasets, i.e. datasets acquired with different settings. A 

lassical strategy consists in learning a domain-invariant feature 

epresentation of the data. Csurka (2017) proposed an extensive 

eview of these methods in deep learning. Some DA approaches 

ave been developed to tackle a specific and identified shift. For 

xample, data augmentation has been used for shifts caused by 

ifferent MR bias fields ( Sudre et al., 2017 ) or the presence of

otion artefacts ( Shaw et al., 2019 ); Havaei et al. (2016) and 

orent et al. (2019a) proposed network architectures for dealing 

ith missing modalities that encodes each modality into a shared 

odality-agnostic latent space. Recent studies have proposed to 

earn a mapping between healthy and decease scans, using Cy- 

leGANs ( Xia et al., 2019; Sun et al., 2018 ) or Variational Autoen-

oders ( Chen and Konukoglu, 2018 ). Although these techniques 

ave shown promising results, they are inherently limited to a spe- 

ific type of shift. Combining causes of shift, for instance the pres- 

nce/absence of lesions with different protocols of acquisition, re- 

ains an unsolved problem. In contrast, general DA approaches do 

ot make assumptions about the nature of the shift. These meth- 

ds aim to directly minimise the discrepancy between the feature 

istributions across the domains. Distribution dissimilarity can be 

ssessed using correlation distances ( Sun et al., 2016 ) or maximum 

ean discrepancy ( Pan et al., 2011; Long et al., 2015 ). However, 

ore recent techniques are mostly focused on adversarial methods, 

chieving promising results in medical imaging ( Kamnitsas et al., 

017; Dou et al., 2018; Orbes-Arteaga et al., 2019 ). However, these 

ethods are usually focus on solving a single task across domain. 

Weakly-supervised Learning (WSL) deals with missing, inac- 

urate, or inexact annotations. Our problem is a particular case 

f learning with missing labels since each task-specific dataset 

rovides a set of labels where the two sets are disjoint. Li and 

oiem (2017) proposed a method to learn a new task from a model 

rained on another task. This method combines DA through trans- 

er learning and MTL. In the end, two models are created: One for 

he first task and one for the second one. Kim et al. (2018) ex-
3 
ended this approach by using a knowledge distillation loss in or- 

er to create a unique multi-task model. This aims to alternatively 

earn one task without forgetting the other one. The WSL problem 

as thus decomposed into an MTL problem with aforementioned 

imitations for our specific use case. 

This work proposes a new framework to perform a joint seg- 

entation while dealing with task-specific, domain-shifted and 

etero-modal datasets. 

. Tissue and lesion segmentation learning from hetero-modal 

nd task-specific datasets: Problem definition 

In order to develop a joint model, we first propose a math- 

matical variational formulation of the problem and introduce a 

etwork architecture to leverage existing hetero-modal and task- 

pecific datasets for tissue and lesion segmentation. 

.1. Formal problem statement 

Let x = (x 1 , ., x M ) ∈ X = R 

N×M be a vectorized multimodal im-

ge and y ∈ Y = { 0 , ., C} N its associated tissue and lesion segmen-

ation map. N, M and C are respectively the number of voxels, 

odalities and classes. Note that images modalities are assumed 

o be co-registered and resampled in the same coordinate space 

ontaining N voxels. Our goal is to determine a predictive function, 

arametrised by the weights θ ∈ �, h θ : X �→ Y that minimises the 

iscrepancy between the ground truth label vector y and the pre- 

iction h θ ( x ). Let L be a loss function that estimates this discrep-

ncy. Following the formalism used by Bottou et al. (2018) , given a 

robability distribution D over (X , Y) and random variables under 

his distribution, we want to find θ ∗ such that: 

∗ = arg min θE (x,y ) ∼D [ L ( h θ (x ) , y ) ] (1) 

As is the norm in data-driven learning, we do not have access 

o the true joint probability D. In supervised learning, the common 

ethod is to estimate the expected risk using training samples. 

iven a set of n ∈ N independently drawn multimodal scans with 

heir associated tissue and lesion segmentation map { ( x k , y k ) } n k =1 , 

e want to find θ ∗ that minimises the empirical risk: 

∗ = arg min θ

n ∑ 

k =1 

L ( h θ ( x k ) , y k ) (2) 

owever, in our multitask scenario, we cannot directly estimate 

he empirical risk since we do not have access to a fully anno- 

ated dataset for the joint task. Instead, we propose to leverage 

ask-specific and hetero-modal datasets. 

.2. Task-specific and hetero-modal datasets 

Let us assume that we have access to two datasets with ei- 

her the tissue annotations y T or the lesion annotations y L (task- 

pecificity). Let 

 control = 

{((
x 1 k , ., x 

M T 

k 

)
, y T k 

)}n T 

k =1 

S lesion = 

{((
x 1 k , . . . , x 

M L 

k 

)
, y L k 

)}n L 

k =1 

enote these two training sets, where M T , M L , n T and n L are re-

pectively the number of modalities in the control and the lesion 

ets and the size of these sets. Note that although we use the term 

ontrol for convenience, we may expect to observe pathology with 

diffuse” anatomical impact, e.g. from dementia. In addition, for 

he clarity of presentation, we highlight that the considered lesions 

n this work are either White Matter Hyperintensities (WMH) or 

liomas. 
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Fig. 2. The proposed fully-convolutional network architecture: A mix a 3D U-Net ( Çiçek et al., 2016a ) and HeMIS ( Havaei et al., 2016 ). 
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Since such datasets are typically developed in the scope of ei- 

her tissue or lesion segmentation (but not both), the set of ob- 

erved modalities may vary from one dataset to another (hetero- 

odality). Importantly, in this work, we consider that only T 1 scans 

re provided in the control dataset, while the lesion set contains 

ither 1) the T 1 and the FLAIR scans for WMH segmentation, or 2) 

he T 1 , contrast-enhanced T 1 (T 1 c), T 2 and FLAIR scans for glioma 

egmentation. The full set of modalities is consequently given by 

he modalities in the lesion set, while the control dataset will have 

issing modalities. In our specific use cases, the T 1 modality is a 

hared modality across the different datasets. It will nonetheless be 

pparent that our method can be trivially adapted for other shared 

odalities. 

.3. On the distribution D in the context of heterogeneous databases 

As we expect different distributions across heterogeneous 

atabases, two probability distributions of ( X, Y ) over (X , Y) can 

e distinguished: 

• under D control , ( X, Y ) corresponds to a multimodal scan and 

joint segmentation map of a patient without lesions ( Y effec- 

tively being a tissue segmentation map). 
• under D lesion , ( X, Y ) corresponds to a multimodal scan and joint 

lesion and tissue segmentation map of a patient with lesions. 

Since traditional tissue segmentation methods are not adapted 

n the presence of lesions, the most important and challenging dis- 

ribution D to address is the one for patients with lesions, D lesion . 

n the remainder of this work, we thus assume that: 

 � D lesion . (H 1 ) 

.4. Hetero-modal network architecture 

In order to learn from hetero-modal datasets, we need a net- 

ork architecture that allows for missing modalities. Specifically, 

he input modalities are either a T 1 scan or a full set of modal-

ties. To deal with missing modalities, arithmetic operations are 

mployed, as originally proposed in HeMIS ( Havaei et al., 2016 ). 

he network architecture is based on a U-Net ( Çiçek et al., 2016b ),

s shown in Fig. 2 . Note that, while the proposed method requires 

 hetero-modal network, any specific architecture can be used. The 

roposed network is composed of two input branches, one for the 

 1 scan and one for the full set of modalities. Although HeMIS orig- 

nally proposed to encode each modality independently, i.e one 
4 
ranch per modality, we experimentally found higher performance 

ith these two branches. In the presence of the full set of modal- 

ties, features extracted from the T 1 scan and all the modalities are 

veraged. Consequently, the network allows for missing modalities, 

.e. is hetero-modal. This hetero-modal network with weights θ is 

sed to capture the predictive function h θ that can accept either 

 1 or the full set of modalities as input. 

. Optimising tissue and lesion segmentation as a joint task 

Given the mathematical formulation of the problem and the 

etero-modal network architecture, we propose a method to em- 

irically optimise the joint problem of tissue and lesion segmenta- 

ion. 

.1. Loss decomposition 

Let C T , C L and 0 be respectively the set of tissue classes and le-

ion classes and the value of the background class in the segmen- 

ation masks. Since C T and C L are disjoint, the segmentation map y 

an be decomposed into two segmentation maps y = y L + y T with 

 

T ∈ C T ∪ { 0 } , y L ∈ C L ∪ { 0 } . 
Let us assume that the loss function L can also be decomposed 

nto a tissue loss function L 

T and a lesion loss function L 

L . This

s common for multi-class segmentation loss functions in particu- 

ar for those with one-versus-all strategies (e.g. Dice loss, Jaccard 

oss, Generalized Cross-Entropy). Then, the joint and multi-class 

egmentation problem can be formulated as a multi-task problem: 

 (h θ (x ) , y ) = L 

T (h θ (x ) , y T ) + L 

L (h θ (x ) , y L ) (H 2 )

n combination with (H 1 ), (1) can be rewritten as: 

∗ = argmin θ E D lesion 
[ L 

T (h θ (x ) , y T )] ︸ ︷︷ ︸ 
R 

T 

+ E D lesion 
[ L 

L (h θ (x ) , y L )] ︸ ︷︷ ︸ 
R 

L 

(3) 

hile the second expected risk R 

L can be estimated using the full 

et of modalities and the lesion annotations provided in the lesion 

ataset, the first expected risk R 

T appears to be intractable due 

o the missing tissue annotations in the lesion dataset. In the next 

ections, we first propose an upper bound of the expected tissue 

isk R 

T and then a means to estimate this upper bound using the 

ontrol dataset. 
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.2. Upper bound of the expected tissue risk R 

T 

Although, thanks to its hetero-modal architecture, h θ may han- 

le inputs with varying number of modalities, the current decom- 

osition (3) assumes that all the modalities of x are available for 

valuating the loss. In our scenario, the control set of scans with 

issue annotations only contains the T 1 scans. Consequently, as we 

o not have all the modalities with tissue annotations, and as 

aively evaluating a loss with missing modalities would lead to a 

ias, estimating R 

T is not straightforward. 

Let us assume that the tissue loss function L 

T satisfies the tri- 

ngle inequality: 

 (a, b, c) ∈ Y 

3 : L 

T (a, c) ≤ L 

T (a, b) + L 

T (b, c) (H 3 )

lthough not all losses satisfy (H 3 ) , it is known that the binary

accard is a distance ( Späth, 1981; Kosub, 2018 ) and thus satisfies 

he triangle inequality. 

efinition 4.1. (Binary Jaccard distance) 

The binary Jaccard distance J bin is defined such that: 

 a, b ∈ { 0 , 1 } N , J bin (a, b) = 1 −
∑ N 

i =1 a i b i ∑ N 
i =1 a i + b i − a i b i 

(4)

However, network outputs are typically pseudo-probabilities, 

nd the soft version of (4) does not satisfy the triangle inequality. 

o satisfy (H 3 ) , we extend the binary Jaccard distance to a multi- 

lass probabilistic formulation that coincides with the binary Jac- 

ard for binary inputs but preserves the metric property for prob- 

bilistic inputs. 

efinition 4.2. (Probabilistic multi-class Jaccard distance) 

Let C be the number of classes in C, N be the number of voxels

nd P ⊂ [0 , 1] C×N denote the set of probability vector maps such 

hat for any p = (p c,i ) c∈C, i ∈ [0 ;N] ∈ P: 

 i ∈ [0 ; N] , 
∑ 

c∈ C 
p c,i = 1 

The probabilistic multi-class Jaccard distance is defined for any 

u, v ) ∈ P 

2 as: 

 (u, v ) = 

∑ 

c∈ C ω c 
2 

∑ N 
i =1 | u c,i −v c,i | ∑ N 

i =1 | u c,i | + | v c,i | + | u c,i −v c,i | (5) 

here ω c are the class weights such that with 

∑ 

c∈ C ω c = 1 

As shown in A.1 , the binary and probabilistic Jaccard distance 

oincide on the set of binary vectors {0, 1} N . Furthermore, (5) sat- 

sfies (H 3 ) . 

emma 4.1. The probabilistic multi-class Jaccard distance is a dis- 

ance and thus satisfies the triangle inequality. 

roof. The proof, detailed in A.2 , follows from the Steinhaus trans- 

orm ( Späth, 1981 ) applied to the metric space ([0, 1] N , d 1 ) where

 1 is the distance induced by the L 1 norm. �

Under (H 3 ) , L 

T satisfies the following inequality: 

 

T (h θ (x ) , y T ) ≤ L 

T (h θ (x ) , h θ (x T 1 )) + L 

T (h θ (x T 1 ) , y T ) (6)

here x T 1 denotes the T 1 scan associated to x . Consequently, we 

nd an upper bound of the expected tissue risk: 

 

T (θ ) ≤ E D lesion 
[ L 

T (h θ (x ) , h θ (x T 1 ))] ︸ ︷︷ ︸ 
R 

T 
T 1 → Full 

+ E D lesion 
[ L 

T (h θ (x T 1 ) , y T )] ︸ ︷︷ ︸ 
R 

T 
T 1 

(7) 

inimising R 

T 
T 1 

enforces the network to generate accurate tissue 

egmentation using only T 1 as input. Minimising R 

T 
T 1 → F ull 

encour- 

ges consistency between the outputs when given only T or the 
1 

5 
ull set of modalities as input. This latter term allows for transfer- 

ing the knowledge learnt on the T 1 scan to the full set of modali-

ies. 

An empirical estimation of R 

T 
T 1 → F ull 

can be obtained by compar- 

ng the network outputs using either T 1 or the full set of modal- 

ties as input. In contrast, R 

T 
T 1 

requires comparison of inference 

one, under D lesion , from T 1 inputs with ground truth tissue maps 

 

T . While this provides a step towards a practical evaluation of R 

T ,

e still face the challenge of not having tissue annotations y T un- 

er D lesion . 

.3. Estimating R 

T 
T 1 

using the control dataset 

To estimate R 

T 
T 1 

, we assume that the neural network h θ is in- 

ariant to a potential domain shift between the T 1 scans of the con- 

rol and lesion datasets on the non-lesion regions. Specifically, we 

ssume that the restriction of the feature distributions (rather than 

he image intensity distributions) over D lesion and D control to the 

on-lesion parts of the brain (i.e. the voxels i such that y i ∈ C T )
re comparable, i.e.: 

 D lesion 
(h θ (x T 1 ) i , y i | y i ∈ C T ) = P D control 

(h θ (x T 1 ) i , y i | y i ∈ C T ) (H 4 )

This means that the neural network h θ generates similar out- 

uts on the non-lesion parts of the brain between the two 

atasets, leading to: 

 

T 
T 1 

= E D lesion 
[ L 

T (h θ (x T 1 ) , y T )] = E D control 
[ L 

T (h θ (x T 1 ) , y T )] (8)

onsequently, under (H 4 ) , R 

T 
T 1 

can be estimated using the 

 1 scans and their tissue annotations in the control dataset. Sec- 

ion 5 presents means of ensuring that assumption (H 4 ) is satis- 

ed even in the presence of domain shift in the image intensity 

istributions. 

.4. Summary of the expected risk decomposition 

Bringing all the terms together, given (3), (7) and (8) , we seek 

he parameters θ ∗ that optimise the tractable upper bound R seg of 

he (intractable) expected risk: 

∗ = argmin θ

{
R seg = E D control 

[ L 

T (h θ (x T 1 ) , y T )] 

+ E D lesion 
[ L 

L (h θ (x ) , y L ) + L 

T (h θ (x ) , h θ (x T 1 ))] 
}

(9) 

. Matching feature distributions across datasets 

In this section, we explore different approaches that ensure the 

eature distributions extracted from the control and lesion T 1 scans 

re comparable, i.e. we want to satisfy (H 4 ) even in the presence 

f domain shift. 

.1. Similar acquisition protocols for the control and lesion datasets 

Let’s first assume that the acquisition protocols are similar for 

he control and lesion datasets, i.e. they are not domain-shifted. 

pecifically, we assume that the T 1 images have been acquired with 

imilar sequences, spacial resolution and field strength. In this 

ase, similar to Chen and Konukoglu (2018) , the restriction of the 

istributions D lesion and D control to the non-lesion parts of the brain 

an be assumed to be the same on the T 1 scans, i.e.: 

 D lesion 
(x T 1 

i 
, y i | y i ∈ C T ) = P D control 

(x T 1 
i 

, y i | y i ∈ C T ) (10)

In the absence of domain shift, we can reasonably assume that 

he network produces similar outputs on the non-lesion parts of 

he brain for the two distributions, i.e. that (H 4 ) is satisfied. No 

pecific additional action thus needs to be implemented. 
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.2. Generating pseudo-healthy scans to learn tissue segmentation 

rom domain-shifted T 1 scans 

Let’s now consider the presence of a domain shift between the 

 1 control and lesion scans due to different acquisition protocols. 

n this section, we propose to synthesise pseudo-healthy scans 

rom domain-shifted T 1 lesion scans in order to extend the con- 

rol dataset with control scans associated to the protocol of acqui- 

ition of the lesion dataset. Since the control and lesion datasets 

re domain-shifted, existing lesion removal approaches, based ei- 

her on CycleGANs ( Xia et al., 2019; Sun et al., 2018 ) or Variational

utoencoders ( Chen and Konukoglu, 2018 ), are not adapted as they 

equire training data with no domain shift beyond the presence of 

bsence of pathology. 

To tackle the presence of an acquisition-related domain shift, 

e propose to generate pseudo-healthy scans and their annota- 

ions using traditional image computing techniques that are in- 

erently robust to different acquisition protocols. For example, for 

hite matter lesions, lesion filling methods allow for transform- 

ng scans with lesions into pseudo-healthy scans ( Valverde et al., 

014; Prados et al., 2016 ). For large and unilateral pathology, we 

ropose to synthesise pseudo-healthy T 1 scans by symmetrising 

he ”healthy” hemisphere of the patients with lesions located in 

ne hemisphere only. The inter-hemispheric symmetry plane is 

stimated via the technique described in Prima et al. (2002) . Fi- 

ally, the ”healthy” hemisphere of those patients is mirrored in or- 

er to create a symmetric pseudo-healthy brain. Having generated 

seudo-healthy images, traditional methods, designed for control 

cans, such as the GIF framework ( Cardoso et al., 2015 ), can then

e employed to generate the corresponding bronze standard tissue 

nnotations. 

With this set of scans S 
T 1 
pseudo 

, we have access to a pseudo-control 

ataset acquired with a similar protocol as in the lesion dataset 

nd similar on the non-lesion part of the brain, and thus are in 

he scenario described in 5.1 . Let denote D 

T 1 
pseudo 

the distribution 

f those scans. The expected tissue risk R 

T 
T 1 

is then equal to the 

xpect tissue risk under D 

T 1 
pseudo 

: 

 

T 
T 1 

= E D lesion 
[ L 

T (h θ (x T 1 ) , y T )] = E D T 1 
pseudo 

[ L 

T (h θ (x T 1 ) , y T )] (11)

o take advantage of the manual annotations in the control dataset, 

e resort to averaging the two formulations ( 8,11 ): 

 

T 
T 1 

≈
E D control 

[ L 

T (h θ (x T 1 ) , y T )] + E D T 1 
pseudo 

[ L 

T (h θ (x T 1 ) , y T )] 

2 

(12) 

onsequently, the expected tissue risk R 

T 
T 1 

can be estimated using 

he control and pseudo-control T 1 scans. 

.3. Alternative unsupervised DA techniques 

In order to satisfy (H 4 ) , the feature representation of the non- 

esion parts of the brain has to be invariant to the changes induced 

y the different protocols. A direct way to align the feature distri- 

utions restricted to the non-lesion parts would be to match the 

epresentations of pairs of scans acquired with the different set- 

ings. However, in our scenario, we do not have access to such 

airs of domain-shifted scans. 

In contrast, unsupervised DA allows to perform domain adapta- 

ion using unpaired and non-annotated domain-shifted scans. Un- 

upervised DA techniques commonly introduce an additional term 

 R DA ) that encourages the network to be invariant to the domain 

hift. Then, the total expected risk reads: 

 total = R seg + λR DA (13) 

here λ is a hyper-parameter that allows for balancing the seg- 

entation risk R seg ( (9) ) with the DA regularisation R DA . 
6 
The definition of the DA term depends on the DA technique. In 

his work, two common unsupervised DA methods are considered, 

ased either on data augmentation or adversarial learning. 

.3.1. Unsupervised DA via physically-inspired data augmentation 

Since T 1 scans play a key role for structure analysis, we expect 

igh-resolution T 1 scans for datasets developed in the scope of tis- 

ue segmentation, such as the control dataset. Conversely, T 1 scans 

re often less critical for lesion segmentation and T 1 scans may 

ave been acquired with a lower resolution. 

Let’s assume that, less effort has been done to acquire high- 

esolution T 1 lesion scans, explaining the differences in acquisition 

rotocols. Specifically, we assume that the domain shift is caused 

y the presence of T 1 lesion scans with artefacts (e.g. related to the 

R bias field or the presence of motion artefacts) and a lower 

cquisition resolution. We additionally assume that differences of 

canner characteristics (manufacturer, field strength) are excluded. 

Then, physically-informed augmentation such as random bias 

eld ( Sudre et al., 2017 ) and motion artefacts ( Shaw et al., 2019 )

nd spacial smoothing can be employed to generate scans that 

re similar to the T 1 lesion scans. Let denote T ψ 

the composi- 

ion of these transformations parametrised by the parameters ψ ∼
 ψ 

. For any T 1 control scan x 
T 1 
c , we can thus generate an aug-

ented version T φ(x 
T 1 
c ) , i.e. getting access to pairs of domain- 

hifted T 1 scans. This allows to minimise the discrepancy between 

he feature representations learnt by the neural network across the 

wo domains by enforcing consistency across outputs from paired 

omain-shifted inputs, i.e.: 

 DA = E D ψ E D control 

[
L 

T 
(
h θ (x T 1 c ) , h θ ◦ T φ(x T 1 c ) 

)]
(14) 

n empirical estimation of the DA regularisation term R DA is ob- 

ained by comparing the network outputs using the T 1 control scans 

nd their augmented versions as input. 

Consequently, if the domain shift is due to different spatial res- 

lutions and the presence of the aforementioned artefacts, the net- 

ork can be trained to be invariant to the domain shift, i.e. to sat- 

sfy (H 4 ) . 

.3.2. Unsupervised DA via adversarial learning 

Let’s now assume that the domain shift cannot easily be sim- 

lated. In this case, we can use adversarial learning. Adversarial 

pproaches for domain adaptation can be seen as a two-player 

ame: A discriminator D φ , parametrised by the weights φ ∈ �, is 

rained to distinguish the source domain features from the target 

omain features, while the segmentation network h θ is simultane- 

usly trained to confuse the domain discriminator. 

The discriminator aims to predict the probability that extracted 

eatures are part of the lesion feature distributions. The discrimina- 

or accuracy can thus be seen as a measurement of the discrepancy 

etween the lesion and control feature distributions and used as a 

A regularisation term: 

 DA (φ, θ ) = E D lesion 
[1 − D φ(h θ (x ))] + E D control 

[ D φ(h θ (x ))] (15)

his DA term can be estimated by using features extracted from 

 1 control and lesion scans as input of the discriminator. 

The following proposition shows that the discriminator accu- 

acy is a principled measurement of the feature distribution dis- 

repancy: 

roposition 1. Let assume that L satisfies the triangle inequality and 

s bounded. Let us also assume that the family of domain discrimina- 

ors H � = { D φ} φ∈ � is rich enough. Then there is a constant K such

hat: 

 D lesion 
[ L ( h θ (x ) , y ) ] ≤ R seg + K sup 

φ

R DA (φ, θ ) + ε(�) (16) 
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Fig. 3. The training procedure using samples from the control and lesion datasets. The different elements of the decomposed loss upper bound are computed and minimised 

at each training iteration. The same network is used for all the different hetero-modal inputs. Note that domain adaptation is not represented. 
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here ε( �) is independent of the network parameters θ and corre- 

ponds to the accuracy of the best (and unknown) segmenter in the 

amily of functions parametrised in �. 

roof. The proof uses (3) , (7) , is based on Ben-David et al. (2010) and

ong et al. (2018) and detailed in Appendix B . �

(16) shows that the intractable expected loss is bounded by a 

eighted sum of the tractable segmentation risk (9) and the accu- 

acy of the best discriminator, up to a constant w.r.t the network 

arameters. 

Moreover, the alternative optimisation strategy can be seen as a 

ay to estimate the best discriminator while minimising the upper 

ound defined in (16) . 

Note that (16) stands for features extracted at any level of h θ . 

n this work and similarly to Orbes-Arteaga et al. (2019) , the con- 

racting path features from the U-Net are used as input of the dis- 

riminator. 

. Implementation of the joint model optimisation 

Given the formulation of the joint model and our proposed 

omputationally tractable decomposition, we present in this sec- 

ion the implementation of our framework. 

.1. Stochastic optimisation of the joint model 

We use a stochastic gradient descent approach to minimise the 

xpected risk decomposition (9) and to enforce the network to be 

nvariant to a potential domain shift between the datasets. The to- 

al loss function reads: 

 total = L seg + λL DA (17) 

here λ is a hyper-parameter that allows for balancing the seg- 

entation loss L seg (associated to R seg ) with the domain adapta- 

ion loss L DA (associated to R DA ). Fig. 3 shows the training proce- 

ure without DA. The weights of the segmentation loss are given 

y the decomposition of the problem. The domain adaptation pa- 

ameter λ is a hyper-parameter that is experimentally chosen. 

At each training iteration, we draw pairs of samples (x l , y 
L 
l 
) 

nd (x 
T 1 
c , y 

T 
c ) from S lesion and S control and compute in each mini- 

atch the following loss functions and associated gradient. Note 

hat there is no natural pairing between (x l , y 
L 
l 
) and (x 

T 1 
c , y 

T 
c ) . Our

aired sampling procedure thus exploits random pairing. 

As presented in Section 5 , different scenarios are considered. 
7 
Similar acquisition protocols If the datasets are not domain- 

hifted, no DA is required ( λ = 0) , and the segmentation loss is: 

 seg = L 

L 
(
h θ (x l ) , y 

L 
l 

)
+ L 

T 
(
h θ (x l ) , h θ (x T 1 

l 
) 
)

+ L 

T 
(
h θ (x T 1 c ) , y 

T 
c 

)
(18) 

e experimentally found that the inter-modality tissue loss 

 

T 
T 1 → F ull 

has to be skipped for few epochs (50 in our experiments). 

Pseudo-healthy generation Given a pseudo-healthy annotated 

et of scans S T 1 
pseudo 

= { x T 1 
pseudo 

, y T 
pseudo 

} , no DA is employed ( λ = 0) ,

nd the segmentation loss, defined by (12) , is: 

 seg = L 

L 
(
h θ (x l ) , y 

L 
l 

)
+ L 

T 
(
h θ (x l ) , h θ (x T 1 

l 
) 
)

+ 

1 

2 

[
L 

T 
(
h θ (x T 1 

pseudo 
) , y T pseudo 

)
+ L 

T 
(
h θ (x T 1 c ) , y 

T 
c 

)]
(19) 

DA via augmentation If we assume that the differences of pro- 

ocols can be simulated (random bias field, motion artefacts and 

patial smoothing), the domain invariance (14) is learnt by min- 

mising the inter-domain feature discrepancy defined as: 

 DA = L 

T 
(
h θ (x T 1 c ) , h θ (T φ(x T 1 c )) 

)

here T φ corresponds to a composition of theses transformations. 

he segmentation loss L seg is the same as in (18) . 

DA via adversarial learning If adversarial learning is employed, 

 discriminator D is trained to discriminate scans from the two do- 

ains by maximising the domain classification accuracy. For com- 

utational stability, the L 1 distance defined in (15) has been re- 

laced by the cross-entropy. Conversely, the segmenter h θ is train 

o minimise this domain classification accuracy, i.e.: 

 DA = log (D ψ 

(h θ (x T 1 c )) + log (1 − D ψ 

(h θ (x T 1 
l 
)) 

s in Kamnitsas et al. (2017) ; Orbes-Arteaga et al. (2019) , the DA 

oss is skipped for few epochs (20 in our experiments) in order to 

nitialise the discriminator. The segmentation loss L seg is the same 

s in (18) . 

.2. Implementation details 

We implemented our network in PyTorch, using TorchIO ( Pérez- 

arcía et al., 2020 ). Codes are available at http://github.com/ 

eubenDo/jSTABL . 

Convolutional layers are initialised such as proposed in 

e et al. (2015) . The scaling and shifting parameters in the batch 

ormalisation layers were initialised to 1 and 0 respectively. As 

uggested by Ulyanov et al. (2016) , we used instance normalisation. 

e used the same discriminator as in Orbes-Arteaga et al. (2019) . 

http://github.com/ReubenDo/jSTABL
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Table 1 

Summary of data characteristics for white matter lesion segmentation. 

Control data Lesion data Fully anno. data 

OASIS1 ADNI2 WMH-Utrech WMH-Singapore WMH-Amsterdam MRBrainS18 

( Marcus et al., 2007 ) ( Jack Jr. et al., 2008 ) ( Kuijf et al., 2019 ) ( Kuijf and Bennink, 2018 ) 

Sequences 3D MP-RAGE T 1 3D MP-RAGE T 1 3D MP-RAGE T 1 3D MP-RAGE T 1 3D MP-RAGE T 1 MP-RAGE 3D T 1 
× × 2D FLAIR 2D FLAIR 3D FLAIR 2D FLAIR 

MRI scanner Siemens Vision Various Philips Achieva Siemens TrioTim GE Signa HDxt Philips Achieva 

Field Strengh 1.5T 3T 3T 3T 3T 3T 

Voxel size (mm 

3 ) 1.00 × 1.00 × 1.00 1.20 × 1.05 × 1.05 0.96 × 0.95 × 3.00 1.00 × 1.00 × 3.00 1.20 × 0.98 × 3.00 0.96 × 0.96 × 3.00 

Annotations 143 structures 143 structures WMH WMH WMH 6 Tissues + WMH+CSF 

# scans available 35 25 20 20 20 30 (7 available) 

Training data in: Tissue + jSTABL Tissue + jSTABL Lesion + jSTABL Lesion + jSTABL Lesion + jSTABL Fully 
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We performed a 3-fold cross validation. For each fold, we 

andomly split the data into 70% for training, 10% for validation 

nd 20% for testing. We used a batch of 2 lesion scans, and 

 control scans. Note that, for the DA approach based on data 

ugmentation, the batch of 2 control scans consists in a pair of 

on-augmented/augmented control scans. As a data augmentation, 

 rotation with a random angle in [ −10 ◦, 10 ◦] and a random

aussian noise are employed. The network was trained using 

dam optimiser ( Kingma and Ba, 2015 ) the learning rates l R , β1 ,

2 were initially respectively set up to 5 . 10 −4 , 0.9 and 0.999. l R 
as progressively reduced by a factor of 2 every 10,0 0 0 itera- 

ions. We employed the training strategy used for the nnU-Net 

 Isensee et al., 2019 ): The learning rate is reduced by a factor

 after 15 epochs without reduction of the exponential moving 

verage of the loss on the validation split. 

We used the probabilistic version of the multi-class Jaccard dis- 

ance (5) as the segmentation loss function. In order to give the 

ame weight to the lesion segmentation and the tissue segmenta- 

ion, we choose ω such that 

∑ 

∈C tissue 

ω c = 

∑ 

c ′ ∈C lesion 

ω c ′ = 

1 

2 

. 

. Experiments and results 

.1. Joint white matter lesion and tissue segmentation 

.1.1. Task and datasets 

In this first set of experiments, we focus on the segmentation 

f white matter lesions and six tissue classes (white matter, grey 

atter, basal ganglia, ventricles, cerebellum, brainstem), as well as 

he background. As detailed in Table 1 , we used 2 control datasets 

nd 2 lesion datasets: 

• Lesion data S lesion : The White Matter Hyperintensities (WMH) 

training database ( Kuijf et al., 2019 ) consists of 60 sets of brain

MR images (T 1 and FLAIR, M = 2 ) with manual annotations of 

WMHs. The data comes from three different institutes. Note 

that images modalities are be co-registered and resampled in 

the FLAIR coordinate space. 
• Tissue data S control : Consists of 35 T 1 scans ( M 

′ = 1) from the

OASIS project ( Marcus et al., 2007 ) with annotations of 143 

structures of the brain provided by Neuromorphometrics, Inc. 

( http://Neuromorphometrics.com/ ) under academic subscrip- 

tion. From the 143 structures, we deduct the 6 tissue classes. 

In order to have balanced training datasets between the two 

datasets, to include data acquired at the same field strength 

(3T) as the lesion data, and similar to Li et al. (2017) , we added

25 T 1 control scans from the Alzheimer’s Disease Neuroimaging 

Initiative 2 (ADNI-2) database ( Jack Jr. et al. (2008) , adni.loni. 

usc.edu ) with bronze standard parcellation of the brain struc- 

tures computed with the accurate but time-consuming algo- 

rithm of Cardoso et al. (2015) . 
8 
• Fully annotated data S fully : MRBrainS18 ( http://mrbrains18.isi. 

uu.nl/ ) is composed of 30 sets of brain MR images with tissue 

and lesion manual annotations. 7 scans are publicly available 

for training and validation. Although the cerebrospinal fluid 

(CSF) has been annotated in MRBrainS18, it was considered as 

background to have the same set of tissue classes as in S control 

where the CSF was not labelled. Note that image modalities are 

be co-registered and resampled in the FLAIR coordinate space. 

.1.2. Similar acquisition protocol for the T 1 scans 

Despite the differences in scanners, all T 1 acquisitions across the 

atasets followed very similar protocols (MP-RAGE) (see Table 1 ). 

herefore, they were considered as following a similar distribution 

nd the data was only pre-processed as follows. 

• Skull stripping: All the scans were skull-stripped using ROBEX 

( Iglesias et al., 2011 ). 
• Resampling: All the scans in S control are resampled into the 

transversal direction with slices of 3 mm thickness to obtain 

a similar spacing 1 × 1 × 3 mm 

3 in the datasets. 
• Intensity normalisation: We used a zero-mean unit-variance 

normalisation in order to match the intensity distributions. 

.1.3. Description of the compared models 

We considered three different models in our experiments. 

• Pipeline model ( Pipeline ): This model corresponds to the com- 

bination of two task-specific models: 

A Tissue segmentation model that only performs tissue segmen- 

tation and is trained on the T 1 scans from the dataset with tis- 

sue annotations S control . 

A Lesion model that only performs lesion segmentation and is 

trained using the T 1 and FLAIR scans from the dataset with le- 

sion annotations S lesion . 

The two models are combined such that the predicted lesion 

mask has the priority over the predicted tissue mask. Conse- 

quently, the background of the Lesion output is replaced by the 

Tissue output. 
• Fully-supervised model ( Fully-Sup ): This joint model performs 

tissue and lesion segmentation and is trained using the T 1 and 

FLAIR scans from the small fully-annotated dataset S fully . 
• Proposed joint model ( jSTABL ): Our proposed model for joint 

Segmentation of Tissues and Brain Lesions is trained using both 

the T 1 scans from S control with the tissue annotations and the 

T 1 and FLAIR scans from S lesion with the lesion annotations. 

Each model used the architecture presented in Fig. 2 . Conse- 

uently, the Pipeline model has twice as many parameters as the 

ther models. 

In this set of experiments, the skull-stripped images are first 

ropped to remove the blank spaces and then padded to size of 

144,192,48). 

http://Neuromorphometrics.com/
http://adni.loni.usc.edu
http://mrbrains18.isi.uu.nl/
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Table 2 

Evaluation of our framework (jSTABL) on patients with White Matter Lesion in comparison with baseline methods. We report means and standard deviations 

for Dice scores. Means only are reported in the online leader-board, leading to missing standard deviations. 

Classes OASIS1 + ADNI2 WMH MRBrainS18 

Tissue Fully-Sup jSTABL Pipeline Fully-Sup jSTABL SPM Pipeline Fully-Sup jSTABL 

Grey matter 88.3 (3.4) 81.6 (2.5) 88.3 (3.4) 88.3 (2.1) 85.4 (2.7) 88.8 (2.1) 76.5 82.3 83.7 82.2 

White mater 92.8 (2.3) 83.3 (2.6) 92.3 (2.7) 92.1 (1.8) 85.4 (2.6) 92.4 (1.5) 75.7 85.0 85.7 85.6 

Brainstem 93.5 (1.0) 71.7 (2.7) 93.0 (0.9) 93.6 (1.0) 77.1 (2.4) 94.2 (0.9) 76.5 72.8 85.0 73.3 

Basal ganglia 89.5 (3.0) 69.6 (4.1) 88.4 (2.7) 86.3 (4.3) 74.2 (2.0) 85.1 (3.4) 74.7 77.4 79.7 78.0 

Ventricles 90.3 (4.3) 70.5 (18.0) 90.6 (3.8) 94.7 (2.3) 92.1 (4.2) 95.7 (1.4) 80.9 91.8 92.2 92.9 

Cerebellum 95.0 (1.2) 92.0 (1.4) 94.9 (1.1) 95.7 (1.0) 93.8 (2.0) 96.0 (0.9) 89.4 89.2 93.2 90.4 

White matter Lesion 77.4 (9.6) 60.1 (19.1) 77.6 (9.2) 40.8 58.4 56.2 59.4 

Table 3 

Evaluation of our framework (jSTABL) on patients with White Matter Lesion in comparison with baseline methods. We report means and standard 

deviations for 95th-percentile Hausdorff distances. Means only are reported in the online leader-board, leading to missing standard deviations. 

Classes OASIS1 + ADNI2 WMH MRBrainS18 

Tissue Fully-Sup jSTABL Pipeline Fully-Sup jSTABL SPM Pipeline Fully-Sup jSTABL 

Grey matter 1.3 (0.4) 2.0 (0.4) 1.4 (0.5) 1.2 (0.2) 1.3 (0.3) 1.1 (0.2) 2.9 1.9 1.9 2.1 

White mater 1.2 (0.5) 3.0 (0.1) 1.2 (0.5) 1.1 (0.2) 2.0 (0.3) 1.1 (0.1) 4.9 3.2 2.9 3.2 

Brainstem 1.4 (0.4) 10.5 (2.3) 1.7 (0.4) 1.7 (0.4) 8.8 (2.2) 1.3 (0.4) 25.3 11.6 6.65 11.6 

Basal ganglia 1.8 (0.5) 4.9 (0.8) 2.1 (0.3) 2.0 (0.6) 3.6 (0.4) 2.5 (0.3) 7.1 4.3 4.3 4.0 

Ventricles 1.9 (2.5) 20.4 (12.2) 1.8 (2.5) 1.4 (1.2) 5.1 (10.5) 1.0 (0.1) 5.8 3.2 3.0 2.9 

Cerebellum 2.3 (0.6) 3.3 (0.4) 2.4 (0.6) 1.8 (0.7) 3.2 (1.7) 1.8 (0.6) 4.3 5.1 3.7 4.8 

White matter Lesion 4.6 (3.8) 11.0 (9.4) 4.2 (3.6) 25.3 10.2 13.3 7.2 
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.1.4. Method for assessing the models 

The performance of the three models was evaluated on the 

hree datasets using Dice Score and 95% Hausdorff distance. On the 

ontrol data (OASIS1+ADNI2) and WMH, scores were computed on 

he testing splits, while on MRBrainS18, models were submitted to 

he challenge MRBrainS18. 

For the control data (OASIS1+ADNI2) and MRBrainS18, the full 

et of annotations allows a direct assessment of the tissue and 

he lesion segmentation performance. For WMH, only the lesion 

nnotations are provided. In order to assess both the tissue and 

esion segmentation on WMH, the lesions are filled as normal- 

ppearing white matter on T 1 images using the method described 

n Prados et al. (2016) and implemented in NiftySeg ( Cardoso et al., 

015 ). Then, GIF framework ( Cardoso et al., 2015 ) was performed 

n the modified T 1 scans to obtain bronze standard tissue annota- 

ions. The tissue mask and lesion annotations were then merged 

y completing the non-lesion parts with the tissue mask. Finally, 

he model outputs are compared to the merged tissue and lesion 

asks. In the end, for each model and each dataset, we can assess 

he performance of tissue and lesion segmentation. 

Given that participants to the MRBrainS18 challenge do not 

ave access to the held-out evaluation data set and that the Jac- 

ard score is not provided by the challenge organisers, only the 

ice Similarity Coefficient (DSC) and 95th-percentile Hausdorff dis- 

ance are reported for each class. 

.1.5. Results 

The main results are shown in Table 2 for the Dice Similarly Co- 

fficient and in Table 3 for the 95th-percentile Hausdorff distance. 

Firstly, our proposed method ( jSTABL ) achieves comparable per- 

ormance to the single-task models on the control data ( Tissue ) and 

n WMH (priority of Lesion in Pipeline ). This suggests that learning 

rom hetero-modal datasets via our method does not degrade the 

erformance on the tasks characterising the task-specific datasets. 

Secondly, jSTABL slightly outperforms Pipeline on segmenting 

he tissues in WMH for the two sets of metrics. This shows that 

he tissue knowledge learnt from T 1 scans has been well gener- 

lised to multi-modal scans. Although we could have expected that 

he presence of lesions would create perturbations for the Tissue 

odel, this latter model in fact ignores the lesions and mostly 
9 
lassifies them as white matter. Given that the white matter le- 

ions are usually surrounded by white matter, the Pipeline predic- 

ions are consequently not too degraded. However, some artefacts 

round the lesions in the Pipeline outputs can be observed, in par- 

icular in the ventricles for patients with large lesions surrounding 

hem. Fig. 4 (a) shows an example for which parts of the ventricles 

re classified as background. In contrast, we did not observe such 

rtefacts with jSTABL predictions. 

Thirdly, jSTABL outperforms the fully-supervised model ( Fully- 

up ) on the control data (OASIS1+ADNI2) and WMH, while reach- 

ng comparable performance on MRBrainS18. This demonstrates 

he two main advantages of our method. First, without using 

ny fully-annotated data, our model performs as well as a fully- 

upervised model that could be considered as an upper bound 

or our method, especially when the testing and training splits 

re from the same dataset (MRBrainS18). Secondly, our method 

akes advantage of large task-specific datasets: Unlike the fully- 

upervised model ( Fully-Sup ), jSTABL generalises well on unseen 

ata (MRBrainS18). While the fully-supervised model ( Fully-Sup ) 

ails to segment scans from OASIS1, ADNI2 and WMH, the jSTABL 

odel obtains relatively good performance on all the datasets we 

se for tissue and lesion segmentation. In particular, jSTABL out- 

erforms SPM on 6 of the 7 classes. In fact, the only class that 

s significantly underperformed compared to the fully-supervised 

odel ( Fully-Sup ) is the brain stem. This is due to observed differ- 

nces in the annotation protocol across the control and MRBrainS 

atasets. Fig. 5 shows these differences and the consequences on 

he prediction. 

.2. Glioma and tissue segmentation 

.2.1. Task and datasets 

Additionally, we assess our framework on another main types of 

rain lesions: Gliomas. Our goal is to segment the 6 tissue classes 

nd three tumour classes (whole tumour, core tumour, enhancing 

umour). In this case, domain adaptation was required and its eval- 

ation is the focus of this section. We used two sets of data in 

hese experiments. 
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Fig. 4. Examples of output for the different models: Pipeline; Fully-sup; jSTABL ; and the combination of the manual annotation and GIF. (a) Tissue model used in Pipeline can 

be perturbed by the presence of lesions (arrow). (b) Example for which the fully-supervised model largely fails to segment the tissue and the lesions. 

Fig. 5. Comparison of the brainstem annotations by Neuromorphometrics and in MRBrainS18 and between the outputs of the Fully-Sup and jSTABL models. Arrows show the 

annotations protocol differences. 
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• Tissue data S control : again we used OASIS1 data and the same 

25 T 1 control scans from ADNI2 with tissue annotations as pre- 

sented in section 7.1.1 . 
• Lesion data S lesion : We evaluate our method on the training set 

of BraTS18 ( Menze et al., 2015; Bakas et al., 0 0 0 0 ) which con-

tains the scans of 285 patients, 210 with high grade glioma and 

75 with low grade glioma. 129 patients have a tumour located 

in one hemisphere only. Four scans (T 1 , T 1 c, T 2 and FLAIR) have

been acquired for each patient and pre-processed by the or- 

ganisers: Co-registration, skull-stripping and re-sampling to an 

isotropic 1mm resolution. Manual annotations include three tu- 

mour labels: 1) Necrotic core and non-enhancing tumour; 2) 

oedema; and 3) enhancing core. 

The acquisition protocols of the T 1 scans in the two datasets 

re inconsistent. Specifically, MP-RAGE was used for the tissue 

ata S control , while we observed other protocols such as fast spin 

cho (SE) for S lesion . Note that the detailled acquisition settings for 

 lesion are not publicly available. 

.2.2. Description of the compared models 

In order to evaluate our framework with and without the do- 

ain adaptation (DA) component, different models are considered, 

s presented in 5 . 

• Pipeline model ( Pipeline ) : This model corresponds to the com- 

bination of two task-specific models: 
10 
A Tissue segmentation model that only performs tissue segmen- 

tation and is trained on the T 1 scans from the dataset with tis- 

sue annotations S control . 

A Lesion model that only performs lesion segmentation and is 

trained using the T 1 , T 1 c, T 2 and FLAIR scans from the dataset

with lesion annotations S lesion . 
• Proposed joint model without DA ( jSTABL ) : Our joint Segmen- 

tation Tissue And Brain Lesion model is trained using our train- 

ing procedure without domain adaptation, tissue segmentation 

is learned from the T 1 scans in S control . 
• jSTABL + data augmentation ( jSTABL+Augm ) : Corresponds to 

our jSTABL model with DA based on data augmentation. 
• jSTABL + adversarial DA ( jSTABL+Adv ) : Corresponds to our 

jSTABL model with DA based on adversarial learning. 
• jSTABL + 5 synthetic control scans ( jSTABL+5 ) : Corresponds to 

our jSTABL model with only 5 additional pseudo-healthy scans. 
• jSTABL + 90 synthetic control scans ( jSTABL+90 ) : Corresponds 

to our jSTABL model with 90 additional pseudo-healthy scans. 

Note that the pseudo-healthy scans used for training were gen- 

rated from the training lesion scans to avoid introducing bias at 

esting stage. 

In this set of experiments, the skull-stripped images are first 

ropped to remove the blank spaces and then random patches of 

ize (112,112,112) are fed to the network. 
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Fig. 6. Examples of multi-modal outputs shown on T 1 scans from BraTS18 for the different models: Pipeline, jSTABL, jSTABL+Augm, jSTABL+Adv, jSTABL+5, jSTABL+90 and Les. 

Ann. + GIF pipeline. Scans with different resolutions, contrasts and grades (High Grade for (a) and (b), Low Grade for (c)) are presented. 
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.2.3. Method for assessing the models 

While the evaluation of the tumour segmentation on BraTS18 

nd the tissue segmentation on the control data (OASIS1+ADNI2) 

s straightforward using the manual annotations, the tissue seg- 

entation performance cannot be assessed on BraTS18 due to the 

issing tissue annotations. For this reason we propose two meth- 

ds to assess quantitatively and qualitatively the tissue segmenta- 

ion on BraTS18. 

Quantitative assessment using the symmetrised data Firstly, we 

ropose to use the 129 patients from BraTS18 with a tumour 

ocated in one side to generate 129 pseudo-healthy symmetrised 

ata with the bronze standard tissue annotations from GIF as 

round truth. Examples are shown in Fig. C.9 . By computing the 

ice Score Coefficient between the predictions on the symmetrised 

raTS18 data and the bronze standard ground truth, we quanti- 

atively evaluate our model on the pseudo-healthy hemisphere of 

raTS18 samples. 

Qualitative assessment on anatomical landmarks Secondly, in or- 

er to assess the accuracy of the models on the tissues surround- 

ng the tumour, we propose a new qualitative protocol. This pro- 

ocol is based on the Alberta Stroke Program Early CT Score (AS- 

ECTS) which was originally proposed to assess early ischaemic 

erebral changes on CT or MRI scans ( Barber et al., 20 0 0 ). The

troke scores are obtained by assessing the integrity of 10 anatom- 

cal landmarks as shown on 8 . Scores and associated template are 

ommonly used in clinical practice. 
11 
The landmarks were chosen because they are easily identifiable, 

eliable amongst readers and capture a large cerebral coverage. The 

andmarks include or delineate our tissue classes of interest: Grey 

atter; white matter; basal ganglia; and ventricles. Instead of eval- 

ating loss of clarity of landmarks due to ischemia we evaluated 

oss of clarity of landmarks due to incorrect tissue predictions. Un- 

ike ASPECTS, which excludes infratentorial structures which are 

ifficult to evaluate on CT, we added the brainstem and the cere- 

ellum as two additional landmarks for a total of 12 anatomical 

andmarks. We named our assessment method Anatomy ASPECTS+. 

or each landmark, 3 scores are possible: 0 = anatomy inaccurate; 

.5 = anatomy mostly accurate; and 1 = anatomy highly accu- 

ate. Anatomical landmarks that were infiltrated with substantial 

umour were excluded. 

For our experiments, we randomly drew 20 patients from the 

esting sets of BraTS18 and two senior neuro-radiologists inde- 

endently evaluated the quality of the predictions using Anatomy 

SPECTS+ for 4 methods: 1) Les. Ann. + GIF pipeline that uses 

he tumour annotations and tissue segmentation obtained by GIF 

hile the tumour is masked; 2) Pipeline ; 2) jSTABL ; 3) jSTABL+5 ; 4)

STABL+10 . The neuro-radiologists assessed blindly the 4 methods, 

n a randomised order, for the 20 patients. 

.2.4. Results 

Table 4 shows the DSC for the 6 tissue classes and the three 

umour classes on BraTs18. 
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Table 4 

Evaluation of our framework (jSTABL) on patients with gliomas in comparison to baseline methods. We report means and 

standard deviations for Dice scores. Metrics were computed on the BraTS 2018 validation dataset. 

Models w/o DA w/ DA w/ pseudo-healthy gen. 

Pipeline jSTABL jSTABL + Adv jSTABL + Augm jSTABL + 5 jSTABL + 90 

Grey Matter 76.1 (8.4) 79.1 (5.2) 81.1 (4.6) 82.8 (4.7) 88.3 (3.9) 88.8 (4.0) 

White Matter 85.4 (5.7) 87.0 (4.4) 88.1 (4.4) 90.3 (2.8) 93.1 (2.5) 93.3 (2.6) 

Brainstem 81.5 (17.6) 92.4 (2.5) 92.6 (1.9) 92.4 (2.0) 94.9 (1.4) 95.5 (1.5) 

Basal Ganglia 72.7 (20.1) 73.1 (7.3) 77.7 (7.1) 84.7 (5.1) 89.7 (3.5) 90.5 (3.2) 

Ventricles 75.0 (26.9) 91.8 (6.4) 92.5 (4.5) 93.4 (4.4) 94.7 (4.2) 95.1 (3.8) 

Cerebellum 86.5 (11.3) 93.2 (4.6) 93.7 (3.5) 94.0 (2.4) 94.7 (4.5) 95.1 (2.9) 

Whole Tumour 87.9 (8.7) 88.1 (6.7) 87.7 (8.1) 88.3 (9.0) 88.2 (8.1) 88.1 (9.4) 

Core Tumour 78.6 (20.5) 79.1 (19.6) 79.5 (18.9) 80.4 (18.6) 80.5 (18.1) 80.9 (17.9) 

Enhancing Tumour 69.9 (29.1) 70.0 (28.6) 70.0 (28.9) 71.4 (27.7) 70.3 (28.8) 71.0 (28.3) 

Fig. 7. Comparison of our method (jSTABL) with the GIF framework using the proposed Anatomy ASPECTS+ qualitative assessment methodology. BR = Brainstem, C = 

Caudate, CE = Cerebellum, I = Insula, IC = Internal Capsule, L = Lentiform Nucleus, M1 = Frontal operculum, M2 = Anterior temporal lobe, M3 = Posterior temporal lobe, 

M4 = Anterior MCA, M5 = Lateral MCA, M6 = Posterior MCA. 
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Firstly, jSTABL model outperforms Pipeline on tissue segmenta- 

ion. We observed that the presence of a large tumour creates 

ajor perturbations for the Tissue model. For example, we found 

amples for which the tumour and the surrounding tissues were 

artially classified as cerebellum, even though the tumour was far 

rom the cerebellum, as shown in Fig. 6 . In contrast, such artefacts 

ere not observed for jSTABL model, demonstrating again advan- 

ages of our method compared to a simpler Pipeline approach. 

Secondly, while obtaining relatively good performance on most 

f the tissue classes, jSTABL model fails to segment correctly grey 

atter and basal ganglial. This highlights the needs for domain 

daptation. 

Thirdly, learning from pseudo-healthy annotated scans 

 jSTABL+5 and jSTABL+90 ) outperforms the other unsupervised 

A strategies based either on data augmentation ( jSTABL+Augm ) 

nd adversarial learning ( jSTABL+Adv ). This demonstrates the ben- 

fits of using a supervised approach for our problem. Moreover, 

nly 5 pseudo-healthy annotated scans are required to obtain an 

ccuracy similar to the one on the control data (see Table 2 ), 

.e. to bridge the domain gap. Fig. 6 shows that learning from 

seudo-healthy annotated scans allows the network to be robust 

o variations in resolution, contrast or glioma grade, even with few 

amples used for domain adaptation. 

Finally, Anatomy ASPECTS+ is employed to provide a quanti- 

ative assessment of the segmentation of the tissues surrounding 

he tumour. Four models are compared by two neuro-radiologists: 

ipeline, jSTABL, jSTABL+5 and the time-consuming Les. Ann. + GIF 

ipeline that requires manual annotations of the lesions. Results 

re presented in Fig. 7 . First, jSTABL is more often “mostly accu- 

ate” than the Pipeline (mean score - 75% vs 66%). Again, this high- 

ights the strength of our joint model compared to a pipeline ap- 
p

12 
roach. Secondly, jSTABL+5 is more often “highly accurate” than the 

es. Ann. + GIF pipeline (mean score - 46% vs 24%). This shows that 

ur fast and fully automatic method can be considered as a new 

tate-of-the-art for performing joint tissue and lesion segmenta- 

ion. 

. Discussion 

In this section, we discuss some of the limitations of the differ- 

nt methods. 

Firstly, a common modality across the task-specific dataset is 

equired to transfer the knowledge learn between the task-specific 

ets of modality. Without this common modality, the upper bound 

s not tractable anymore and our method cannot be applied. 

Secondly, our approach relies on a simple hetero-modal archi- 

ecture that aims to encode modalities in a common shared fea- 

ure space. Yet, averaging the feature maps doesn’t enforce the 

etwork to learn a shared feature representation. To tackle this 

roblem, a hetero-modal variational auto-encoder architecture has 

een recently introduced Dorent et al. (2019a) . Based on a princi- 

led formulation of the problem, the induced loss function is the 

ross-entropy, which does not satisfy the triangle inequality. Con- 

equently, without further research, this approach cannot be di- 

ectly integrated in the formulation of our problem. 

Thirdly, we found that the presence of lesions does not always 

erturbed a network trained on control data, especially for small 

esions. Consequently, our method didn’t always show large im- 

rovements compared to a simpler Pipeline approach on WMH. 

owever, we observed that Pipeline can be perturbed by larger 

athology and thus is less robust. 
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Fig. 8. ASPECTS anatomical landmarks ( Barber et al., 20 0 0 ) used in our qualitative assessment methodology in the absence of joint ground truth. C = Caudate, I = Insula, IC 

= Internal Capsule, L = Lentiform Nucleus, M1 = Frontal operculum, M2 = Anterior temporal lobe, M3 = Posterior temporal lobe, M4 = Anterior MCA, M5 = Lateral MCA, 

M6 = Posterior MCA Illustration courtesy of P.A. Barber. 
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. Conclusion 

This work addresses the challenge of learning a joint brain tis- 

ue and lesion segmentation with disjoint heterogeneous annota- 

ions. Our novel approach is mathematically grounded, conceptu- 

lly simple, and relies on reasonable assumptions. 

The main contribution of this work is to overcome the challenge 

f the lack of fully-annotated data for joint problems. We demon- 

trate that a model trained on databases providing either the tissue 

r the lesion annotations and with different modalities can achieve 

imilar performance to a model trained on a fully-annotated joint 

ataset. Our work also shows that the knowledge learnt from one 

odality can be preserved when more modalities are used as in- 

ut. Finally, domain adaptation for image segmentation can be per- 

ormed with a small set of data related to the target distribution. 

In the future, we will evaluate our approach on new datasets 

ith other lesions. Furthermore, we would like to extend our 

ethod to include the full parcellation of the brain (143 struc- 

ures). Finally, we plan to integrate uncertainty measures in our 

ramework as a future work. As one of the first work to method- 

logically address the problem of joint learning from hetero-modal 

nd domain-shifted datasets, we believe that our approach will 

elp DNN make further impact in clinical scenarios. 
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ppendix A. Probabilistic multi-class Jaccard loss function 

First we recall the definitions of the binary Jaccard distance and 

he proposed extension to probabilistic inputs. The binary Jaccard 

istance J bin is defined such that: 

 a, b ∈ { 0 , 1 } N , J bin (a, b) = 1 −
∑ N 

i =1 a i b i ∑ N 
i =1 a i + b i − a i b i 

(A.1)

efinition A.1. (Probabilistic multi-class Jaccard distance) 

Let C be the number of classes in C, N be the number of voxels

nd P ⊂ [0 , 1] C×N denote the set of probability vector map such 

hat for any p = (p c,i ) c∈C,i ∈ [0 ;N] ∈ P: 

 i ∈ [0 ; N] , 
∑ 

c∈ C 
p c,i = 1 

he probabilistic multi-class Jaccard distance is defined for any 

u, v ) ∈ P 

2 as: 

 (u, v ) = 

∑ 

c∈ C ω c 
2 

∑ N 
i =1 | u c,i − v c,i | ∑ N 

i =1 | u c,i | + | v c,i | + | u c,i − v c,i | ︸ ︷︷ ︸ 
J c 

(A.2) 

here ω c are class-specific weights summing up to one. 

1. Relation between the probabilistic jaccard loss and the binary 

accard distance 

The binary case corresponds to a two-class problem, i.e. C = 

 0 , 1 } . Let a, b ∈ {0, 1} N be two binary vectors of size n and

et u and v denote respectively the categorical encodings of 

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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 and b , i.e. a i = 1 ⇐⇒ 

(
u 1 ,i = 1 and u 0 ,i = 0 

)
and b i = 1 ⇐⇒

v 1 ,i = 1 and v 0 ,i = 0 
)
. The binary Jaccard distance can be rewrit- 

en as: 

 bin (a, b) = 1 −
∑ N 

i =1 a i b i ∑ N 
i =1 a i + b i − a i b i 

= 

∑ N 
i =1 a i + b i − 2 a i b i ∑ N 
i =1 a i + b i − a i b i 

iven that for all i ∈ { 1 , . . . , N} , a i = 0 or a i = 1 , we observe that

 

2 
i 

= a i . Using the same property for b , we get: 

 bin (a, b) = 

∑ N 
i =1 (a i − b i ) 

2 

∑ N 
i =1 a 

2 
i 

+ b 2 
i 
− a i b i 

= 

2 

∑ N 
i =1 ( a i − b i ) 

2 

∑ N 
i =1 a 

2 
i 

+ b 2 
i 
+ (a i − b i ) 2 

inally, given that for all i ∈ { 1 , . . . , N} , (a i − b i ) 
2 = 0 or (a i − b i ) 

2 =
 , we have that (a i − b i ) 

2 = | a i − b i | and conclude that: 

 bin (a, b) = 

2 

∑ N 
i =1 | a i − b i | ∑ N 

i =1 a 
2 
i 

+ b 2 
i 
+ | a i − b i | 

= J 1 (u, v ) 

2. Proof of lemma 4.1 

The proof that the probabilistic Jaccard is a distance is based on 

he Steinhaus transform ( Späth, 1981 ). Given a metric space ( E, d )

ith a distance d and given a fixed point α ∈ E , we can define a

ew distance d new 

as: 

 new 

(x, y ) = 

d(x, y ) 

d(x, α) + d(y, α) + d(x, y ) 

onsequently, the probabilistic Jaccard loss distance J c defined in 

A.2) : 

 u, v ∈ [0 , 1] C×N , J c (u, v ) = 

2 ‖ 

u c − v c ‖ 1 

‖ 

u c ‖ 1 + ‖ 

v c ‖ 1 + ‖ 

u c − v c ‖ 1 

(A.3)

an be seen as a Steinhaus transform of the metric space ([0, 1] N ,

|.|| 1 ) with α = 0 and thus is a distance. Given that the weighted

um of distances is a distance, we finally conclude that the proba- 

ilistic multi-class Jaccard defined as: 

 = 

∑ 

c∈ C 
J c (A.4) 

s a distance. 

ppendix B. Proof of Proposition 1 

First, Eqs. (3), (9) and (7) are combined: 

 D lesion 
[ L ( h θ (x ) , y ) ] ≤ R seg + εlesion (θ ) − εcontrol (θ ) 

≤ R seg + | εlesion (θ ) − εcontrol (θ ) | (B.1) 

here ε lesion ( θ ) and εcontrol ( θ ) denote the expected tissue loss on 

he lesion and control domains, defined as: 

lesion (θ ) = E D lesion 
[ L 

T (h θ (x T 1 ) , y T ))] 

control (θ ) = E D control 
[ L 

T (h θ (x T 1 ) , y T ))] 
(B.2) 

Let θ ∗ = arg min θ∈ �εlesion (θ ) + εcontrol (θ ) be the parameters of 

he ideal (and unknown) segmenter that minimises the two ex- 

ected tissue losses. Then let denote ε lesion ( θ , θ ∗) and εcontrol ( θ , 
∗) the performance gap between the segmenter parametrised by 

and this ideal segmenter: 

lesion (θ, θ ∗) = E D lesion 
[ L 

T (h θ (x T 1 ) , h θ ∗ (x T 1 ))] 

control (θ, θ ∗) = E D control 
[ L 

T (h θ (x T 1 ) , h θ ∗ (x T 1 ))] 
(B.3) 

Using the fact that the loss function satisfies the triangle in- 

quality: 

lesion (θ ) ≤ εlesion (θ, θ ∗) + εlesion (θ
∗) 

control (θ ) ≤ εcontrol (θ, θ ∗) + εcontrol (θ
∗) 

(B.4) 
14 
Then, the performance gap between the two domains 

 εlesion (θ ) − εcontrol (θ ) | can be bounded as follows: 

 εlesion (θ ) − εcontrol (θ ) | ≤ | εlesion (θ, θ ∗) − εcontrol (θ, θ ∗) | + ε(�) (B.5) 

here ε( �) is the tissue expected loss of the ideal segmenter: 

(�) = εlesion (θ
∗) + εcontrol (θ

∗) 

(B.5) can be found in Ben-David et al. (2010) in which the loss 

unction is assumed to be the L 1 distance. 

Given that ε( �) is a constant w.r.t the network parameters θ , 

he goal of domain adaptation is to reduce the distribution dis- 

repancy d DA ( θ ) defined as: 

 DA (θ ) = | εlesion (θ, θ ∗) − εcontrol (θ, θ ∗) | (B.6) 

Similarly to Long et al. (2018) , we demonstrate that this dis- 

repancy d DA ( θ ) can be estimated using the discriminator accuracy. 

Let denote D 

θ
l 

= (x T 1 , f θ (x T 1 )) 
x T 1 ∼D lesion 

and D 

θ
c = 

x T 1 , f θ (x T 1 )) 
x T 1 ∼D control 

the proxies of the distributions D lesion 

nd D control . Then, the two performance gaps with the ideal 

egmenter can be re-written as: 

lesion (θ, θ ∗) = E (x, f ) ∼D θ
l 
[ L 

T (h θ ∗ (x T 1 ) , f )] 

lesion (θ, θ ∗) = E (x, f ) ∼D θ
l 
[ L 

T (h θ ∗ (x T 1 ) , f )] 
(B.7) 

et also define a difference hypothesis space �: 

� { δθ ′ : (x T 1 , f ) �→ L 

T (h θ ′ (x T 1 ) , f )) , θ
′ ∈ �} 

oreover, we define the �-distance between the two distributions 

 

θ
l 

and D 

θ
c as: 

 �(D 

θ
l , D 

θ
c ) � sup 

δ
θ
′ ∈ �

∣∣∣E D θ
l 
[ δθ ′ (x T 1 , f )] − E D θc [ δθ ′ (x T 1 , f )] 

∣∣∣ (B.8) 

Finally, by combining (B.6), (B.7) and (B.8) , we obtain the fol- 

owing upper bound for the distribution discrepancy d DA ( θ ): 

 �(D 

θ
l , D 

θ
c ) = sup 

δ
θ
′ ∈ �

∣∣∣E D θ
l 
[ δθ ′ (x T 1 , f )] − E D θc [ δθ ′ (x T 1 , f )] 

∣∣∣

= sup 

θ ′ ∈ �

∣∣∣E D θ
l 
[ L 

T (h θ ′ (x T 1 ) , f )] − E D θc [ L 

T (h θ ′ (x T 1 ) , f )] 

∣∣∣
≥ | E D θ

l 
[ L 

T (h θ ∗ (x T 1 ) , f )] − E D θc [ L 

T (h θ ∗ (x T 1 ) , f )] | 
︸ ︷︷ ︸ 

= d DA (θ ) 

(B.9) 

Finally, let K > 0 be the upper bound of the loss function L 

T 

nd H 

K 
�

denote the family of the discriminators multiplied by K : 

 

K 
� � { KD φ, φ ∈ �} 
 

K 
�

and the difference hypothesis space � are two continuous and 

 -bounded function classes. Similarly to Long et al. (2018) , let’s as- 

ume that the family of the discriminator H 

K 
�

is rich enough to 

ontain the difference hypothesis space �. Given that a multilayer 

erceptrons that can fit any functions, this assumption is not unre- 

listic. Then, we show that the discriminator accuracy of the best 

iscriminator is an upper bound of the �-distance: 

 �(D 

θ
l , D 

θ
c ) ≤ K sup 

φ

∣∣∣E D θ
l 
[ D (x T 1 , f )] − E D θc [ D (x T 1 , f )] 

∣∣∣

≤ K sup 

φ

∣∣∣E D θ
l 
[ D (x T 1 , f )] + E D θc [1 − D (x T 1 , f )] 

∣∣∣
︸ ︷︷ ︸ 

= K sup φ R DA (φ,θ ) 

(B.10) 

Finally, by combining (B.1), (B.5), (B.9) (B.10) , we obtain the fol- 

owing tractable upper bound for the expect segmentation loss: 

 D lesion 
[ L ( h θ (x ) , y ) ] ≤ R seg + K sup R DA (φ, θ ) + ε(�) (B.11) 
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Fig. C.9. In order to synthesise a pseudo-healthy set of scans, we symmetrized the ”healthy” hemisphere of brains from BraTS. GIF framework is then used to generate tissue 

ground truth. T 1 scans are shown with the tissue segmentation. 
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ppendix C. Visualisation symmetrised brain scans 

Fig. C.9 shows some examples of pseudo-healthy scans, with 

heir tissue annotations, synthesised as described in 5.2 . 
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