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Associating Multi-Modal Brain Imaging
Phenotypes and Genetic Risk Factors
via a Dirty Multi-Task Learning Method
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Abstract— Brain imaging genetics becomes more and
more important in brain science, which integrates genetic
variations and brain structures or functions to study the
genetic basis of brain disorders. The multi-modal imaging
data collected by different technologies, measuring the
same brain distinctly, might carry complementary informa-
tion. Unfortunately, we do not know the extent to which
the phenotypic variance is shared among multiple imaging
modalities, which further might trace back to the complex
genetic mechanism. In this paper, we propose a novel dirty
multi-task sparse canonical correlation analysis (SCCA) to
study imaging genetic problems with multi-modal brain
imaging quantitative traits (QTs) involved. The proposed
method takes advantages of the multi-task learning and
parameter decomposition. It can not only identify the shared
imaging QTs and genetic loci across multiple modali-
ties, but also identify the modality-specific imaging QTs
and genetic loci, exhibiting a flexible capability of iden-
tifying complex multi-SNP-multi-QT associations. Using
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the state-of-the-art multi-view SCCA and multi-task SCCA,
the proposed method shows better or comparable canoni-
cal correlation coefficients and canonical weights on both
synthetic and real neuroimaging genetic data. In addition,
the identified modality-consistent biomarkers, as well as
the modality-specific biomarkers, provide meaningful and
interesting information, demonstrating the dirty multi-task
SCCA could be a powerful alternative method in multi-modal
brain imaging genetics.

Index Terms— Brain imaging genetics, sparse canonical
correlation analysis, multi-task learning, the dirty multi-task
SCCA.

I. INTRODUCTION

RECENTLY, brain imaging genetics gains more and more
attention in brain science. The primal aim of the imaging

genetics is to uncover the genetic basis of brain structures,
brain functions, and brain disorders such as Alzheimer’s
disease (AD) [1]–[3]. Therefore, the genetic variations such
as single nucleotide polymorphisms (SNPs) and neuroimaging
quantitative traits (QTs) are usually analyzed together [3].
Benefiting from the advances of imaging technology, different
types of brain imaging data have been collected [4]. For
example, the structural magnetic resonance imaging (sMRI)
scans provide the morphometry of the brain such as the
gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF), and the positron-emission tomography (PET) scans
measure the metabolic processes of the brain. These imaging
QTs obtained by different image technologies, measuring the
same brain from different perspectives, might carry com-
plementary information. As a result, combining multi-modal
imaging QTs could help better identify those relevant imaging
QTs and SNPs that are correlated to the brain disorder.
Moreover, an imaging QT could be only relevant when it
is measured by a specific imaging technology, while another
QT could be relevant no matter which imaging technology is
used. This might trace back to the complex genetic mecha-
nism, and further complicate the identification of meaningful
SNPs. Therefore, incorporating multi-modal imaging QTs and
genetic variations into the imaging genetic framework, and
studying the modality-consistent biomarkers, as well as the
modality-specific biomarkers, could be beneficial to exploit
meaningful genetic mechanism for brain disorders [5].
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The regression-oriented multi-task learning (MTL) is widely
used in imaging genetics for its power in identifying complex
multi-SNP-multi-QT associations [3], [6], [7]. These MTL
methods usually preselect a few imaging QTs of interest
as dependent variables and multiple SNPs as independent
variables, and then reveal the joint effect of multi-locus
genotype on a few phenotypes via multivariate multiple regres-
sion [7]. Obviously, they can select SNPs which are relevant
to the candidate imaging QTs simultaneously. On the contrary,
the joint effect of multiple imaging QTs on a few SNPs can
also be studied by MTL [8]. We have known that the brain
is comprised of multiple regions, thereby multiple imaging
QTs [9]. Therefore, utilizing only a few of them might be
inadequate because it may lose critical information conveyed
by those excluded cerebral components [5].

In addition, the bi-multivariate learning methods such as
the sparse canonical correlation analysis (SCCA) are also
very popular in imaging genetics [10]–[18]. These SCCA
methods could also identify complex multi-SNP-multi-QT
associations [3]. And, they can conduct feature selection for
both SNPs and imaging QTs, while those MTL methods can-
not. Generally, they are two-view SCCA, indicating that these
SCCA methods can only analyze the relationship between
SNPs and QTs of an unimodal imaging data. To the best of
our knowledge, most SCCA methods fall into this category.
They cannot include multi-modal imaging QTs and SNPs in a
unified model, making them suboptimal since using only one
modality of imaging QTs is inadequate. In order to incorporate
more than two data modalities, it is straightforward to extend
the two-view SCCA to multi-view/multi-set SCCA (mSCCA),
and a few efforts has been made in this direction. For example,
Hao et al. [19] proposed the three-way SCCA to study the
relationships among SNPs, imaging QTs and diagnosis status,
and Fang et al. [20] proposed the joint SCCA to learn diverse
associations among subtype populations. Both methods are the
naive extension of the conventional two-view SCCA. As a
result, they might not identify reasonable genetic loci since,
unless the multiple modalities of imaging QTs are highly cor-
related, demanding SNPs to be associated with imaging QTs
of multiple heterogeneous modalities simultaneously could be
a too stringent requirement.

The multi-task SCCA (MTSCCA) is recently proposed
in [5], [21], [22], which studies the multi-modal imaging
genetic problem by constructing multiple SCCA tasks jointly,
with each associating SNPs with imaing QTs of one modality.
This joint bi-multivariate learning shows great success in
multi-modal imaging genetics. The aforementioned imaging
technologies could be quite different, and thus the multiple
modalities of imaging QTs can be weakly correlated [23].
In other words, an imaging QT could be informative under
one imaging modality, while another imaging QT could be
informative under another imaging modality. At the same time,
there are still imaging QTs which might be informative no
matter which imaging technology is used. Therefore, identi-
fying modality-consistent and modality-specific imaging QTs
as well as revealing associated SNPs are quite essential and
meaningful.

With these observations above, in this paper, we propose
a novel learning method which is designed for multi-modal
imaging data oriented imaging genetics. The proposed method
absorbs the merits of both MTL and parameters decom-
position. The MTL framework makes it easier and practi-
cal to integrate multiple modalities of imaging QTs, and
the parameters decomposition makes a diverse regularization
which is quite meaningful. We name it the dirty MTSCCA
in accordance with the terminology in [24], [25]. The dirty
MTSCCA decomposes the conventional canonical weights
into two parts, i.e. the task-consistent component shared
among all tasks, and the task-specific component that is closely
related to a specific task. It then penalizes the task-consistent
and task-specific components differently to encourage different
sparse structures. Thus dirty MTSCCA can identify both
SNPs and imaging QTs that are measured by all imaging
technologies, and SNPs and imaging QTs that could be only
revealed by a specific imaging technology. In order to solve
this dirty model, we propose an efficient iteration algorithm
which guarantees to converge to a local optimum. Compared
with two state-of-the-art methods including the multi-view
SCCA [16] and multi-task SCCA [5], the results on both
synthetic data and real neuroimaging genetics data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base [26] show that, our method obtains improved or com-
parable bi-multivariate associations. Moreover, our method
could identify the modality-consistent imaging QTs and SNPs,
as well as the modality-specific imaging QTs and SNPs,
showing a flexible and meaningful identification ability. There-
fore, the dirty multi-task SCCA model is very suitable for
multi-modal imaging genetic association analysis, and can be
a significant addition to the imaging genetic method library.

II. THE DIRTY MULTI-TASK SCCA

In this paper, we denote scalars as italic letters, column
vectors as boldface lowercase letters, and matrices as boldface
capitals. The i -th row and j -th column of X = (xi j ) is
denoted as xi and x j respectively. Yc denotes the c-th matrix
of {Y1, · · · , YC}. �x�2 denotes the Euclidean norm of the
vector x, �X�1,1 denotes the element-wise �1-norm of X, i.e.

�X�1,1 = ∑
i
∑

j

∣∣xi j
∣∣, and �X�F =

√∑
i
∑

j x2
i j denotes its

Frobenius norm. X ∈ R
n×p represents the genetic data with

n subjects and p SNPs, and Yc ∈ R
n×q (c = 1, · · · , C)

represents the phenotype data with q imaging QTs of the c-th
modality, where C is the number of imaging modalities (tasks).

1) The Multi-Task SCCA: According to [5], [27], we use U ∈
Rp×C to denote the canonical weight matrix associated with
X and V ∈ Rq×C to denote that associated with imaging
QTs, where each vc corresponds to Yc. Then the multi-task
SCCA (MTSCCA) model is defined as follows

min
uc,vc

C∑
c=1

�Xuc − Ycvc�2
2

s.t . �Xuc�2
2 = 1, �Ycvc�2

2 = 1,� (U)≤b1,� (V)≤b2,∀c.

(1)
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Fig. 1. Illustration of the group-sparsity, individual-sparsity and
element-sparsity for canonical weight U. The group-sparsity indicates
that SNPs in the same group are informative for all SCCA tasks simul-
taneously. The individual-sparsity across all tasks indicates that a SNP
(imaging QT) is informative for all SCCA tasks. The element-sparsity
indicates that a SNP (imaging QT) is only informative for a specific SCCA
task.

This MTSCCA, overcoming the limitation of the conven-
tional SCCA and multi-view/multi-set SCCA, can model the
bi-association between SNPs and imaging QTs from mul-
tiple modalities [5]. However, in the multi-modal scenario,
we usually desire both group-sparsity and individual-sparsity
across multiple modalities, and element-sparsity that is
only effective to a specific modality. Fig. 1 presents
the group-sparsity, individual-sparsity and element-sparsity
for canonical weight U. Generally, in multi-task learning,
group-sparsity, individual-sparsity and element-sparsity penal-
ties are imposed on U and V to achieve this aim. Obviously,
group-sparsity, individual-sparsity and element-sparsity for the
same weight matrix such as U are conflicting, and thus could
harm the performance, and further the feature selection ability.

2) The Proposed Dirty MTSCCA Model: In order to con-
struct a flexible and robust modeling method, and over-
come the shortcomings of MTSCCA, we propose a novel
dirty multi-task SCCA based on parameters decomposi-
tion [24], [25]. The dirty MTSCCA is formally defined as
follows

min
S,W,B,Z

C∑
c=1

�X(sc + wc) − Yc(bc + zc)�2
2 + λs �S�G2,1

+ βs �S�2,1 + λw �W�1,1 + βb �B�2,1 + λz �Z�1,1

s.t . �X(sc + wc)�2
2 = 1, �Yc(bc + zc)�2

2 = 1,∀c. (2)

In our model, the canonical weight U associated with the
SNP data is decomposed into two components, i.e. U =
S+W, where S is the task-consistent component being shared
by all tasks, and W is the task-specific component being
associated with a single task. Similarly, the canonical weight V
associated with the imaging data is also decomposed into the
task-consistent component B and the task-specific component

Z, i.e. V = B + Z. The λs , βs , λw , βb, λz are nonnegative
tuning parameters.

Benefiting from the parameter decomposition, we can
impose distinct penalties on different components of the
canonical weight. Specifically, we use the G2,1-norm [7], [27],
i.e.

�U�G2,1
=

K∑
k=1

∥∥∥Uk
∥∥∥

F
=

K∑
k=1

√√√√∑
i∈gk

C∑
c=1

(uic)2, (3)

to pursuit a similar weight value for a group of SNPs, e.g.
SNPs in the same linkage disequilibrium (LD), across multiple
tasks. This group-sparsity, illustrated in Fig. 1, selects those
relevant groups of SNPs shared among all tasks. However,
a SNP in a relevant LD might be irrelevant to AD, while
another SNP in an irrelevant LD could be informative. This
prompts us to impose the popular �2,1-norm, defined as

�U�2,1 =
p∑

i=1

∥∥∥ui
∥∥∥

2
=

p∑
i=1

√√√√ C∑
c=1

(uic)2, (4)

in multi-task learning, which helps accommodate the
individual-sparsity shared by multiple tasks. It is worth
mentioning that, to pursuit the task-consistent feature selec-
tion, both G2,1-norm and �2,1-norm are imposed onto
task-consistent component S, and the �2,1-norm is used
for B.

In addition to the task-consistent features, there are some
features (SNPs or QTs) which could be relevant to only one
specific task. This is a common situation in imaging genetics
in which the imaging QTs are collected by different imaging
technologies, thereby forming the heterogeneous multi-task
learning. Then the element-sparsity is also of great impor-
tance in multi-modal brain imaging genetics. Finally, for the
task-specific component W and Z, we use the �1,1-norm which
is defined previously to select the relevant feature for a specific
SCCA task.

To sum up, the distinct regularization terms for different
components encourage both task-consistent and task-specific
feature selection instead of balancing between these two
conflicting objectives as traditional SCCAs do. Therefore, this
could assure an improved performance in terms of both the
correlation and canonical weight profiles.

3) Extension to the Weighted Model: The model above
equally treats each SCCA task regarding the SNPs and QTs
of a specific imaging modality. In order to further make it
practical and flexible, we introduce a weight vector κ ∈
R

1×C(0 ≤ κc ≤ 1,
∑

c κc = 1, c = 1, · · · , C) to the loss
function of the dirty MTSCCA, i.e.

min
S,W,B,Z

C∑
c=1

κc �X(sc + wc) − Yc(bc + zc)�2
2

+ λs �S�G2,1

+ βs �S�2,1 + λw �W�1,1 + βb �B�2,1 + λz �Z�1,1

s.t . �X(sc + wc)�2
2 = 1, �Yc(bc + zc)�2

2 = 1,∑
c

κc = 1, ∀c. (5)
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It is easy to verify that when all κc’s are equal, Eq (5)
will reduce to Eq (2). This model will also reduce to the
conventional SCCA if only one of κc’s is nonzero since the
task-consistent components disappear.

Besides, the merits of the dirty MTSCCA are fourfold.
First, it submerges both MTSCCA and mSCCA. For example,
the dirty MTSCCA reduces to MTSCCA when W = 0
and Z = 0. Second, based on the parameter decomposition,
it encourages the task-consistent (modality-consistent) spar-
sity [24] and task-specific (modality-specific) sparsity simul-
taneously in a unified model. On the contrary, the MTSCCA
and mSCCA can only promote task-consistent sparsity. Third,
the task-consistent component is jointly penalized by the
group level regularization, such as the G2,1-norm for SNPs to
induce the task-consistent group-sparsity, and the �2,1-norm
for both SNPs and imaging QTs for the task-consistent
individual-sparsity. This could help identify the SNPs and
imaging QTs shared by multiple tasks, thereby by dif-
ferent imaging technologies. Fourth, our model penalizes
the task-specific component differently via the �1,1-norm to
encourage element-wise sparsity for both SNPs and imag-
ing QTs. This helps find out SNPs and imaging QTs that
could only be identified by a specific imaging modality, i.e.
imaging technology. In summary, thanks to the parameter
decomposition, our method facilitates joint feature selection
while allowing disparities as well [24], [25]. This makes our
model flexible and practical since simultaneously demanding
features to be task-consistent and task-specific is conflicting.
In a word, this weighted model is very practical and powerful
in multi-modal imaging genetics. Thereafter, we will use the
dirty MTSCCA to refer to the weighted model.

4) The Optimization Algorithm: In this subsection, we will
present how to solve the dirty MTSCCA efficiently. According
to Eq. (5), the objective is not convex with joint consideration
of S, W, B and Z. Thus it cannot be directly solved by
gradient descent methods. The MTSCCA is a bi-convex prob-
lem indicating that U and V can be solved alternatively [5].
As a modified MTSCCA, our model is also bi-convex and
thus could be handled by the alternative convex search (ACS)
strategy. Specifically, the Eq. (5) is convex in S when fixing W,
B and Z as constants. Similarly, Eq. (5) is also convex in W, B
and Z alternately by fixing those remaining weight matrices.
For this reason, the dirty MTSCCA can be solved via the
alternative iteration method. Next, we first show how to solve
S and W since they both originate from canonical weights
associating with SNP data. Then we present the solution to
B and Z which are associated with multiple modalities of
imaging data.

a) Updating S and W: If B and Z are fixed as constants,
the objective with respect to S and W can be simplified as

min
S,W

C∑
c=1

κc �X(sc + wc) − Yc(bc + zc)�2
2

+ λs �S�G2,1
+ βs �S�2,1 + λw �W�1,1

s.t . �X(sc + wc)�2
2 = 1, ∀c. (6)

In order to solve S and W, we have the following theorem.

Theorem 1: The solution to Eq. (6) is attained by

s∗
c = ŝc∥∥X(ŝc+ŵc)

∥∥
2

, and w∗
c = ŵc∥∥X(ŝc+ŵc)

∥∥
2

, (7)

where ŝc is the solution of

min
S

C∑
c=1

κc �Xsc−Yc(bc+zc)�2
2+λs �S�G2,1

+βs �S�2,1 , (8)

and ŵc is the solution of

min
W

C∑
c=1

κc �Xwc − Yc(bc + zc)�2
2 + λw �W�1,1 . (9)

Proof: Following the same procedure in [28]
(Appendix A.2), Eq. (7) in Theorem 1 can be proved
straightforwardly. Thus we concentrate on the derivations of
Eqs. (8-9).

We first expand the quadratic term in Eq. (6)

min
S,W

C∑
c=1

κc[�X(sc + wc)�2
2 − 2s�

c X�Yc(bc + zc)

− 2w�
c X�Yc(bc + zc) + �Yc(bc + zc)�2

2] + λs �S�G2,1

+ βs �S�2,1 + λw �W�1,1

s.t . �X(sc + wc)�2
2 = 1,∀c. (10)

Given �X(sc + wc)�2
2 = �Yc(bc + zc)�2

2 = 1, we then
minus κc

2 �X(sc + wc)�2
2 and plus κc �Yc(bc + zc)�2

2 into
Eq. (10). At the same time, it is easier to derive

1

2
�X(sc + wc)�2

2 = 1

2
�Xsc�2

2 + s�
c X�Xwc

+1

2
�Xwc�2

2 ≤ �Xsc�2
2 + �Xwc�2

2 .

Therefore, we easily have the upper bound of Eq. (10),
thereby Eq. (6) as follows

min
S,W

C∑
c=1

κc �Xsc−Yc(bc+zc)�2
2+κc �Xwc−Yc(bc+zc)�2

2

+ λs �S�G2,1
+ βs �S�2,1 + λw �W�1,1

s.t . �X(sc + wc)�2
2 = 1,∀c. (11)

Now by dropping the constraints, we have the objective
function with respect to S as

min
S

C∑
c=1

κc �Xsc−Yc(bc+zc)�2
2+λs �S�G2,1 +βs �S�2,1 , (12)

and that with respect to W as

min
W

C∑
c=1

κc �Xwc − Yc(bc + zc)�2
2 + λw �W�1,1 , (13)

which completes the proof.
Since Eq. (8) is a multi-task regression problem, we can

solve it using the off-the-shelf methods. We observe that the
penalization of each sc is different due to different κc’s, and
thus we separately solve each sc. Specifically, we first take the

Authorized licensed use limited to: University of Southern California. Downloaded on March 17,2021 at 23:09:47 UTC from IEEE Xplore.  Restrictions apply. 



3420 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 11, NOVEMBER 2020

derivative of Eq. (8) with respect to sc, and then let it be zero,
viz,

(X�X + λs

κc
D̃ + βs

κc
D)sc = X�Yc(bc + zc), (14)

where D̃ is a block diagonal matrix with the k-th block being
1

2�Sk�F
Ik , and Ik is an identity matrix which has the same size

as the k-th group. The grouping information can be previously
given based on the LD structure of SNPs. D is a diagonal
matrix whose i -th diagonal element is 1

2�si�2
(i = 1, · · · , p).

Then we can iteratively obtain ŝc as follows

ŝc = (X�X + λs

κc
D̃ + βs

κc
D)−1X�Yc(bc + zc). (15)

Attributing to the �1,1-norm penalty, wc’s in Eq. (9) are
not coupled closely, indicating that each wc can be obtained
separately. We take the derivative of Eq. (9) with respect to
each wc respectively, and let it be zero, i.e.

(X�X + λw

κc
D̆c)wc = X�Yc(bc + zc), (16)

where D̆c is a diagonal matrix with its i -th element being
1

2|wic | (i = 1, · · · , p). Further, the wc can be attained by

ŵc = (X�X + λw

κc
D̆c)

−1X�Yc(bc + zc). (17)

Now both S and W are attained based on Theorem 1,
we proceed to solve B and Z by fixing S and W.

b) Updating B and Z: Firstly, B and Z can be solved using
the same Theorem 1 as shown above. We further find that
each bc and zc are associated with each modality of imaging
QTs, i.e. Yc. Therefore, bc and zc should be solved separately.
In particular, bc and zc can be solved iteratively by fixing the
remaining bc� and zc�(c� 	= c), as well as S and W.

Then following the same procedure of solving wc, we easily
have

b̂c = (Y�
c Yc + βb

κc
Q)−1Y�

c X(sc + wc), (18)

by taking the derivative with respect to every bc separately,
and letting them be zero. Q here is a diagonal matrix and its
j -th element is 1

2�b j�2
( j = 1, · · · , q).

Finally, the same procedure leads to

ẑc = (Y�
c Yc + λz

κc
Q̆c)

−1Y�
c X(sc + wc), (19)

where Q̆c is a diagonal matrix whose i -th diagonal element is
1

2|z jc| ( j = 1, · · · , q).
Combining Eqs. (18)-(19) together, we finally have the

solution to B and Z as follows

b∗
c = b̂c∥∥∥Yc(b̂c + ẑc)

∥∥∥
2

, and z∗
c = ẑc∥∥∥Yc(b̂c + ẑc)

∥∥∥
2

. (20)

Eqs. (14)-(20) pave the way to solve the dirty MTSCCA
problem, we then show the pseudo-code in Algorithm 1.
To ensure efficiency, this algorithm iteratively updates S, W,
B and Z when the pre-defined stopping condition, such as

the maximum iterations or the tolerated error, is satisfied.
Moreover, this algorithm is guaranteed to converge to a local
optimum which is supported by the Theorem 2 in the next
subsection.

Algorithm 1 The Dirty Multi-Task SCCA Algorithm

Require: X ∈ Rn×p , Yc ∈ Rn×q , c = 1, · · · , C;
λs , βs , λw , βb, λz

Ensure: Output S, W, B, Z.
1: Initialize S ∈ Rp×C , W ∈ Rp×C , B ∈ Rq×C and Z ∈

Rq×C ;
2: while not convergence do
3: Update ŝc according to Eq. (15), and update ŵc according

to Eq. (17);
4: Solve S∗ and W∗ according to Eq. (7);
5: Update b̂c according to Eq. (18), and update ẑc according

to Eq. (19);
6: Solve B∗ and Z∗ according to Eq. (20);
7: end while

5) Convergence Analysis: We have the following theorem
regarding the dirty MTSCCA algorithm.

Theorem 2: The Algorithm 1 decreases the objective value
of Eq. (5) in each iteration.

Proof: (1) We first prove that the objective decreases after
updating S and W. We denote the updated S, W, B and Z as
S̄, W̄, B̄ and Z̄, respectively. From Eq. (15) we have

C∑
c=1

κc �Xs̄c − Yc(bc + zc)�2
2

+λs Tr(S̄�D̃S̄) + βs Tr(S̄�DS̄)

≤
C∑

c=1

κc �Xsc − Yc(bc + zc)�2
2

+λs Tr(S�D̃S) + βs Tr(S�DS). (21)

Based on the definitions of D̃ and D, we have

C∑
c=1

κc �Xs̄c − Yc(bc + zc)�2
2

+λs

K∑
k=1

∥∥S̄k
∥∥2

F

2
∥∥Sk

∥∥
F

+ βs

p∑
i=1

∥∥s̄i
∥∥2

2

2
∥∥si

∥∥
2

≤
C∑

c=1

κc �Xsc − Yc(bc + zc)�2
2

+λs

K∑
k=1

∥∥Sk
∥∥2

F

2
∥∥Sk

∥∥
F

+ βs

p∑
i=1

∥∥si
∥∥2

2

2
∥∥si

∥∥
2

. (22)

Since
∥∥S̄k

∥∥
F −

∥∥S̄k
∥∥2

F
2�Sk�F

≤ ∥∥Sk
∥∥

F −
∥∥Sk

∥∥2
F

2�Sk�F
, and

∥∥s̄i
∥∥

2 −
∥∥s̄i

∥∥2
2

2�si�2
≤ ∥∥si

∥∥
2 −

∥∥si
∥∥2

2
2�si�2

(Lemma 1 in [7]), we apply both
inequations to Eq. (22) with respect to each group features
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and individual one. This yields

C∑
c=1

κc �Xs̄c − Yc(bc + zc)�2
2 + λs

K∑
k=1

∥∥∥S̄k
∥∥∥

F
+ βs

p∑
i=1

∥∥∥s̄i
∥∥∥

2

≤
C∑

c=1

κc �Xsc−Yc(bc+zc)�2
2+λs

K∑
k=1

∥∥∥Sk
∥∥∥

F
+ βs

p∑
i=1

∥∥∥si
∥∥∥

2

⇔
C∑

c=1

κc �Xs̄c − Yc(bc + zc)�2
2 + λs

∥∥S̄
∥∥

G2,1
+ βs

∥∥S̄
∥∥

2,1

≤
C∑

c=1

κc �Xsc − Yc(bc + zc)�2
2 + λs �S�G2,1

+ βs �S�2,1 .

(23)

Therefore, the objective value decreases when updating S.
After that, we can also prove that the objective value decreases
in each iteration when updating W. According to Theorem 1,
the objective still decreases after scaling. This yields that the
objective decreases after updating S and W.

(2) Similarly, we can prove that the objective also decreases
with each update of B and Z.

The proof completes by combining conclusions (1) and (2).

According to Eq. (5), we know that the objective is
lower bounded by 0. Therefore, given the Theorem 2, the
Algorithm 1 is guaranteed to converge to a local optimum.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

To evaluate the effectiveness of the proposed dirty
MTSCCA, we choose two closely related methods as bench-
marks. They are the multi-task SCCA (MTSCCA) [5] and the
conventional multi-view/multi-set SCCA (mSCCA) [28]. Both
methods can identify the complex bi-associations among three
or more data sets, and thus could integrate multiple modalities
of imaging QTs in one model, while those conventional
two-view SCCA cannot [28].

The regularization parameters for each method should be
fine tuned before experiments. In this paper, we employ the
nested 5-fold cross-validation method. In particular, in the
inner loop, parameters that generate the highest mean correla-
tion coefficients will be selected as the optimal parameters,
i.e. CV(λ, β) = 1

5

∑5
j=1

∑C
c=1 Corr(X j (uc) j , (Yc) j (vc) j ),

where X j and (Yc) j are the j -th testing sets in the inner
loop, and (uc) j and (vc) j are the canonical weights learned
from the inner training sets. Then the external loop calculates
the final results based on the optimal parameters obtained
from the inner loop. It is easy to know that too small
parameters generate under-penalized results while too large
ones generate over-penalized results. Therefore, we tune λs ,
βs , λw , βb and λz from a moderate interval 10i (i =
−5,−4, · · · , 0, · · · , 4, 5) via the grid search strategy.

Apart from the regularization parameters, task weight para-
meters κc’s could affect the performance as well. Fortunately,
they merely imply the priority of different tasks, and thus have
less impact compared with those regularization parameters.
For example, if the sMRI data is of good quality with high

resolution, we then prefer a high weight for sMRI-derived
SCCA task (the SCCA task between sMRI data and SNPs) and
small weights for those remaining tasks such as AV45-SNP
and FDG-SNP. We, as is often the case, do not have the priori
knowledge regarding the tasks’ priorities, thus we use equal
weights for different tasks. As a result, we use κc = 1

C (c =
1, · · · , C) in this study. The average results from 100 repeated
experiments are shown to assure a stable result. In this study,
our method is terminated when both maxc |(sc + wc)

t+1 −
(sc + wc)

t | ≤ � and maxc |(bc + zc)
t+1 − (bc + zc)

t | ≤ � are
met, where � is the pre-defined tolerable error and is set to
� = 10−5 according to experiments.

B. Results on Synthetic Data

1) Data Source: We simulate four synthetic data sets using
different numbers of samples, features, and noise intensities.
The first three data sets are generated from the same ground
truth, however, they have different levels of noise. Specifically,
the signal-to-noise ratio (SNR) in the first data set is the
smallest, followed by the second and third one. We expect
that this could show a method’s performance under different
noise levels. The fourth data set simulates a high-dimensional
situation. The ground truthes of these data sets are listed below,
which are shown in Fig. 2 (top row).

• Data 1: n = 100, u = (0, · · · , 0︸ ︷︷ ︸
50

, 1, · · · , 1︸ ︷︷ ︸
40

, 0, · · · , 0︸ ︷︷ ︸
60

)�,

v1 = (0, · · · , 0︸ ︷︷ ︸
45

, 1, · · · , 1︸ ︷︷ ︸
30

, 0, · · · , 0︸ ︷︷ ︸
45

)�,

v2 = (0, · · · , 0︸ ︷︷ ︸
20

, 2, · · · , 2︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
20

, 1, · · · , 1︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
40

)�,

v3 = (1, · · · , 1︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
30

, 2, · · · , 2︸ ︷︷ ︸
40

, 0, · · · , 0︸ ︷︷ ︸
30

)�,

and v4 = (0, · · · , 0︸ ︷︷ ︸
45

, 1.5, · · · , 1.5︸ ︷︷ ︸
30

, 0, · · · , 0︸ ︷︷ ︸
45

)�.

We generate a random latent vector μ of length n
with unit norm. The data matrix X is generated from
x�,i ∼ N(μ�ui , σx ), where σx = 5 denotes the noise
variance. Y j is generated from (y�, j )c ∼ N(μ�v j,c, σyc )
with σy1 = σy2 = σy3 = σy4 = 5.

• Data 2 ∼ Data 3: These two data sets are generated using
the same ground truth as Data 1 but with different noise
levels, i.e. σx = σy1 = σy2 = σy3 = σy4 = 0.5 for
Data 2, and σx = σy1 = σy2 = σy3 = σy4 = 0.1 for
Data 3. Hence the true correlation coefficients of these
three data sets are different. In particular, Data 1 has the
lowest correlation coefficient, followed by Data 2, and
Data 3 has the highest correlation coefficient.

• Data 4: n = 500, σx = σy1 = σy2 = σy3 = σy4 = 0.1,
u = (0, · · · , 0︸ ︷︷ ︸

400

, 1, · · · , 1︸ ︷︷ ︸
200

, 0, · · · , 0︸ ︷︷ ︸
300

, 2, · · · , 2︸ ︷︷ ︸
100

, 0, · · · , 0︸ ︷︷ ︸
1000

)�,

v1 = (0, · · · , 0︸ ︷︷ ︸
300

, 1.5, · · · , 1.5︸ ︷︷ ︸
100

, 0, · · · , 0︸ ︷︷ ︸
200

)�,

v2 = (0, · · · , 0︸ ︷︷ ︸
250

, 1.5, · · · , 1.5︸ ︷︷ ︸
150

, 0, · · · , 0︸ ︷︷ ︸
200

)�,

v3 = (0, · · · , 0︸ ︷︷ ︸
250

, 1.5, · · · , 1.5︸ ︷︷ ︸
150

, 0, · · · , 0︸ ︷︷ ︸
200

)�,
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TABLE I
TRAINING AND TESTING CCCS (MEAN ± STD) ESTIMATED FROM SYNTHETIC DATA SETS

and v4 = (0, · · · , 0︸ ︷︷ ︸
250

, 1.5, · · · , 1.5︸ ︷︷ ︸
150

, 0, · · · , 0︸ ︷︷ ︸
200

)�. The data

matrices X is created by x�,i ∼ N(μ�ui , σx ), and Yc is
generated by (y�, j )c ∼ N(μ�v j,c, σyc ), with the random
latent vector μ of length n with unit norm.

2) Bi-Multivariate Association Identification: We run all meth-
ods on four synthetic data sets, and show the training and
testing canonical correlation coefficients (CCCs) in Table I.
The CCCs of the first three data sets clearly show the effec-
tiveness of each method under different noise levels. All three
methods perform poorly on the first data set, since they are all
overfitted. The results on Data 2 and Data 3 become better and
better as the noise level decreases. We can also observe that
both MTSCCA and our method outperform mSCCA owing to
the multi-task modeling paradigm, and moreover, our method
perform slightly better than MTSCCA, which is supported by
the parameter decomposition. The CCCs of the fourth data
set confirm this too. This reveals that, owing to the multi-task
learning framework and parameter decomposition, the ability
of identifying bi-multivariate associations could be improved.

3) Task-Consistent and Task-Specific Feature Selection: In
addition to the CCC, selecting relevant features is also very
important and meaningful. The heat maps in Fig. 2 present the
decomposed feature selection results of our method, as well
as those of the benchmarks. For our method, the identified
features with non-zero weight of the task-consistent and
task-specific components are quite interesting. The proposed
method can not only show the features shared across multiple
tasks, but also identify features that are only associated with
a specific task. In contrast, both mSCCA and MTSCCA only
return a single feature selection results with task-consistent or
task-specific component fused. This could be insufficient when
we care about which features are task-consistent or which ones
are task-specific. It is interesting that a part of task-specific
features are missed on Data 2 and Data 3. The reason is that,
in this study, we only focus on the leading pair of canon-
ical weights, which could omit those features with relative
weak signals. We then keep on identifying the second pair
of canonical weights, and our method successfully identifies
these missed task-specific features. In summary, both CCCs
and feature selection results demonstrate that our method is
a powerful learning approach in this simulated multi-modal
bi-association identification problem.

TABLE II
PARTICIPANT CHARACTERISTICS

C. Results on Real Neuroimaging Genetics Data
1) Data Source: The genotyping and brain imaging data

used in this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
One primary goal of ADNI has been to test whether ser-
ial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org.

The neuroimaging data of 755 non-Hispanic Caucasian
participants were downloaded from the ADNI website
(adni.loni.usc.edu), and the details of the participant character-
istics are shown in Table II. There are five kinds of diagnostic
groups, i.e. healthy control (HC), significant memory concern
(SMC), early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI) and AD, and each of them have
three modalities of imaging data, including 18F florbetapir
(AV45) PET scans, fluorodeoxyglucose (FDG) PET scans, and
sMRI scans. These multi-modal imaging data were aligned to
each subject’s same visit. The sMRI scans were processed with
voxel-based morphometry (VBM) by SPM [29]. And, every
scan had been aligned to a T1-weighted template image, seg-
mented to the gray matter (GM), the white matter (WM) and
the cerebrospinal fluid (CSF) maps, normalized to the standard
Montreal Neurological Institute (MNI) space as 2×2×2 mm3

voxels, and smoothed with an 8mm FWHM kernel. Besides,
the AV45-PET and FDG-PET scans were registered into the
same MNI space. We further extracted region-of-interest (ROI)
level measurements based on the MarsBaR automated anatom-
ical labeling (AAL) atlas [30]. They were mean gray matter
densities for VBM-sMRI scans, beta-amyloid depositions for
AV45-PET scans and glucose utilizations for FDG-PET scans.
In the experiments, the imaging measures were pre-adjusted
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Fig. 2. Comparison of canonical weights in terms of each task for synthetic data sets. For each data set, the canonical weights U is shown on
the left, and V is shown on the right. The top row shows the ground truth of U and V, and the remaining rows correspond to the SCCA methods:
(1) mSCCA; (2) MTSCCA; (3) the proposed method. Our method has two weights for X and each Yc owing to the parameter decomposition. Within
each panel, there are four rows corresponding to four SCCA tasks (denoted as T1∼T4) between X and each Yc.

to remove the effects of the baseline age, gender, education,
and handedness by the regression weights derived from the
HC subjects.

The genotyping data were also downloaded from the ADNI
website. They were genotyped using the Human 610-Quad or
OmniExpress Array (Illumina, Inc., San Diego, CA, USA),
and preprocessed using the standard quality control (QC) and
imputation steps. According to the quality-controlled SNPs,
the missing genotypes were imputed by the MaCH software
tool [31]. Among all human chromosomes, the chromosome
19 has the highest gene density of all human chromosomes,
more than double the genome-wide average [32], [33]. In addi-
tion, this chromosome also includes the well-known AD
risk genes such as APOE, TOMM40 and ABCA7. Therefore,
a bi-multivariate association study between this chromosome
and whole brain imaging markers could be of great interest,
and has potential to yield interesting AD risk factors. We inves-
tigated 1,011 SNPs from chromosome 19 with the well-known
AD risk genes such as APOE included. The linkage disequi-
librium (LD) block information, indicating the structure of
highly correlated SNPs, was used as the prior knowledge. Our
aim is to study the associations between multi-modal imaging
QTs (GM densities for VBM-sMRI scans, amyloid values for
AV45-PET scans and glucose utilizations for FDG-PET scans)
and this segment of SNPs, and select those relevant imaging
markers and genetic loci.

2) Bi-Multivariate Association Identification: We first show
the training and testing CCCs in Table III, which indicates the
strength of the identified bi-multivariate associations between
SNPs and imaging QTs of three modalities. There are three
CCCs for each method since we have three imaging modal-
ities, thereby three SCCA tasks. In this table, we clearly
observe that the proposed method obtains better CCCs than
or comparable CCCs to both mSCCA and MTSCCA in terms
of each task. The multi-task SCCA also performs better
than mSCCA for most cases, confirming the superior mod-
eling capability of multi-task learning in multi-modal imaging

TABLE III
CCCS (MEAN±STD) ESTIMATED BETWEEN SNPS AND

IMAGING QTS OF THREE MODALITIES

Fig. 3. Comparison of canonical weights of SNPs in terms of each task.
Each row corresponds to an SCCA method: (1) mSCCA; (2) MTSCCA
and (3) the proposed method. Our method has two weights for SNPs and
imaging QTs owing to the parameter decomposition. Within each panel,
there are three rows corresponding to three SCCA tasks.

genetic scenes. This demonstrates that, decomposing canonical
weights into task-consistent and task-specific components, and
penalizing them distinctly to pursue a diverse feature selection,
the dirty MTSCCA exhibits improved bi-multivariate associa-
tions.

3) Modality-Consistent and Modality-Specific Feature Selec-
tion: Now we investigate the identified SNPs and imaging QTs
based on the absolute values of canonical weights. The heat
maps in Fig. 3 show the feature selection for SNPs. Since
our model has two separate components for SNPs, i.e. the
task-consistent component S and the task-specific component
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W, we show both of them here. mSCCA yields one canonical
weight vector for SNPs, and thus we repeatedly stack its
weight vector for three times. We observe that all SNPs with
non-zero values of our method have been shown to be relevant
to the progression of AD. For example, rs429358 (APOE)
is identified by both S and W, demonstrating its strong
association with AD. In addition, the dirty MTSCCA shows
a clear task-consistent pattern, indicating that these SNPs,
e.g. rs12721051 (APOC1) [34], rs56131196 (APOC1) [34],
rs438811 (APOC1) [35], rs483082 (APOC1), rs5117 (APOC1)
etc., could be identified no matter which imaging technol-
ogy is employed. Our method and MTSCCA identify more
AD-related loci than mSCCA, demonstrating the multi-task
modeling possesses comprehensive feature selection capacity.
The heat maps of imaging QTs, shown in Fig. 4, exhibit inter-
esting task-consistent and task-specific profiles. Our method
shows that the left hippocampus, the left olfactory sulcus [36],
the right inferior parietal lobule [37] and the left amygdala [38]
exhibit clearly task-consistent patterns, indicating that these
brain areas can be identified by all imaging technologies.
Besides, task-specific Z shows that the beta-amyloid depo-
sition in the left medial orbitofrontal cortex [39] and the left
medial frontal gyrus could be identified using the AV45-PET
scans. The left and right angular gyri [40], and the cingu-
lum [41] are identified by using the FDG-PET scans. Both
left and right of the eighth cerebellum [42] are highlighted
when using the VBM-sMRI scans. MTSCCA and mSCCA
can also identify several meaningful brain areas, however, they
could not uncover the different types of complex associations
between SNPs and imaging QTs of multiple modalities. This
real data study demonstrates that the dirty MTSCCA could be
very promising and meaningful in multi-modal brain imaging
genetics.

IV. DISCUSSION

In this section, we investigate the selected features regarding
the SNPs and imaging QTs, and their relationships to the
diagnosis status. This could further demonstrate the stratified
feature selection ability of the proposed method.

A. Top Selected Loci

We average the canonical weights across five folds to
select the top ten SNPs and show them in Table IV where
both the modality-consistent and modality-specific SNPs are
contained. The top ten modality-consistent SNPs and those
of the modality-specific are similar and the major difference
is their SNPs’s priorities. This is interesting since it reveals
that imaging QTs from different scanning machines focus on
different aspects of Alzheimer’s disease, thereby leading to
the identification of SNPs with distinct priorities. At the same
time, as long as the relevant ROIs are correctly identified,
the same sets of SNPs could be identified no matter which
imaging technology is used. It is worth noting that rs429358,
the well-known AD-risk locus, ranks the first within all three
modality-specific results, while it is not the first one in the
modality-consistent result. This seems unusual at first glance
but the truth is not. In the task-consistent results, the first six

TABLE IV
TOP TEN MODALITY-CONSISTENT AND MODALITY-SPECIFIC

SNPS BY AVERAGED CANONICAL WEIGHTS

loci are from the same LD group and thus their combined
effect might dominate rs429358 owing to the G2,1-norm for
consistent feature selection across multiple tasks.

To understand the modality-specific SNPs, we choose
rs10119, rs73052335 and rs12721046 for further investigation
because they are identified by only one or two SCCA tasks.
The one-way analysis of variance (ANOVA) is applied to
verify a SNP’s effect on the diagnosis with age, gender, years
of education and handedness being included as covariates.
The p-values show that all three SNPs pass through the
significance level (rs10119, p = 1.42 × 10−14; rs73052335,
p = 6.13×10−12; rs12721046, p = 8.41×10−11), indicating
their strong relationship to the AD. This demonstrates that
the dirty MTSCCA could successfully find out meaningful
modality-specific SNPs.

B. Top Selected Brain Imaging ROIs

The top ten brain imaging ROIs based on the averaged
canonical weights are shown in Table V. We observe that
distinct sets of modality-consistent and modality-specific ROIs
are identified in our analyses. Within the modality-consistent
ROIs, three types of imaging measurements show high consis-
tency which is guaranteed by the �2,1-norm. Meanwhile, there
are still modality-specific ROIs such as the left inferior occip-
ital lobe of FDG-PET and left insula gyrus of VBM-sMRI
scans. The brain glucose hypometabolism in the occipital
lobe revealed by the FDG-PET, and the atrophy in the left
insula gyrus revealed by the VBM-sMRI have been shown
to be related to AD [43], [44]. This complex and diverse
neurodegenerative patterns of AD is successfully identified by
our method, endorsing the necessity of the modality-specific
feature selection, which further underpins the motivation and
significance of this study.

We further investigate the selected modality-specific ROIs.
The first ROI of each SCCA task is the left medial
orbitofrontal gyrus (AV45-PET), the left posterior cingu-
late gyrus (FDG-PET), and the left hippocampus lobe
(VBM-sMRI), respectively. The one-way ANOVA analysis
shows that their main effects reach the significance level
(p < 2.2 × 10−16) when including age, gender, education
and handedness as covariates. This is very interesting since
our method not only identifies significant imaging ROIs, but
also assigns different priorities to different ROIs based on dif-
ferent imaging technologies. Therefore, our method provides a
diverse and meaningful clue for AD diagnosis and monitoring.
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Fig. 4. Comparison of canonical weights of imaging QTs in terms of each task. Each row corresponds to an SCCA method: (1) mSCCA; (2)
MTSCCA and (3) the proposed method. Our method has two weights for SNPs and imaging QTs owing to the parameter decomposition. Within
each panel, there are three rows corresponding to three SCCA tasks.

TABLE V
TOP TEN MODALITY-CONSISTENT AND MODALITY-SPECIFIC ROIS BY AVERAGED CANONICAL WEIGHTS

Fig. 5. The measurement distributions of imaging QTs (mean value
the first ROI of each SCCA task) among different diagnostic groups
and different imaging modalities. (a) The left medial orbitofrontal gyrus.
(b) The left posterior cingulate gyrus. (c) The left hippocampus lobe.

C. Population Stratification Analysis

We here conduct the population stratification analysis to
further evaluate the effectiveness of the modality-specific
feature selection. For the sake of simplicity, we investigate the
first ROI of each SCCA task associating with each imaging
modality, since those remaining ROIs can be analyzed in the
same way.

Fig. 5(a) presents distributions of the beta-amyloid depo-
sition in the left medial orbitofrontal gyrus among different
diagnostic groups and different imaging modalities. We clearly
observe that the beta-amyloid deposition patterns exhibits

differently. In particular, the beta-amyloid deposition shows
a significant increase (HCs vs. ADs: p = 6.93×10−19, SMCs
vs. ADs: p = 5.34×10−16, EMCIs vs. ADs: p = 8.73×10−14,
LMCIs vs. ADs: p = 2.12×10−4) in the AD group compared
with other groups. This significance also exists in EMCIs
and LMCIs compared with those other diagnostic groups. The
AD group also shows a clear brain glucose hypometabolism
(FDG-PET) in this ROI compared with those other groups.
It is interesting that, still in the left medial orbitofrontal gyrus,
the significant atrophy happens in dementia groups such as
LMCIs and ADs, while no pronounced difference among
preclinical and prodromal diagnostic groups such as EMCIs,
SMCs and HCs. The proposed dirty MTSCCA, as expected,
identifies this AD risk ROI in consistent with its diverse
distributions among different groups. The similar patterns
can also be observed in the left posterior cingulate gyrus
in Fig. 5(b), where the hypometabolism, revealed by the
FDG-PET, shows a significantly lower level in AD patients
than non-AD subjects. In contrast, the beta-amyloid deposition
in this ROI shows no significant difference among preclinical
and prodromal groups, and also shows no significant difference
between dementia groups. Interestingly, between preclinical
or prodromal groups and dementia groups, the beta-amyloid
deposition reaches the significance level. Fig. 5(c) shows that
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Fig. 6. Pairwise comparisons for modality-specific QT-SNP-diagnosis
interactions within HCs, SMCs, EMCIs, LMCIs and ADs, respectively.
Two-way ANOVA was applied to access the effects of genotype and
baseline diagnosis on imaging QTs. Age, gender, years of education,
handedness were included as covariates. (a) The beta-amyloid depo-
sition in the left medial orbitofrontal gyrus, rs73052335 and diagnostic
groups. (b) The glucose metabolism in the left posterior cingulate gyrus,
rs10119 and diagnostic groups. (c) The atrophy in the left hippocampus
lobe, rs12721046 and diagnostic groups.

more severe atrophy happens to the left hippocampus lobe
in AD patients compared with those non-AD subjects. The
severer the atrophy, the severer the dementia is. Moreover, both
reduced beta-amyloid deposition and glucose hypometabolism
happen to the left hippocampus lobe, which is different from
those observations in Fig. 5(a) and Fig. 5(b). Combined three
subfigures together, we obtain the similar results to previous
works which show that regional beta-amyloid deposition and
regional glucose metabolism have little to no association [45].
On the contrary, we cannot draw the same conclusion without
identifying modality-specific imaging QTs.

Despite the pairwise comparisons among different
diagnostic groups, it is also necessary to interpret the
identified phenotype-genotype associations within each
group in this imaging genetic study. On this account,
we use the first modality-specific QT-SNP pair in this
refined analysis. Certainly, those modality-consistent and
modality-specific QT-SNP pairs can be analyzed in the same
way. Two-way ANOVA results show that the main effects
of rs73052335 genotype (p = 2.55 × 10−30) and diagnosis
(p = 2.64 × 10−16) on beta-amyloid deposition in the left
medial orbitofrontal gyrus reach the significant level, while
their SNP-by-diagnosis interaction effect (p = 0.46) is
not. In addition, Fig. 6(a) contains pairwise comparisons
among the heterozygote CA, homozygous AA and CC
within each groups respectively. We observe that, excluding
SMCs, subjects with heterozygote CA and homozygous
CC have higher deposition than those with homozygous
AA. Furthermore, subjects with CC tends to hold higher
deposition than heterozygote CA in EMCIs and LMCIs but
not ADs. This reveals that subjects with heterozygote CA and
homozygous CC in rs73052335 locus are vulnerable to have
higher beta-amyloid deposition.

As for brain glucose metabolism, using measurements in
the left posterior cingulate gyrus, two-way ANOVA results
reveal that main effects of rs10119 genotype ( p = 1.85 ×
10−10), diagnosis (p = 3.59 × 10−24), as well as their
SNP-by-diagnosis interaction (p = 0.02) are significantly
different among distinct groups. The histogram, in Fig. 6(b),
within each group indicates that subjects with the minor allele
A, compared with ones without it, suffer from severer glucose
hypometabolism in left posterior cingulate gyrus. In LMCIs
and ADs, somewhat severer glucose hypometabolism happens

to patients with heterozygote AG than those with homozy-
gous AA, while this is not for HCs, SMCs and EMCIs.
These results indicate that subjects with heterozygote AG
and minor homozygous are vulnerable to severer glucose
hypometabolism.

The atrophy in the left hippocampus is a well-known AD
hallmark. The main effects of rs12721046 genotype ( p =
6.38×10−3) and diagnosis (p = 6.91×10−29) are pronounced
among distinct groups. Fig. 6(c) shows that atrophy patterns
for subjects with heterozygote AG, homozygous GG and AA
exhibit distinctly across groups. In particular, subjects with
homozygous AA suffer from heavy atrophy in left hippocam-
pus lobe in HCs, SMCs, EMCIs and LMCIs, but not in
ADs. This is interesting and further investigation should be
warranted.

In summary, results above might be caused by the com-
plicated pathogenesis that hallmarks of AD of different
imaging technologies exhibit regional heterogeneity. On one
hand, this diversity and complexity captured by different
imaging technologies such as PET and sMRI, offers the
opportunity to understand the pathogenesis of AD compre-
hensively. On the other hand, it makes an urgent request
for the modality-consistent and the modality-specific fea-
ture selection, since modality-consistent (MTSCCA [5] and
mSCCA [16]) or modality-specific (conventional independent
SCCA [16]) methods alone are insufficient. Finally, these
results demonstrate that the dirty MTSCCA can identify both
modality-consistent and modality-specific SNPs, imaging QTs
and their associations in an integrated model. Therefore, our
method is of great importance and meaning for multi-modal
brain imaging genetics benefitting from its novel multi-modal
bi-multivariate learning and clever parameter decomposition
strategy.

V. CONCLUSIONS

Imaging data collected by different technologies, measuring
the same brain distinctly, might carry complementary informa-
tion. In this paper, we propose a dirty multi-task SCCA method
which incorporates multiple modalities of imaging data into a
unified model. By decomposing the SCCA’s canonical weights
into the task-consistent component and the task-specific com-
ponent, and penalizing them distinctly, our method has the
ability of identifying diverse and meaningful bi-multivariate
associations between SNPs and imaging QTs. We derive an
efficient optimization algorithm to solve the dirty model, and
it is guaranteed to converge.

We compared the dirty MTSCCA with the con-
ventional multi-view SCCA (mSCCA) and mutli-task
SCCA (MTSCCA) on both synthetic data sets and real neu-
roimaging genetic data. The four synthetic data sets have
different numbers of samples, features, and noises. The results
on synthetic data sets demonstrated that our method improved
both correlation coefficients and feature selection results. The
real neuroimaging genetic data were downloaded from the
ADNI database. Our method also obtained better perfor-
mance than the benchmarks with higher correlation coeffi-
cients and clearer canonical weight patterns. Besides, our
method identified task-consistent and task-specific features
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with respect to SNPs and imaging QTs. The post analysis
showed that most of the top ten SNPs and ROIs, including
both task-consistent and task-specific markers, are correlated
with AD. The task-specific ROIs identified by our method
showed promising consistency with previous studies that dif-
ferent ROIs could be the hallmark of AD if different imaging
technologies were used. This demonstrated the effectiveness of
the proposed dirty multi-task SCCA, and further demonstrated
it could be a powerful tool in big brain imaging genetics. Since
the diagnosis status could be helpful for identifying interesting
SNPs and imaging QTs, we intend to incorporate the diagnosis
status into the model to make it supervised.
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