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a b s t r a c t 

Brain imaging genetics becomes an important research topic since it can reveal complex associations be- 

tween genetic factors and the structures or functions of the human brain. Sparse canonical correlation 

analysis (SCCA) is a popular bi-multivariate association identification method. To mine the complex ge- 

netic basis of brain imaging phenotypes, there arise many SCCA methods with a variety of norms for 

incorporating different structures of interest. They often use the group lasso penalty, the fused lasso 

or the graph/network guided fused lasso ones. However, the group lasso methods have limited capa- 

bility because of the incomplete or unavailable prior knowledge in real applications. The fused lasso and 

graph/network guided methods are sensitive to the sign of the sample correlation which may be in- 

correctly estimated. In this paper, we introduce two new penalties to improve the fused lasso and the 

graph/network guided lasso penalties in structured sparse learning. We impose both penalties to the 

SCCA model and propose an optimization algorithm to solve it. The proposed SCCA method has a strong 

upper bound of grouping effects for both positively and negatively highly correlated variables. We show 

that, on both synthetic and real neuroimaging genetics data, the proposed SCCA method performs better 

than or equally to the conventional methods using fused lasso or graph/network guided fused lasso. In 

particular, the proposed method identifies higher canonical correlation coefficients and captures clearer 

canonical weight patterns, demonstrating its promising capability in revealing biologically meaningful 

imaging genetic associations. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, brain imaging genetics becomes more and more pop-

lar in biomedical and bioinformatics studies. Brain imaging ge-

etics aims to detect genetic associations with brain imaging phe-

otypes, and further to uncover how genetic factors influence the

tructure or function of the human brain using imaging measure-

ents as the quantitative endophenotype ( Potkin et al., 2009b;

ounou et al., 2010; Kim et al., 2013; Saykin et al., 2015 ). The
� Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
∗ Corresponding author. 

E-mail addresses: dulei@nwpu.edu.cn (L. Du), Li.Shen@pennmedicine.upenn.edu 

L. Shen). 
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enetic factors, such as the single nucleotide polymorphisms

SNPs), and imaging quantitative traits (QTs) are all multivariate.

herefore, identifying complex bi-multivariate associations that 

annot be achieved by univariate methods is an important task in

rain imaging genetics. 

Sparse canonical correlation analysis (SCCA) gains wide atten-

ion in brain imaging genetics for its powerful capability in bi-

ultivariate association identification and feature selection. There

re many SCCA methods depending on different type of sparsity-

nducing techniques. The � 1 -norm penalty is among the most pop-

lar ones; however, it only pursuits individual feature level sparsity

 Witten et al., 2009; Witten and Tibshirani, 2009; Parkhomenko

t al., 2009; Hardoon and Shawe-Taylor, 2011; Chi et al., 2013 ).

he biomarkers usually function jointly other than individually

 Shen et al., 2010 ) in biomedical studies. For example, correla-

ions usually exists between SNPs in a linkage disequilibrium (LD)

lock in the genome, and also among voxels in a region of interest

ROI) in the brain. Therefore, detecting the structural sparsity, such

s the group level sparsity or the graph/network level sparsity, is

https://doi.org/10.1016/j.media.2020.101656
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101656&domain=pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:dulei@nwpu.edu.cn
mailto:Li.Shen@pennmedicine.upenn.edu
https://doi.org/10.1016/j.media.2020.101656


2 L. Du, K. Liu and X. Yao et al. / Medical Image Analysis 61 (2020) 101656 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

S  

a  

a  

r  

B  

w  

v

2

 

a  

E  

t  

p  

d

2

 

fi

�  

w  

p

 

l  

l  

m  

a  

t  

p  

e  

t  

T

2

 

n  

m  

d  

n  

g  

a  

a  

f  

t

�  

w  

w  

r

 

g  

t  

b  

a  

o  

n  

n  
of great interest and importance in brain imaging genetics ( Shen

et al., 2010; 2014 ). 

To accommodate the structural sparsity, several structured SCCA

methods have been proposed. They can be roughly classified into

two kinds based on their different penalties ( Du et al., 2016 ). The

first kind of SCCA methods use the group lasso penalty, which

is an intra-group � 2 -norm and inter-group � 1 -norm ( Silver et al.,

2012; Chen et al., 2012; Chen and Liu, 2012; Chen et al., 2013; Lin

et al., 2014; Du et al., 2014; Yan et al., 2014; Du et al., 2018; 2019 ).

The group lasso tends to perform variable selection at the group

level, and each group will be shrunk to zero or not as a whole

( Yuan and Lin, 2006 ). To our knowledge, these SCCA methods re-

quire the group structure to be provided in advance, which limits

their applications as the precise prior knowledge is hard to ob-

tain in real biomedical studies ( Du et al., 2016 ). The second kind

of SCCA methods recover the structure information via the graph

or network guided penalty ( Du et al., 2016; Chen et al., 2012; Chen

and Liu, 2012; Chen et al., 2013; Yan et al., 2014; Du et al., 2017 ).

They are more flexible than the previous type since they can either

use any available prior knowledge to recover the specific struc-

ture, or operate in a structure pursuing mode ( Du et al., 2016;

Chen et al., 2012 ). There are three types of graph guided penal-

ties: (1) The graph guided fused lasso penalty and its variants ( Du

et al., 2016; Chen et al., 2012; Chen and Liu, 2012; Chen et al.,

2013 ), (2) the sample correlation sign based graph guided fused

� 2 -norm penalty ( Chen and Liu, 2012; Yan et al., 2014 ), and (3)

the graph guided absolute fused � 2 -norm penalty ( Du et al., 2016 ).

Du et al. (2016) has shown that the first two types of graph guided

penalties can introduce estimation bias since the sign of the sam-

ple correlations may be incorrectly calculated. The reason could be

that the sign can be easily swapped when removing a fraction of

the data or perturbing the data as in bootstrap or sub-sampling.

The third type of SCCA methods impose � 2 -norm on the structure

penalty terms, which might not produce desirable structural spar-

sity ( Du et al., 2017 ). 

Inspired by the success of group lasso, we consider a case

where each group consists of only two variables. Both variables

will be simultaneously shrunk to zero or not with equal or sim-

ilar weights. This motivates us to introduce two novel penalties,

i.e. the fused pairwise group lasso (FGL) and the graph guided

pairwise group lasso (GGL). The FGL imposes pairwise group lasso

onto adjacent variables to introduce a chain of smoothness, and

the GGL imposes pairwise group lasso terms guided by an undi-

rect graph. The FGL encourages adjacent smoothness, and thus can

identify successively highly correlated signals even though their

signs are opposite. The GGL is more powerful than those con-

ventional graphical lasso based methods as it is sample correla-

tion sign independent too. Both FGL and GGL can be used in the

data-driven mode where no prior knowledge is given, while FGL

does assume that the genetic data has a sequential structure. Be-

sides, GGL bridges the gap between the group lasso and graph

guided penalties. As stated earlier, there usually exists a chain re-

lationship across SNPs and a graphical relationship among vox-

els. To better solve these brain imaging genetic problems, we here

propose a novel SCCA model (FGL-SCCA) which imposes the FGL

penalty onto the genetic markers and GGL penalty onto the imag-

ing measurements. FGL-SCCA intends to recover the adjacent and

graphical smoothness and structure information automatically. It

is sample correlation sign independent, which means it can as-

sign equal or similar weights for those correlated variables no

matter whether they are positively or negatively correlated. Thus

FGL-SCCA is more robust than those existing SCCA methods using

fused lasso and graph guided penalties. Meanwhile, we propose

an efficient optimization algorithm to solve the FGL-SCCA prob-

lem. We also provide a quantitative upper bound for the group-

ing effects of FGL-SCCA to demonstrate its structure identification
apability. Compared with three state-of-the-art SCCA methods FL-

CCA ( Witten and Tibshirani, 2009 ), NS-SCCA ( Chen and Liu, 2012 )

nd AGN-SCCA ( Du et al., 2016 ), FGL-SCCA obtains higher or equal

nd more stable correlation coefficients on both synthetic data and

eal imaging genetic data from an Alzheimer’s disease (AD) cohort.

esides, our method also identifies cleaner and sparser canonical

eights than those benchmarks, and thus has the potential to pro-

ide an easier interpretation to guide subsequent analysis. 

. Methods 

In this paper, we denote scalars as italic letters, column vectors

s boldface lowercase letters, and matrices as boldface capitals. The

uclidean norm of a vector u is denoted as || u || . X ∈ R 

n ×p is a ma-

rix representing the SNP data, where n is the number of partici-

ants and p is the number of SNPs. Y ∈ R 

n ×q is the matrix of QT

ata with q being the number of imaging measurements. 

.1. The fused pairwise group lasso (FGL) 

To recover the fused associations from the genetic data, we de-

ne the FGL penalty as follows 

FGL (u ) = λ1 

p−1 ∑ 

i =1 

w i,i +1 

√ 

u 

2 
i 

+ u 

2 
i +1 

, (1)

here w i,i +1 is the weight for two adjacent variables, and λ1 is a

ositive tuning parameter. 

The FGL absorbs the advantages of both group lasso and fused

asso. Thus its merits are twofold. On one hand, the pairwise group

asso constraint introduces a chain of smoothness across all ele-

ents of the vector u . This makes two adjacent as well as strongly

ssociated variables being equal or similar with respect to their es-

imated weights. On the other hand, owing to the � 2 -norm, the FGL

enalty is sample correlation sign independent. Therefore, it can

xtract signals that the fused lasso cannot, e.g. two adjacent fea-

ures with negative correlation. We will demonstrate this later in

heorem 2 . 

.2. The graph guided pairwise group lasso (GGL) 

Though the FGL could mine structure information, the smooth-

ess is only imposed on adjacent variables. We sometimes are

ore interested in the network or graph structure hidden in the

ata. As discussed earlier, both functional and structural mecha-

isms of the human brain show a network structure rather than a

roup structure. Therefore, imposing the group-like constraint such

s the group lasso or FGL might not be the best option. On this

ccount, we extend the FGL to the graphical mode. Mapping the

eature space in terms of v onto an undirected graph G , we define

he graph guided pairwise group lasso (GGL) as 

GGL (v ) = λ2 

∑ 

( j,k ) ∈ E 
ω j,k 

√ 

v 2 
j 
+ v 2 

k 
, (2)

here E is the edge set guided by the graph G , and ω j,k is the edge

eight. λ2 is a positive tuning parameter to control the amount of

egularization. 

The GGL penalty takes the advantage of both group lasso and

raphical lasso. First, if there is no prior knowledge, every pairwise

erm will be included to encourage | v j | ≈ | v k | which is guaranteed

y the pairwise group lasso. This holds for both positively and neg-

tively correlated features, which is supported by Theorem 2 . Sec-

nd, if the connectivity information, e.g. such as the human con-

ectome, is available, the constraint will be guided by the con-

ectivity information. This will encourage | v j | = | v k | if imaging
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arkers j and k are in the same biological sub-network no mat-

er whether they are positively or negatively correlated. Therefore,

oth imaging markers have a high probability to be selected. 

.3. The FGL-SCCA model 

Let both X and Y be centered and normalized, we impose FGL

n the genetics data and GGL on the brain imaging data, and define

he FGL-SCCA model as 

in 

u , v 
−u 

� X 

� Yv + �FGL (u ) + �GGL (v ) s.t. || Xu || 2 ≤ 1 , || Yv || 2 ≤ 1 ,

(3) 

here u and v are called canonical loadings or canonical weights;

FGL ( u ) is the newly introduced FGL penalty to induce adjacent

moothness, and �GGL ( v ) is used to induce graphical smoothness.

e do not artificially assume the in-set covariance matrices X 

� X
nd Y 

� Y to be identity so that the auto-covariance information

ould be preserved in the proposed model. ( Du et al., 2014 ). 

The Lagrangian associated with the problem writes 

 (u , v ) = −u 

� X 

� Yv + �FGL (u ) + �GGL (v ) 

+ 

γ1 

2 

(|| Xu || 2 − 1) + 

γ2 

2 

(|| Yv || 2 − 1) , (4) 

ith γ 1 and γ 2 are positive tuning parameters. The solution is at-

ained when the KKT conditions are satisfied. Thus the main dif-

culty in solving (4) becomes how to deduce the KKT conditions.

his involves calculating the partial derivative of L (u , v ) with re-

pect to u and v , especially the derivatives of the FGL and GGL

enalty functions, which are very complicated. 

.4. Smoothing the penalties 

Suppose f (μ, υ) = 

√ 

μ + υ with both μ and υ being non-

egative variables, we have the following equation according to the

aylor’s theorem 

f (μ, υ) = 

√ 

μ + υ = 

√ 

μ(t) + υ(t) + f ′ μ
(
μ(t) , υ(t) 

)
(μ − μ(t) ) 

+ f ′ υ
(
μ(t) , υ(t) 

)
(υ − υ(t) ) + R (μ) + R (υ) , (5) 

here (μ(t) , υ(t) ) is the neighbour of (μ, υ) , f ′ μ
(
μ(t) , υ(t) 

)
=

 / (2 
√ 

μ(t) + υ(t) ) is the gradient 1 of f (μ, υ) with respect to μ at

(μ(t) , υ(t) ) , and f ′ υ
(
μ(t) , υ(t) 

)
= 1 / (2 

√ 

μ(t) + υ(t) ) is that with re-

pect to υ at (μ(t) , υ(t) ) . R ( μ) and R (υ) are the remainder terms.

e then define the function g(μ, υ) by dropping the remainders 

(μ, υ) = 

√ 

μ(t) + υ(t) + f ′ μ
(
μ(t) , υ(t) 

)
(μ − μ(t) ) 

+ f ′ υ
(
μ(t) , υ(t) 

)
(υ − υ(t) ) = 

√ 

μ(t) + υ(t) 

+ 

1 

2 

√ 

μ(t) + υ(t) 
(μ − μ(t) ) + 

1 

2 

√ 

μ(t) + υ(t) 
(υ − υ(t) )

= 

μ + υ

2 

√ 

μ(t) + υ(t) 
+ 

√ 

μ(t) + υ(t) 

2 

. (6)

Obviously, g(μ, υ) is an affine function of μ and υ . Thus it is

ontinuous and differentiable, and we have the following proposi-

ion. 
1 Note that the gradient f ′ μ
(
μ(t) , υ(t) 

)
= 1 / (2 

√ 

μ(t) + υ(t) ) will not exist if 
 

μ(t) + υ(t) = 0 . We handle this issue by using 
√ 

μ(t) + υ(t) + ζ for regulariza- 

ion, where ζ is a tiny positive number. It is easy to verify that f ′ μ
(
μ(t) , υ(t) 

)
= 

 / (2 
√ 

μ(t) + υ(t) + ζ ) is the sub-gradient and thus inherits the same properties to 

he gradient in optimizing problems when ζ → 0. 

 

r  

t  

t

roposition 1. Given functions f (μ, υ) = 

√ 

μ + υ, g(μ, υ) with the

orm of Eq. (6) , and (μ(t) , υ(t) ) is the neighbour of (μ, υ) , then the

ollowing three rules hold. 

1) f (μ, υ) and g(μ, υ) are equal at (μ(t) , υ(t) ) , i.e. f (μ(t) , υ(t) ) =
g(μ(t) , υ(t) ) ; 

2) f (μ, υ) and g(μ, υ) have the same partial derivatives

at (μ(t) , υ(t) ) , i.e. f ′ μ
(
μ(t) , υ(t) 

)
= g ′ μ

(
μ(t) , υ(t) 

)
and

f ′ υ
(
μ(t) , υ(t) 

)
= g ′ υ

(
μ(t) , υ(t) 

)
; 

3) g(μ, υ) is an upper bound of f (μ, υ) , i.e. f (μ, υ) ≤ g(μ, υ) . 

roof. The first and the second rules are obvious. Thus we put em-

hases on the third rule. Note that f ′ μ
(
μ(t) , υ(t) 

)
= f ′ υ

(
μ(t) , υ(t) 

)
=

 / (2 
√ 

μ(t) + υ(t) ) , the difference between f (μ, υ) and g(μ, υ) is

g(μ, υ) − f (μ, υ) = 

μ+ υ
2 
√ 

μ(t) + υ(t) 
+ 

√ 

μ(t) + υ(t) 

2 
− √ 

μ + υ

= 

1 

2 
√ 

μ(t) + υ(t) 
( 
√ 

μ(t) + υ(t) − √ 

μ + υ) 2 ≥ 0 . 
(7) 

This yields f (μ, υ) ≤ g(μ, υ) , which completes the proof. �

Substituting μ = u 2 
i 

and υ = u 2 
i +1 

into Eq. (6) , we obtain 

(u 

2 
i , u 

2 
i +1 ) = 

u 

2 
i 

+ u 

2 
i +1 

2 

√ 

(u 

(t) 
i 

) 2 + (u 

(t) 
i +1 

) 2 
+ 

√ 

(u 

(t) 
i 

) 2 + (u 

(t) 
i +1 

) 2 

2 

(8)

here u (t) 
i 

and u (t) 
i +1 

are respectively the estimates of u i and u i +1 

n the t -th iteration in an optimizing procedure. Based on Propo-

ition 1, g(u 2 
i 
, u 2 

i +1 
) is a quadratic approximation to f (u 2 

i 
, u 2 

i +1 
) at

(u (t) 
i 

, u (t) 
i +1 

) , and moreover it is an upper bound on f (u 2 
i 
, u 2 

i +1 
) . Thus

mbedding them into convex loss functions will lead to the same

olution path. We then use g(u 2 
i 
, u 2 

i +1 
) as a surrogate of f (u 2 

i 
, u 2 

i +1 
)

n the remainder of this paper. Specifically, we have the surrogate

unction of the FGL penalty 

App 
FGL 

(u ) = λ1 

p−1 ∑ 

i =1 

w i,i +1 · g(u 

2 
i , u 

2 
i +1 ) = λ1 

p−1 ∑ 

i =1 

w i,i +1 ·
⎡ 

⎣ 

u 

2 
i 

+ u 

2 
i +1 

2 

√ 

(u 

(t) 
i 

) 2 + (u 

(t) 
i +1 

) 2 
+ 

√ 

(u 

(t) 
i 

) 2 + (u 

(t) 
i +1 

) 2 

2 

⎤ 

⎦ . (9) 

Since GGL has a similar form to FGL, it is easy to obtain the

urrogate function of the GGL penalty with respect to v , i.e. 

App 
GGL 

(v ) = λ2 

∑ 

( j,k ) ∈ E 
ω j,k · g(v 2 j , v 

2 
k ) = λ2 

∑ 

( j,k ) ∈ E 
ω j,k 

×

⎡ 

⎣ 

v 2 
j 
+ v 2 

k 

2 

√ 

(v (t) 
j 

) 2 + (v (t) 
k 

) 2 
+ 

√ 

(v (t) 
j 

) 2 + (v (t) 
k 

) 2 

2 

⎤ 

⎦ . (10) 

.5. The surrogate objective and algorithm 

Substituting �FGL ( u ) and �GGL ( v ) in Eq. (4) by �App 
FGL 

(u ) and
App 
GGL 

(v ) in Eqs. (9) and (10) , respectively, we have the surrogate

bjective 

 (u , v ) = −u 

� X 

� Yv + �App 
FGL 

(u ) + �App 
GGL 

(v ) 

+ 

γ1 

2 

( ‖ 

Xu ‖ 

2 − 1) + 

γ2 

2 

( ‖ 

Yv ‖ 

2 − 1) . (11) 

This objective is continuous, biconvex and differentiable with

espect to u and v , and thus it is easy to solve. By respectively

aking the partial derivatives of L (u , v ) with respect to u, v and

hen setting the results to zero, we have the following equations. 
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0 = −X 

� Yv + (λ1 D 1 + γ1 X 

� X ) u , ‖ 

Xu ‖ 

2 − 1 = 0 , 

0 = −Y 

� Xu + (λ2 D 2 + γ2 Y 

� Y ) v , ‖ 

Y v ‖ 

2 − 1 = 0 , (12)

where D 1 is a diagonal matrix as follows 

D 1 = ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 1 , 2 √ 

(u 

(t) 
1 

) 2 + (u 

(t) 
2 

) 2 

. . . 
w i −1 ,i √ 

(u 

(t) 
i −1 

) 2 + (u 

(t) 
i 

) 2 
+ 

w i,i +1√ 

(u 

(t) 
i 

) 2 + 

and

D 2 = ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

q ∑ 

k =1 , (1 ,k ) ∈ E 

ω 1 ,k √ 

(v (t) 
1 

) 2 + (v (t) 
k 

) 2 

. . . 
q ∑ 

k =1 , ( j,k ) ∈ E 

ω j,k √ 

(v (t) 
j 

) 2 + (v (t

k 

is also a diagonal matrix. 

Now we have the closed-form updating rules 

u 

(t+1) = (λ1 D 

(t) 
1 

+ γ1 X 

� X ) −1 X 

� Yv (t) 
, u 

(t+1) = u 

(t+1) / || Xu 

(t+1) || 2 
(15)

v (t+1) = (λ2 D 

(t) 
2 

+ γ2 Y 

� Y ) −1 Y 

� Xu 

(t+1) 
, v (t+1) = v (t+1) / || Yv (t+1) ||

(16)

where D 

(t) 
1 

and D 

(t) 
2 

denotes the t -th iteration of D 1 and D 2 respec-

tively. 

The procedure of the FGL-SCCA is shown in Algorithm 1 . u and

v are updated alternatively until the convergence criterion is met,

such as the predefined termination condition or number of maxi-

mum iterations. In Algorithm 1 , Steps 3–6 are repeated until con-

vergence. In each iteration, Step 3 is easy to calculate as D 1 can be

computed via matrix computation to avoid time consuming loop.

Algorithm 1 The FGL-SCCA algorithm. 

Require: 

X ∈ R 

n ×p , Y ∈ R 

n ×q , λ1 , λ2 , γ1 , γ2 

Ensure: 

Canonical weights u and v . 

1: Initialize u ∈ R 

p×1 , v ∈ R 

q ×1 ; 

2: while not converged do 

3: Update the diagonal matrix D 1 according to Eq. (13); 

4: Solve u according to Eq. (15); 

5: Update the diagonal matrix D 2 according to Eq. (14); 

6: Solve v according to Eq. (16); 

7: end while 
t

 

) 2 

. . . 
w p−1 ,p √ 

(u 

(t) 
p−1 

) 2 + (u 

(t) 
p ) 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(13)

. . . 
q ∑ 

k =1 , (q,k ) ∈ E 

ω q,k √ 

(v (t) 
q ) 2 + (v (t) 

k 
) 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(14)

his is the same case for Step 5. Step 4 and Step 6 are the key

teps, and we compute them by solving a system of linear equa-

ions with approximative quadratic complexity rather than com-

uting the matrix inverse with cubic complexity. Thus the compu-

ation burden is dramatically reduced. 

.6. Convergence analysis 

We have the following theorem for Algorithm 1 . 

heorem 1. Solving the objective (11) is equivalent to solving the ob-

ective (4) . 

roof. The objective (11) and the objective (4) are only different in

he penalties. According to Proposition 1 in Section 2.4 , the three

ules also hold for both objective (4) and (11) : (1) L (u 

(t) , v (t) ) =
 (u 

(t) , v (t) ) , (2) L 

′ 
u 

(
u 

(t) , v (t) 
)

= L 

′ 
u 

(
u 

(t) , v (t) 
)

and L 

′ 
v 

(
u 

(t) , v (t) 
)

=
 

′ 
v 

(
u 

(t) , v (t) 
)
, and (3) L (u , v ) ≤ L (u , v ) . Thus the objective (11) ap-

roximates to the objective (4) point-by-point during the iteration.

herefore, solving (11) is equivalent to solving (4) . �

Actually, the Algorithm 1 is an alternating minimization method

hich will converge to the leading canonical pair ( Golub and

ha, 1995 ). We further verify that u = { 1 , 0 , · · · , 0 } and v =
 1 , 0 , · · · , 0 } are a pair of feasible solution to the objective (11) .

his implies that the Slater’s condition holds. Therefore, satisfy-

ng the KKT condition guarantees that Algorithm 1 will converge

o one local optimum of objective (11) , which is also the local op-

imum of the objective (4) as supported by Theorem 1 . In the im-

lementation, we solve a system of linear equations with quadratic

omplexity to update both u and v , without computing the in-

erse of the large covariance matrix with cubic complexity. Thus

he whole algorithm is of desired efficiency. 



L. Du, K. Liu and X. Yao et al. / Medical Image Analysis 61 (2020) 101656 5 

2

 

s  

a  

n  

t

T  

t  

s  

s  

c

s∣∣∣∣∣
P  

i  

w

λ

λ

 

 

‖  

−

 

b  

a

w

 

j  

g  

c

 

d  

m  

l

 

a  

l  

b  

ρ  

w  

ρ  

c  

s  

b  

A  

c

3

3

 

a  

m  

S  

n  

t  

t  

t  

t  

(  

e  

b  

m  

o  

s

 

i  

c  

h  

i  

c  

T

a  

i  

s  

t  

m  

r  

p  

t  

2  

f  

c  

d  

i  

λ  

a  

t  

r  

a  
.7. The grouping effects 

The grouping effects of FGL-SCCA refers to estimating equal or

imilar values for successive variables of u and for connected vari-

bles of v . This implies the simultaneous selection of adjacent ge-

etic features and of correlated imaging features, which is guaran-

eed by the following theorem. 

heorem 2. Given two views of data X and Y that have been cen-

ered and normalized, and the tuned parameters ( λ, γ ) . Let u 

∗ be the

olution to the FGL-SCCA problem. For the sake of simplicity, we as-

ume that only x i and x i +1 are correlated. Let ρi,i +1 be their sample

orrelation. Then the optimal u ∗
i 

and u ∗
i +1 

associated with x i and x i +1 

atisfy, ∣∣u 

∗
i 

∣∣ −
∣∣u 

∗
i +1 

∣∣√ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 

∣∣∣∣∣ ≤ 1 + γ1 

λ1 w i,i +1 

√ 

2(1 − | ρi,i +1 | ) . (17) 

roof. (1) We first prove the inequations when ρi,i +1 ≥ 0 , indicat-

ng x i and x i +1 are positively correlated. Since u 

∗ is the solution,

e have ∂L 
∂u i 

∣∣∣
u ∗

i 

= 0 and 

∂L 
∂u i +1 

∣∣∣
u ∗

i +1 

= 0 , i.e., 

1 D 1 ,i u 

∗
i + γ1 x 

� 
i Xu 

∗ = x 

� 
i Yv ∗, 

1 D 1 ,i +1 u 

∗
i +1 + γ1 x 

� 
i +1 Xu 

∗ = x 

� 
i +1 Yv ∗. (18) 

According to the definition of D 1 , we obtain 

λ1 w i,i +1 √ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 
u 

∗
i + γ1 x 

� 
i Xu 

∗ = x 

� 
i Yv ∗, 

λ1 w i,i +1 √ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 
u 

∗
i +1 + γ1 x 

� 
i +1 Xu 

∗ = x 

� 
i +1 Yv ∗. (19) 

Subtracting these two equations, we arrive at 

λ1 w i,i +1 √ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 
(u 

∗
i − u 

∗
i +1 ) = (x i − x i +1 ) 

� ( Yv ∗ − γ1 Xu 

∗) (20)

Taking � 2 -norm on both sides, we arrive at 

λ1 w i,i +1 √ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 

∣∣u 

∗
i − u 

∗
i +1 

∣∣ ≤ ‖ 

x i − x i +1 ‖ 

|| Yv ∗ − γ1 Xu 

∗|| 

= ‖ 

x i − x i +1 ‖ 

√ 

‖ 

Yv ∗‖ 

2 − 2 γ1 (u 

∗) � X 

� Yv ∗ + γ 2 
1 ‖ 

Xu 

∗‖ 

2 
(21) 

Since X and Y are centered and normalized, we have

 

x i − x i +1 ‖ = 

√ 

2(1 − ρi,i +1 ) . Then using ‖ Xu 

∗‖ = 1 , ‖ Yv ∗‖ = 1 ,

(u 

∗) � X 

� Yv ∗ ≤ 1 , we obtain the upper bound ∣∣u 

∗
i 
− u 

∗
i +1 

∣∣√ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 
≤ 1 + γ1 

λ1 w i,i +1 

√ 

2(1 − ρi,i +1 ) . (22) 

(2) If ρi,i +1 < 0 , it is clear that sgn (u ∗
i 
) = −sgn (u ∗

j 
) . By adding

oth equations in Eq. (19) instead of subtracting them, we finally

rrive at, ∣∣u 

∗
i 
+ u 

∗
i +1 

∣∣√ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 
≤ 1 + γ1 

λ1 w i,i +1 

√ 

2(1 + ρi,i +1 ) . (23) 

Combining Eqs. (22) and (23) together yields ∣∣| u 

∗
i 
| − | u 

∗
i +1 

| ∣∣√ 

(u 

∗
i 
) 2 + (u 

∗
i +1 

) 2 
≤ 1 + γ1 

λ1 w i,i +1 

√ 

2(1 − | ρi,i +1 | ) , (24) 

hich completes the proof. �

The GGL has similar entries to the FGL by extending the ad-

acent smoothness to the graphical smoothness. Thus similar ar-

ument yields the upper bound of grouping effects in terms of
anonical weight v , i.e. ∣∣| v ∗
j 
| − | v ∗

k 
| ∣∣√ 

(v ∗
j 
) 2 + (v ∗

k 
) 2 

≤ 1 + γ2 

λ2 ω j,k 

√ 

2(1 −
∣∣ρ j,k 

∣∣) . (25) 

It is interesting that the Eqs. (24 ) and ( 25) give a normalized

istance measurement for two variables. The range for this nor-

alized distance varies from 0 to 1. This can clearly tell the simi-

arity strength between two variables. 

For the FGL penalizing canonical weight u , Theorem 2 provides

 qualitative description of the bound accommodating the abso-

ute value of differences between two successive variables. The

ound directly depends on their sample correlation strength. If

i,i +1 ≥ 0 , a higher correlation between two variables pushes to-

ard a smaller difference between their estimated coefficients. If

i,i +1 < 0 , a smaller value promotes a smaller sum between their

oefficients. This implies that the two coefficients will be equal or

imilar in amplitude. Therefore, the FGL-SCCA will strongly smooth

etween two highly correlated successive variables in terms of u .

s for the GGL penalizing v , the same result exists between two

onnected variables which are not necessary to be neighbours. 

. Results 

.1. Benchmarks and experimental setup 

One goal of this paper is to investigate the structure detection

bility without requiring the prior knowledge. Three benchmark

ethods are used in this study for comparison. They are the FL-

CCA (fused lasso based SCCA) method which imposes the smooth-

ess constraint between adjacent variables ( Witten et al., 2009 ),

he NS-SCCA (network structured SCCA) method whose penalty

erms are network guided fused lasso ( Chen and Liu, 2012 ), and

he AGN-SCCA (absolute GraphNet SCCA) method whose penalty

erms are also guided by graph but different to that of NS-SCCA

 Du et al., 2016 ). The latter two methods are different in both mod-

ling and optimizing techniques, and are deemed to be among the

est structured SCCA methods by now. The group lasso based SCCA

ethods require prior knowledge regarding the group information

f variables, and hence we do not include them in the empirical

tudy. 

There are four parameters for all the SCCA methods, includ-

ng the proposed FGL-SCCA. Blindly tuning them will incur heavy

omputation burden. For the efficiency purpose, we employ some

euristic strategy to lower down the computation burden regard-

ng parameters tuning. Firstly, we observe that λi and γ i ( i ∈ {1, 2})

ontribute oppositely to the grouping effects as shown in

heorem 2 . Thus simultaneously increasing or decreasing both λi 

nd γ i ( i ∈ {1, 2}) will lead to similar grouping results. Secondly,

n this study, we prefer the structure pattern which is more sen-

itive to λi ( i ∈ {1, 2}). Therefore, we fix γ 1 and γ 2 , and only

une the remaining two parameters λ1 and λ2 . Thirdly, an SCCA

ethod and a conventional CCA will yield similar results if pa-

ameters of SCCA are too small. On the contrary, SCCA will over-

enalize the result when the parameters are too large. So a neither

oo large nor too small parameter is more reasonable ( Du et al.,

016 ). As a result, we optimally tune them via a grid search

rom 10 i ( i = −5 , −4 , · · · , 0 , · · · , 4 , 5 ) through the nested five-fold

ross-validation . Specifically, in the inner loop where the whole

ata are the training set of the external loop, we keep calculat-

ng CV (λ, γ ) = 

1 
5 

∑ 5 
j=1 Cor r ( X − j u j , Y − j v j ) by changing only λ1 or

2 , where X − j and Y − j are the j -th subset of the inner testing set,

nd u j and v j are the canonical weights estimated from the inner

raining set. We choose parameters that generate the highest cor-

elation coefficients ( argmax CV (λ, γ ) ) as the optimal parameters

nd use them in the external loop to generate the final results. All
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Fig. 1. Canonical weights estimated on synthetic data. The first row is the ground truth, and each remaining row corresponds to an SCCA method: (1) FL-SCCA, (2) NS-SCCA, 

(3) AGN-SCCA, and (4) FGL-SCCA. For each method, the estimated weights of u are shown on the left panel, and those of v are shown on the right. In each subfigure, the 

vertical axis represents the indices of each u (left panel) or v (right panel), and the horizontal axis represents 250 runs of experiments (50 times of 5-fold cross-validation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these methods utilize the same partition during cross-validation to

make a fair comparison. Besides, we set the edge weight to be one

i.e. w i,i +1 = 1 for FGL penalty and ω j,k = 1 for GGL penalty, and

other type of weights can also be employed, e.g. w i,i +1 = | ρi,i +1 | d ,
where d is a positive integer to model the strength of the feature

correlation. Finally, for each parameter setup we repeat the experi-

ment 50 times and report the average results, which could further

assure a stable performance. 

For the proposed FGL-SCCA, we terminate the algorithm when

both of the two conditions are satisfied, i.e. max i 

∣∣∣u (t+1) 
i 

− u (t) 
i 

∣∣∣ ≤

ε and max j 

∣∣∣v (t+1) 
j 

− v (t) 
j 

∣∣∣ ≤ ε where ε is the tolerable error. We

empirically set ε = 10 −5 from experiments in this paper. The

implementation of the proposed method is available at github

(https://github.com/dulei323/SCCA-FGL). 

3.2. Simulation study 

We generate six data sets with different properties in this sim-

ulation study to assess the performance of FGL-SCCA in different

situations. The properties, such as different ground truths, spar-

sity levels, and mix of positively/negatively cross-correlated fea-

tures, of these six data sets are distinct to assure diversity, which

could make a thorough comparison. The details of each data set

are described as follows, and the true signal of every data set is

also shown in Fig. 1 (top row). 

• Data 1: This data set is generated with n =
80 , p = 120 , and q = 100 . We first generate the

vector u = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
60 

, 2 , . . . , 2 ︸ ︷︷ ︸ 
20 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

) � and v =

( 0 , . . . , 0 ︸ ︷︷ ︸ 
25 

, 3 , . . . , 3 ︸ ︷︷ ︸ 
25 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
50 

) � . Then we create a latent variable

z ~ N ( 0, I n × n ). After that, X is created by x � ~ N ( z � u 

� , 0.1 �x ),

where x � is the � -th row of X , and (�x ) i,i +1 = e −| u i −u i +1 | .
Similarly, Y is created by y � ~ N ( z � v 

� , 0.1 �y ), where

(�y ) jk = e −| v j −v k | . 
• Data 2: This data set is created similarly to

the first data set, where n = 50 , p = 150 and

q = 200 . u = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
58 

, 1 , −1 , 1 , 0 , . . . , 0 ︸ ︷︷ ︸ 
89 

) � and v =

( 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

, 2 , . . . , 2 ︸ ︷︷ ︸ 
40 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

, −3 , . . . , −3 ︸ ︷︷ ︸ 
40 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

) � , x � ~ N ( z � u 

� ,

0.2 �x ) with (�x ) i,i +1 = e 
−
√ 

u 2 
i 
+ u 2 

i +1 and y � ~ N ( z � v 
� , 0.2 �y ),

where (�y ) jk = e −| v j −v k | . 
• Data 3: This data set is created by n = 50 , p = 150

and q = 200 , where u = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
58 

, 2 , −2 , 0 , . . . , 0 ︸ ︷︷ ︸ 
90 

) � , v =

( 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

, −1 , 1 , −1 , 1 , . . . , −1 , 1 ︸ ︷︷ ︸ 
40 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
120 

) � , x � ~ N ( z � u 

� , 0.2 �x )

with (�x ) i,i +1 = e 
−
√ 

u 2 
i 
+ u 2 

i +1 and y � ~ N ( z � v 
� , 0.2 �y ) with

(�y ) jk = e −| v j −v k | . 
• Data 4: This data set is created by n = 50 , p = 150 and q =

200 , where u = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
60 

, −6 , 6 , −6 , 6 , . . . , −6 , 6 ︸ ︷︷ ︸ 
30 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
60 

) � , v =

( 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

, −2 , . . . , −2 ︸ ︷︷ ︸ 
20 

, 2 , . . . , 2 ︸ ︷︷ ︸ 
20 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
120 

) � , x � ~ N ( z � u 

� , 0.2 �x )

with (�x ) i,i +1 = e 
−
√ 

u 2 
i 
+ u 2 

i +1 and y � ~ N ( z � v 
� , 0.2 �y ) with

(�y ) jk = e 
−
√ 

v 2 
j 
+ v 2 

k . 
• Data 5: This data set is created by n = 50 , p = 150

and q = 200 , where u = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
58 

, 2 , −2 , −1 , 0 , . . . , 0 ︸ ︷︷ ︸ 
89 

) � ,

v = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

, −2 , . . . , −2 ︸ ︷︷ ︸ 
20 

, 2 , . . . , 2 ︸ ︷︷ ︸ 
20 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
120 

) � , x � ~ N ( z � u 

� ,

0.2 �x ) with (�x ) i,i +1 = e 
−
√ 

u 2 
i 
+ u 2 

i +1 and y � ~ N ( z � v 
� , 0.2 �y ) with

(�y ) jk = e 
−
√ 

v 2 
j 
+ v 2 

k . 
• Data 6: This data set is created by n = 50 , p = 150

and q = 200 , where u = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
58 

, 1 , −1 , 1 , 0 , . . . , 0 ︸ ︷︷ ︸ 
89 

) � ,
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Table 1 

The AUC (area under ROC curve) values (mean ± std) of canonical weights 

are also shown. 

Area under ROC Curve (AUC): u 

FL-SCCA NS-SCCA AGN-SCCA FGL-SCCA 

Data 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 2 0.86 ± 0.26 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 

Data 3 0.37 ± 0.04 1.00 ± 0.04 0.99 ± 0.02 1.00 ± 0.00 

Data 4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 5 0.44 ± 0.11 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 

Data 6 0.96 ± 0.04 1.00 ± 0.00 0.98 ± 0.03 1.00 ± 0.00 

Area under ROC Curve (AUC): v 

Data 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 2 0.78 ± 0.41 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 3 0.00 ± 0.00 1.00 ± 0.06 1.00 ± 0.04 1.00 ± 0.06 

Data 4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 5 0.00 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 6 0.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.10 1.00 ± 0.00 
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Table 2 

Performance comparison on synthetic data. Training and testing correla- 

tion coefficients (mean ± std.) of 5-fold cross-validation are shown for 

FL-SCCA, NS-SCCA, AGN-SCCA and FGL-SCCA. The best testing correlation 

coefficients with the smallest std. value are shown in boldface. 

Training Resuilts 

FL-SCCA NS-SCCA AGN-SCCA FGL-SCCA 

Data 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 2 0.91 ± 0.05 0.95 ± 0.01 0.87 ± 0.19 0.93 ± 0.01 

Data 3 0.76 ± 0.03 0.96 ± 0.01 0.89 ± 0.19 0.95 ± 0.01 

Data 4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 5 0.76 ± 0.04 0.96 ± 0.01 0.92 ± 0.14 0.95 ± 0.01 

Data 6 0.85 ± 0.03 0.93 ± 0.01 0.81 ± 0.23 0.86 ± 0.01 

Testing Results 

Data 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 2 0.77 ± 0.28 0.89 ± 0.06 0.74 ± 0.20 0.92 ± 0.04 

Data 3 0.34 ± 0.19 0.91 ± 0.06 0.80 ± 0.20 0.95 ± 0.07 

Data 4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Data 5 0.23 ± 0.18 0.94 ± 0.04 0.86 ± 0.15 0.94 ± 0.03 

Data 6 0.38 ± 0.22 0.82 ± 0.10 0.59 ± 0.23 0.86 ± 0.06 

Table 3 

Participant characteristics. 

HC MCI AD 

Num 196 343 28 

Gender(M/F, %) 52.04/47.96 59.18/40.82 64.29/35.71 

Handedness(R/L, %) 90.82/9.18 90.09/9.91 82.14/17.86 

Age (mean ± std) 74.77 ± 5.39 71.92 ± 7.47 75.23 ± 10.66 

Education (mean ± std) 15.61 ± 2.74 15.99 ± 2.75 15.61 ± 2.74 
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p  
v = ( 0 , . . . , 0 ︸ ︷︷ ︸ 
40 

, −2 , 2 , −2 , 2 , . . . , −2 , 2 ︸ ︷︷ ︸ 
40 

, 0 , . . . , 0 ︸ ︷︷ ︸ 
120 

) � , x � ~ N ( z � u 

� ,

0.1 �x ) with (�x ) i,i +1 = e 
−
√ 

u 2 
i 
+ u 2 

i +1 and y � ~ N ( z � v 
� , 0.1 �y ) with

(�y ) jk = e 
−
√ 

v 2 
j 
+ v 2 

k . 

The ground truth and estimated canonical weights u and v of

ach method are presented in Fig. 1 . In each subfigure, the ver-

ical axis represents the indices of each u (left panel) or v (right

anel), and the horizontal axis represents 250 runs of experiments

50 times of 5-fold cross-validation). Our FGL-SCCA identifies sim-

lar canonical weights that are consistent with the ground truth

cross all six data sets. Interestingly, when the true signals have

roup structures of both X and Y , i.e. data 1 and data 4, almost ev-

ry method can find the true signals correctly. This demonstrates

he group information identification ability of these SCCA methods

hich have been analyzed in their respective papers ( Witten et al.,

009; Chen and Liu, 2012; Du et al., 2016 ). However, when the true

ignals of X involve only two successive negatively correlated vari-

bles, i.e. data 3, the FGL-SCCA still correctly find out them with

 clear pattern. Those competing methods, on the contrary, report

oo many nonzero signals which cannot easily help find out true

ignals. For the remaining three data sets, i.e. data 2, data 5 and

ata 6, there are three successive nonzero variables with negative

elationship on X , while different group structures on Y . We ob-

erve that FGL-SCCA can also accurately find out the true signals,

nd those benchmarks cannot. 

We consider a feature as relevant if its estimated weight ˆ u i (or

ˆ 
 j ) is larger in absolute value than a predefined threshold. The

arger the 
∣∣ ˆ u i 

∣∣ (or 
∣∣ˆ v j 

∣∣) is, the more contribution the i -th genetic

eature (or the j -th imaging feature) makes to the canonical cor-

elation. We then sort the features in descending order of their

ˆ u i 
∣∣ (or 

∣∣ˆ v j 
∣∣), and vary the threshold to obtain a sequence of true

ositive rate (TPR) - false positive rate (FPR) pairs and to calculate

he area under the ROC curve (AUC). Table 1 shows the area under

OC (AUC) which stands for the sensitivity and specificity in terms

f canonical weights. We observe that the proposed FGL-SCCA ob-

ains the highest value on all six data sets in terms of both u and v .

S-SCCA and AGN-SCCA are suboptimal and FL-SCCA performs the

orst in terms of these evaluation criteria. This means that FGL-

CCA could be the best choice in structure information extraction

ollowed by NS-SCCA and AGN-SCCA. In addition, we also show

he training and testing correlation coefficients calculated from the

rained SCCA models in Table 2 . It is clear that all methods obtain

ood results on all training sets. Interestingly, the proposed FGL-

CCA outperforms those competing methods on the testing sets.

his indicates that FGL-SCCA possesses better generalization abil-
ty than fused lasso and graphical penalty based benchmarks. To

ummarize, results on these six diverse data sets demonstrate that

GL-SCCA can not only identify similar or higher training and test-

ng bi-multivariate associations, but also better canonical weights

rofiles. 

.3. Real neuroimaging genetics study 

We also compared the proposed structure-aware SCCA method

ith benchmarks using real neuroimaging and genetics data.

ata used in the preparation of this article were obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

rivate partnership, led by Principal Investigator Michael W.

einer, MD. The primary goal of ADNI has been to test whether

erial magnetic resonance imaging (MRI), positron emission to-

ography (PET), other biological markers, and clinical and neu-

opsychological assessment can be combined to measure the pro-

ression of mild cognitive impairment (MCI) and early Alzheimer’s

isease (AD). Determination of sensitive and specific markers of

ery early AD progression is intended to aid researchers and clin-

cians to develop new treatments and monitor their effectiveness,

s well as lessen the time and cost of clinical trials. For up-to-date

nformation, see www.adni-info.org . 

The brain imaging measurements data (i.e., amyloid imag-

ng data) of 567 non-Hispanic Caucasian participants at the

DNI-GO/2 baseline were downloaded from the LONI website

adni.loni.usc.edu). Shown in Table 3 are the characteristics of

hese subjects, including 196 healthy control (HC), 343 MCI and

8 AD participants. The [11C] Florbetapir PET scans were aver-

ged, aligned to a standard space, resampled to a standard im-

ge and voxel size, smoothed to a uniform resolution and normal-

zed to a cerebellar gray matter reference region resulting in stan-

ardized uptake value ratio (SUVR) images as previously described

 Jagust et al., 2010 ). After this, the images were aligned to each

articipant’s same visit MRI scan and normalized to MNI space as

http://www.adni-info.org
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Fig. 2. Canonical weights estimated on real imaging genetics data set. Each row corresponds to a method: (1) FL-SCCA, (2) NS-SCCA, (3) AGN-SCCA, and (4) FGL-SCCA. For 

each method, the estimated weights of u are shown on the left panel, and those of v are shown on the right. In each subfigure, the horizontal axis represents the reference 

number of each individual SNP (left panel) or imaging ROI (right panel), and the vertical axis represents every run and there are 250 runs in total (50 times of 5-fold 

cross-validation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Performance comparison on real data. Averaged training and testing correlation 

coefficients by 50 times 5-fold cross-validation are shown for FL-SCCA, NS-SCCA, 

AGN-SCCA and FGL-SCCA (mean ± std). The best mean ± std is shown in bold- 

face. The p -values of FL-SCCA, NS-SCCA and AGN-SCCA compared with FGL-SCCA 

via Student’s t -tests are also shown. 

Method Training Results p -value Testing Results p -value 

FL-SCCA 0.41 ± 0.02 4.89E-201 0.35 ± 0.08 1.25E-75 

NS-SCCA 0.44 ± 0.02 8.03E-164 0.42 ± 0.07 1.39E-37 

AGN-SCCA 0.47 ± 0.02 2.37E-105 0.43 ± 0.07 3.43E-21 

FGL-SCCA 0.49 ± 0.02 - 0.45 ± 0.07 - 
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3 voxels using parameters from the MRI segmentation. We

further extracted region of interest (ROI) level amyloid measure-

ments, and generated 191 mean amyloid measurements spanning

all brain ROI level based on the MarsBaR AAL atlas. 

The single nucleotide polymorphism (SNP) data were also

downloaded from the ADNI website. They were genotyped using

the Human 610-Quad or OmniExpress Array (Illumina, Inc., San

Diego, CA), and preprocessed using the standard quality control

(QC) and imputation steps. The QC criteria for the SNP data include

(1) call rate check per subject and per SNP marker, (2) gender

check, (3) sibling pair identification, (4) the Hardy-Weinberg equi-

librium test, (5) marker removal by the minor allele frequency and

(6) population stratification. As the second pre-processing step, the

quality-controlled SNPs were imputed using the MaCH software

( Li et al., 2010 ) to estimate the missing genotypes. The genotyping

data here includes 10 0 0 SNP markers from chromosome 19 near

the APOE gene. The aim is to detect the associations between SNPs

and amyloid measurements, as well as which SNPs and amyloid

markers are simultaneously correlated with diagnostic status. 

All four SCCA methods were applied to this real neuroimaging

genetics data. Fig. 2 presents the canonical weights estimated from

the training set by each method, showing those relevant SNPs and

imaging measurements. In each subfigure, the horizontal axis rep-

resents the reference number of each individual SNP (left panel)

or imaging ROI (right panel), and the vertical axis represents ev-

ery run and there are 250 runs in total (50 times of 5-fold cross-

validation). We can clearly observe that FGL-SCCA identifies two

relevant groups of successive SNPs and a very small proportion of

ROIs for easy interpretation due to the novel FGL and GGL penal-

ties. The peak signal on the genetic data originates from rs429358,

which codes for the APOE ɛ 4 allele. This locus has been confirmed

to be associated with AD previously ( Ramanan et al., 2014 ). The

locus rs56131196 with the second highest weight comes from the

APOC1 gene, which is recently identified to be correlated with both

Type 2 Diabetes (T2D) and AD ( Gao et al., 2016 ). The two strongest

imaging ROIs are from the frontal brain area. They are the right su-

S

erior frontal gyrus and the left middle frontal gyrus, which have

een demonstrated to be correlated with AD. The non-zero signal

ith the third largest weight is from the caudate nucleus, which

as been reported as an AD related brain area ( Jiji et al., 2013 ).

hose competing methods, such as the FL-SCCA, NS-SCCA and

he AGN-SCCA, find out many interfering signals for both imaging

arkers across the brain and genetic markers of chromosome 19.

L-SCCA reports the most non-zero signals for both imaging and

enetics markers, followed by NS-SCCA and AGN-SCCA. In biomed-

cal studies, results with many non-zero signals are very hard to

nterpret since they cannot imply a clear clue for further inves-

igation. We also show the training and testing correlation coeffi-

ients in Table 4 . In the table, both mean and std are contained, and

he p -values which are calculated between each benchmark and

GL-SCCA are also shown. The proposed FGL-SCCA obtains better

anonical correlation coefficients on both training set and testing

et. Moreover, all p -values are significant ( < 0.05) indicating that

GL-SCCA outperform those benchmarks on this real imaging ge-

etic data set. Table 5 shows the runtime results on this real data,

n which we could observe that FL-SCCA, NS-SCCA and FGL-SCCA

un much faster than AGN-SCCA. In summary, the results on this

eal data reveal that FGL-SCCA has better bi-multivariate identifi-

ation capability than both fused lasso and graphical lasso based

CCA methods in this ADNI cohort study. 
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Table 5 

Runtime comparison on real data. 

Method FL-SCCA NS-SCCA AGN-SCCA FGL-SCCA 

Time (s) 1.84 2.70 61.80 3.63 
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. Discussion 

To further investigate the performance of our FGL-SCCA

ethod, we average the canonical weights across five folds and

elect the top ten SNPs and top ten ROI measurements and show

hem in Tables 6 and 7 . 

.1. Top selected genetic markers 

In Table 6 , the first column shows the reference number of each

dentified SNP, the second one shows the gene name, the third col-

mn is the averaged weight across 250 runs (50 times of 5-fold

ross-validation), and the fourth column is the percent showing

hat each SNP is selected as top ten markers in 250 runs. The last

olumn is the p -value of the main effect of each SNP on the di-

gnosis. There are three groups of loci associated with the top ten

NPs. The first group are rs429358, rs769449, rs769450, rs1081105,

nd they all locate in the APOE gene which is related to AD. Inter-

stingly, the sign of SNP rs769450 is different from its neighbour-

ng SNPs (rs769449, rs429358 and rs1081105). This demonstrates

hat the FGL-SCCA can perform feature grouping as long as two

djacent variables exhibit high similarity in absolute values. More-

ver, although rs769450 and rs1081105 are non-significant in this

ata, they both are jointly selected by the newly introduced FGL

enalty. The second group of loci are all from APOC1 gene. They are

s12721051, rs56131196 and rs4420638, and are recently identified

o be shared genetic factors between T2D and AD ( Gao et al., 2016 ).

he third group of loci are rs10414043, rs7256200 and rs483082

ocated between the APOE and APOC1 gene, and they also have

een identified to show association with the longevity in humans

 Zeng et al., 2016 ). 

.2. Top selected brain imaging ROIs 

Table 7 presents the top ten brain imaging ROIs identified by

he averaged canonical weights. In this table, the first column ex-

ibits the name of the brain region, the second one shows the av-

raged weight across 250 runs, and the third column is the percent

howing that each ROI is selected as top ten risk markers in 250

uns. The p -value of the diagnostic effect measured by ANOVA was

hown for each imaging ROI in the last column. In our experimen-

al setting, there might be more than one variable associated with

he same label in the automated anatomical labeling (AAL) atlas

ecause we have 191 brain regions corresponding to 116 AAL re-

ions. Thus the first and the fifth imaging measures are from the

ame AAL region. The p -values of all the ten markers are relatively

mall indicating that they are significantly correlated with diagnos-

ic status. At the same time, a literature search also shows that all

hese ten imaging markers have been reported to be more or less

ssociated with AD, such as the frontal gyrus ( Hirono et al., 1998;

i et al., 2018 ) and the caudate nucleus ( Jiji et al., 2013 ). The first

wo markers, i.e., the left middle frontal gyrus and the right su-

erior frontal gyrus, have similar estimated weights owing to the

ewly introduced graphical GGL penalty. We further find that the

orrelation between them is 0.8827 which is a very high value

n this data set. This demonstrates that FGL-SCCA could group a

air of highly correlated variables if they both are associated with

iagnostic status. We note that the highest correlation value ex-

sts between the orbital part of left middle frontal gyrus and the
ight one after looking into the pairwise correlation matrix. It looks

trange that FGL-SCCA does not estimate similar weights for both

f them. The reason might boil down to three aspects: (1) Both

ariables should be correlated with each other; (2) both variables

hould be correlated with those SNPs identified by our algorithm;

nd (3) a brain ROI is connected to more than one ROI accord-

ng to the GGL penalty. Thus the final weight of an ROI will be

ffected by the combination of several grouping effects. This also

xplains why all the top ten brain imaging measurements and top

en SNPs hold very high correlations (0.485) in this study, which

ominates the relationship between this leading pair of canonical

eights. To give a clear spatial view, we map the averaged canon-

cal weights regarding these imaging measurements of FGL-SCCA

nto the brain atlas. Fig. 3 shows that our method only highlights

 small region of the whole brain. This is quite meaningful since it

rovides a clear and clean clue for further targeted analysis. 

As a structured method, it is very important to verify the per-

ormance on the identified graph structure. In this study, the esti-

ated canonical weights v imply the identified graph structure of

he brain ROIs. If two ROIs have the same or similar weight val-

es, they will be in the same subgraph according to Theorem 2 .

ased on this, we could obtain the graph with two considerations.

irst, both v i and v j , i.e. the weight values of ROI i and ROI j , should

e important, which means their weight values are larger than a

hreshold τ 1 , i.e. | v i | > τ 1 and | v j | > τ 1 . Second, v i and v j should

e equal or similar, indicating that their difference is small enough,

.g. 
∣∣| v i | − ∣∣v j ∣∣∣∣/ ∣∣v j ∣∣ ≤ τ2 , where τ 2 is the maximum tolerance dif-

erence. Suppose τ1 = 0 . 0 0 01 and τ2 = 0 . 1 (both thresholds could

e changed accordingly), the identified graph structure is shown

n Fig. 4 . We clearly observe that there are three subgraphs identi-

ed by FGL-SCCA. Interestingly, all the nodes (ROIs) in these three

ubgraphs have been verified to be correlated to AD. This demon-

trates the effectiveness of our method in identifying meaningful

ubgraphs in this ADNI study, which verifies the correctness of our

odel design. 

.3. Refined analysis 

Based on the top ten selected SNPs and brain ROIs, Fig. 5 shows

he heat map of pairwise correlations of every brain ROI-SNP pair.

s expected, most ROI-SNP pairs have considerable correlation val-

es. We observe that rs769450 from the APOE gene has the nega-

ive correlation with all these ten ROIs. In order to further under-

tand this, we choose to use rs429358 as the comparison based on

he following considerations. First, rs429358 has been confirmed

o be the top risk factor for late onset AD via affecting multiple

rain structures ( Potkin et al., 2009a ). Second, both rs429358 and

s769450 are from the APOE gene and they are jointly selected

y the FGL-SCCA method. Besides, they hold opposite coefficient

igns in our model. The frontal lobe region is a well-known AD

elated brain area, and the clumping together of beta-amyloid pro-

eins could be a major AD hallmark. Therefore, we use the beta-

myloid deposition measurement in the frontal lobe as the target

maging marker. 

Using the amyloid accumulation in the left middle frontal gyrus

s the response, we conducted the two-way ANOVA to show that

he main effects of rs769450 genotype, diagnosis and their SNP-by-

iagnosis interaction effect. As shown in Fig. 6 (a), the main effects

f rs769450 genotype ( p < 0.01), diagnosis ( p < 0.01) and their

NP-by-diagnosis interaction effect ( p < 0.01) all reached the sig-

ificant level when age, gender, education and handedness were

ncluded as covariates. The pairwise comparison results showed

hat the amyloid accumulation in AD participants was significantly

igher than that of both MCI and HC groups (all p < 0.01). In ad-

ition, MCI participants also showed a significantly increased amy-

oid deposition than HCs ( p < 0.01). In order to investigate the
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Fig. 3. Mapping averaged canonical weights v of FGL-SCCA onto the brain. 

Fig. 4. Heat map of brain ROI-SNP associations of top selected markers. 

Fig. 5. Heat map of brain ROI-SNP associations of top selected markers. 
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Table 6 

Top ten SNPs selected by averaged canonical weights. The p -value of ANOVA results were shown 

to indicate the statistical significance of the relevance of each SNP to diagnostic status, where 

age, gender, education, handedness were included as covariates. 

RS_NO Gene Weight Percent p -value 

rs429358 APOE 5.45E-01 100% 2.30E-06 

rs56131196 APOC1 1.65E-01 100% 1.14E-03 

rs4420638 APOC1 1.24E-01 100% 1.14E-03 

rs12721051 APOC1 1.24E-01 100% 1.14E-03 

rs1081105 APOE 6.55E-02 96.40% 1.73E-01 

rs7256200 APOE (dist = 3285), APOC1 (dist = 1642) 8.71E-03 76.40% 3.35E-05 

rs10414043 APOE (dist = 3061), APOC1 (dist = 2208) 7.35E-03 72.40% 3.35E-05 

rs769450 APOE -7.27E-03 63.20% 5.10E-02 

rs769449 APOE 5.76E-03 64.80% 1.53E-05 

rs483082 APOE (dist = 3526), APOC1 (dist = 1743) 4.67E-03 66.40% 7.98E-05 

Fig. 6. Pairwise comparisons in terms of genotype of rs769450 and rs429358 within ADs, MCIs and HCs respectively. Two-way ANOVA was applied to examine the effects of 

rs769450 and baseline diagnosis on left middle frontal gyrus (a). Age, gender, education, handedness were included as covariates. The results of rs429358 were also shown 

for comparison (b). 

Table 7 

Top ten brain imaging markers selected by averaged canonical weights. The p - 

value of ANOVA results were shown to indicate the statistical significance of 

the relevance of each brain imaging marker to diagnostic status, where age, 

gender, education, handedness were included as covariates. 

Brain Region Weight Percent p -value 

Left middle frontal gyrus 4.07E-01 100.00% 6.23E-07 

Right superior frontal gyrus 3.96E-01 100.00% 8.65E-07 

Right caudate nucleus 1.05E-01 98.80% 4.34E-06 

Right middle frontal gyrus 7.43E-02 98.00% 1.49E-04 

Left middle frontal gyrus 3.38E-02 78.00% 8.26E-03 

Right inferior temporal gyrus 2.23E-02 69.60% 6.44E-05 

Left caudate nucleus 1.46E-02 86.40% 6.01E-08 

Right angular gyrus 9.03E-03 52.00% 9.01E-06 

Superior parietal lobule 7.52E-03 41.60% 8.86E-04 

Right frontal superior medial gyrus 4.47E-03 59.20% 2.36E-09 
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enotype effect within each baseline diagnosis group separately,

e conducted pairwise comparisons among the heterozygotes AG,

omozygous AA and GG within ADs, MCIs and HCs respectively.

he results showed that within ADs, those patients holding the ho-

ozygous AA have lower beta-amyloid deposition measurements

ompared with those holding GG and AG. This pattern can also

e observed within the MCI participants but not in the HCs. By

ontrast, in Fig. 6 (b), the two-way ANOVA results from rs429358

howed that within both ADs and MCIs, participants holding the

omozygous CC have higher beta-amyloid deposition compared

ith those having TT. It is easy to observe that the genotype poly-

orphisms of rs769450 and rs429358 have opposite effects on the

eta-amyloid deposition in the group of ADs and MCIs. Specifically,

he major homozygote of rs769450 in AD patients were vulnerable

o increase beta-amyloid deposition in left middle frontal gyrus. On

he contrary, AD patients with the minor homozygote of rs429358
ere vulnerable to have higher beta-amyloid deposition measure-

ent in this ADNI cohort. 

. Conclusions 

We have introduced two novel penalties such as the fused pair-

ise group lasso (FGL) and graph guided pairwise group lasso

GGL). We proposed a novel structure-aware sparse canonical cor-

elation analysis (SCCA) method using FGL and GGL as constraints

o identify associations between brain imaging measurements and

enetic factors. The existing group lasso based methods ( Chen

t al., 2013; Du et al., 2014 ) were dependent on the prior knowl-

dge which usually was not always available. The graph/network

uided fused lasso based methods ( Chen et al., 2012; Du et al.,

014; Chen and Liu, 2012; Du et al., 2016 ) focus on the positively

orrelated variables, or depended on the signs of the sample cor-

elation which were sensitive to the partition of data. The pro-

osed SCCA method combines the advantages of both group lasso

nd graphical fused lasso, which is independent of the sign of

he sample correlation. Moreover, FGL-SCCA can be used in data-

riven mode which means it does not require the prior knowledge,

nd can incorporate the prior knowledge to recover specific struc-

ures, too. FGL-SCCA recovers a chain of smoothness on the genetic

actors and graphical smoothness on the brain imaging measure-

ents. 

We have compared FGL-SCCA with three state-of-the-art

tructure-aware SCCA methods on both synthetic data and real

maging genetic data. The results on the synthetic data show that

GL-SCCA performs similarly or better than all three benchmarks.

he results on real data show that, FGL-SCCA not only estimates

etter canonical correlation coefficients than the competing meth-

ds, but also obtains more clear, cleaner and sparser canonical

eights. FGL-SCCA detects a strong association between a few
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group of loci (from APOE and APOC1 ) and frontal and caudate mor-

phometries. All three group of loci, including the SNP rs429358

etc., and the imaging measurements such as the frontal gyrus have

been identified to be highly associated with AD, demonstrating

FGL-SCCA’s power in brain imaging genetics. Since the GGL penalty

becomes quite complicated as the number of variables increases,

one interesting future direction is to improve the efficiency and

scalability for FGL-SCCA in more realistic settings. Moreover, given

the prominent role of the APOE signal in this application, it is also

of great importance to identify other AD-relevant SNPs. Therefore,

another future direction is to use our method to identify the new

AD-relevant SNPs in addition to those from APOE . 
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