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a b s t r a c t 

Head motion during MRI acquisition presents significant challenges for neuroimaging analyses. In this work, 
we present a retrospective motion correction framework built on a Fourier domain motion simulation model 
combined with established 3D convolutional neural network (CNN) architectures. Quantitative evaluation metrics 
were used to validate the method on three separate multi-site datasets. The 3D CNN was trained using motion-free 
images that were corrupted using simulated artifacts. CNN based correction successfully diminished the severity 
of artifacts on real motion affected data on a separate test dataset as measured by significant improvements 
in image quality metrics compared to a minimal motion reference image. On the test set of 13 image pairs, 
the mean peak signal-to-noise-ratio was improved from 31.7 to 33.3 dB. Furthermore, improvements in cortical 
surface reconstruction quality were demonstrated using a blinded manual quality assessment on the Parkinson’s 
Progression Markers Initiative (PPMI) dataset. Upon applying the correction algorithm, out of a total of 617 
images, the number of quality control failures was reduced from 61 to 38. On this same dataset, we investigated 
whether motion correction resulted in a more statistically significant relationship between cortical thickness and 
Parkinson’s disease. Before correction, significant cortical thinning was found to be restricted to limited regions 
within the temporal and frontal lobes. After correction, there was found to be more widespread and significant 
cortical thinning bilaterally across the temporal lobes and frontal cortex. Our results highlight the utility of 
image domain motion correction for use in studies with a high prevalence of motion artifacts, such as studies of 
movement disorders as well as infant and pediatric subjects. 
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bbreviations 

NN convolutional neural network 
OI region of interest 
UFFT non-uniform fast Fourier transform 

D Parkinson’s disease 
PMI Parkinson’s Progression Markers Initiative 
SNR peak signal-to-noise ratio 
C quality control 
SIM structural similarity index 
D standard deviation 

. Introduction 

Head motion during MRI acquisition results in serious confound-
ng effects for subsequent neuroimaging analyses. Subject motion dur-
✩ Data used in preparation of this article were obtained from the Alzheimer’s Dise
nvestigators within the ADNI contributed to the design and implementation of AD
eport. A complete listing of ADNI investigators can be found at: http://adni.loni.usc
∗ Corresponding author. 

E-mail address: hosung.kim@loni.usc.edu (H. Kim). 

ttps://doi.org/10.1016/j.neuroimage.2021.117756 
eceived 15 September 2020; Received in revised form 23 December 2020; Accepted
vailable online 15 January 2021 
053-8119/© 2021 The Authors. Published by Elsevier Inc. This is an open access ar
 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ng acquisition results in blurring as well as ghost artifacts of the im-
ge in the phase-encoding directions. Quasiperiodic motion e.g. due to
hysiological activity e.g. respiration, results in coherent ghosting arti-
acts, whereas random motion, manifests as multiple displaced replicas
f the image, or stripes ( Zaitsev et al., 2015 ). Such neuroimaging con-
ounds become more of a concern in imaging studies of infants, children
 Yoshida et al., 2013 ), adolescents ( Satterthwaite et al., 2012 ) or partici-
ants with psychological disorders as they may be less compliant during
he imaging session. Consequently, a significant proportion (10–40%) of
he initially acquired samples have to be excluded in the analysis stage
 Engelhardt et al., 2015 ; Kim et al., 2016 ; Moradi et al., 2017 ). Even af-
er exclusion of images with visually-recognized motion artifact through
 standard image quality control procedure, the confounding effects of
ubtle artifacts in the remaining data may be substantial and sufficient
o bias results from morphometric studies ( Reuter et al., 2015 ). 
ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 
NI and/or provided data but did not participate in analysis or writing of this 
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Prospective motion correction, which involves online pulse sequence
odification, has huge potential but is yet to be fully validated for

outine use within the clinic and requires either expensive additional
ardware or pulse-sequence modifications which can increase scan du-
ation ( Stucht et al., 2015 ; Tisdall et al., 2012 ; White et al., 2010 ).
here the motion trajectory is unknown e.g. in the absence of on-

ine monitoring using navigators or optical methods, the problem is ex-
remely challenging due to its ill-posed nature. In the absence of on-
ine motion monitoring, retrospective methods represent the only avail-
ble option apart from discarding the affected data entirely. Examples of
etrospective correction methods include autofocusing methods which
re based on optimization of image quality metrics ( Atkinson et al.,
997 ; Haskell et al., 2018 ; Loktyushin et al., 2013 ), iterative estima-
ion of phase-correction ( Hedley et al., 1991 ) or more recently on
ompressed-sensing theory ( Yang et al., al .) or parallel-imaging recon-
truction ( Cordero-Grande et al., 2018 ). These techniques are in gen-
ral computationally expensive and require the raw frequency domain
 k -space) data, which is seldom available for large-scale open datasets.
or this reason, performing a magnitude image domain motion correc-
ion based on deep learning is likely to be valuable for some clinical or
esearch applications. 

Deep learning approaches, specifically convolutional neural network
CNN) models, have emerged as a potential solution for retrospec-
ive motion correction. Regression CNNs can be trained using motion-
orrupted images as input data and the same individual’s motion-free
mages as the ground truth. It is however impractical to acquire large
umbers of such coupled data for training deep neural networks. To
vercome this problem, adding realistic motion simulation to clean im-
ges has been considered as a practical solution and it has been hy-
othesized that training a CNN with the combination of clean images
nd motion simulated data would be able to correct real motion artifact
orrupted images ( Duffy et al., 2018 ; Loktyushin et al., 2015 ). 

There have been only a few attempts using deep learning for motion
etection ( Küstner et al., 2018 ; Meding et al., al .; Oksuz et al., 2018 )
r motion correction in MR images ( Duffy et al., 2018 ; Kustner et al.,
019 ; Küstner et al., 2018 ; Loktyushin et al., 2015 ; Meding et al., al .;
awar et al., 2018 ). Preliminary studies have been based on 2D CNNs
or artifact correction ( Kustner et al., 2019 ; Loktyushin et al., 2015 ;
awar et al., 2018 ) and whilst a comprehensive comparison has yet
o be performed, 3D CNNs have been shown to outperform 2D ap-
roaches for other applications in medical imaging such as classifica-
ion, segmentation and super-resolution ( Dolz et al., 2018 ; Fu et al.,
019 ; Kamnitsas et al., 2017 ; Payan and Montana, 2015 ; Pham et al.,
017 ; Shabanian et al., 2019 ; Trivizakis et al., 2018 ). In addition, unlike
D models, 3D CNNs are able to take advantage of the continuity of the
ignal or artifacts generated across all three dimensions, which is par-
icularly advantageous for 3D sequences. Most studies have attempted
o simulate motion in the image domain, and then combine it piece-
ise in the Fourier domain ( Johnson and Drangova, 2019 ; Pawar et al.,
018 ), an approach that is computationally expensive and therefore
imited to unrealistic motion trajectories. Importantly, the Fourier do-
ain approach generalizes to deep learning based reconstruction, which

s currently the state-of-the-art for under-sampled k-space reconstruc-
ion ( Hammernik et al., 2018 ). Here, we extend our previous method
 Duffy et al., 2018 ) based on 3D motion simulation in the Fourier do-
ain, to encompass a more general 3D simulation framework that in-

ludes translational and rotational motion as well as different motion
ampling strategies. In addition, we perform a systematic evaluation
hich includes testing on: (1) images with simulated motion for valida-

ion, (2) a set of images with various degrees of motion but no ground
ruth. (3) A dataset with real motion artifact which included minimal
otion rescans from the same imaging session. Crucially, our prelim-

nary study and other studies have thus far not addressed the critical
uestion of whether correction of motion corrupted data recuperates
ata quality enough for them to be included in research applications.
herefore in addition, we also examined whether the proposed tech-
2 
ique improves cortical surface reconstructions and the estimation of
ortical thickness in patients with Parkinson’s disease (PD). 

. Methods 

.1. Framework 

The proposed study framework is illustrated in Fig. 1 and consisted
f 5 stages: (1) Training of the regression CNN using simulated data.
2) Testing using unseen simulated data using the structural similar-
ty index (SSIM) and peak signal-to-noise ratio (pSNR) as evaluation
etrics. (3) Testing on real motion corrupted volumes using a manual

uality control score as the evaluation metric and using SSIM and pSNR
here a minimal motion “ground-truth ” reference image was available.

4) Testing for possible improvements in cortical reconstruction quality
ased on a blinded manual quality control. (5) Testing whether the pro-
osed motion correction was able to better identify brain morphological
hanges in patients with Parkinson’s disease. 

.2. Datasets 

Three-dimensional T1-weighted MRI volumes from the Autism Brain
maging Data Exchange I (ABIDE I, n 864) dataset ( Di Martino et al.,
014 ) were used for training of the regression CNN. These data included
37 male and 127 female subjects between the ages of 6 and 64 years of
ge that were deemed to be artifact-free by our in-house quality control
rotocol. This QC protocol involved excluding images with any issues
elating to image quality or artifacts including but not limited to: low
ignal-to-noise ratio, head coverage, susceptibility artifacts, flow arti-
acts, and ringing artifacts. An additional ( n = 46) subjects from ABIDE
, with artifact free images were held out as a simulated motion valida-
ion set. Finally, for testing ( n = 10) separate subjects from the ABIDE
ataset that contained mild to moderate motion artifacts were used.
he in-plane voxel size as well as the slice thickness varied between 1–
.3 mm. Further sequence parameter information for ABIDE dataset is
vailable from: http://fcon_1000.projects.nitrc.org/indi/abide . Supple-
entary Tables 1 and 2 include the demographic information for each
ataset and experiment. 

In addition, the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
ataset (adni.loni.usc.edu, www.adni-info.org ) alongside the Parkin-
on’s Progression Markers Initiative (PPMI) ( www.ppmi-info.org )
ataset were used as test datasets. The ADNI was launched in 2003
s a public-private partnership, led by Principal Investigator Michael
. Weiner, MD. The goal of ADNI has been to test whether imaging,

ther markers, clinical and neuropsychological assessment can be com-
ined to measure the progression of mild cognitive impairment (MCI)
nd early Alzheimer’s disease (AD). The mission of PPMI is to help iden-
ify biomarkers of Parkinson’s disease progression. 

The imaging parameters for the ADNI dataset were as follows: TR:
–8 ms, TE: 2–4 ms, in-plane voxel size: 1–1.25 mm, slice thickness:
.2 mm. The PPMI dataset contained 3D sagittal T1 weighted images
cquired with the following parameters: TR: 5–11 ms, TE: 2–6 ms, in-
lane voxel size: 1 × 1 mm 

2 and slice thickness 1–1.5 mm. Thirteen
ubjects from the ADNI dataset were identified with paired T1-weighted
olumes from the same imaging session, where one scan included ob-
ervable motion artifacts and the other was deemed to be artifact free.
his minimal-motion image was used as a ground-truth reference image.
or the investigation into cortical surface reconstruction quality we used
 N = 617) images from the PPMI dataset. After excluding surfaces that
ailed QC, this same dataset was used to investigate how cortical thick-
ess was associated with PD in this dataset before and after correction.
or this analysis ( n = 556, 317 males and 239 females) subjects from
he PD and Control groups between the ages of 31 and 83 years were
ncluded. 

http://fcon_1000.projects.nitrc.org/indi/abide
http://www.adni-info.org
http://www.ppmi-info.org
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Fig. 1. Summary of the proposed study 

framework outlining the 5 different stages 

of model development and testing. (1) 
Training the 3D CNN to learn the clean 
data from motion corrupted data. The model 
was trained patch-wise in native space using 
128 × 128 × 128 patches. Preprocessing in- 
cluded intensity normalization and cropping 
of the input image. (2) Testing on unseen val- 
idation dataset using different levels of mo- 
tion severity and SSIM and pSNR as evaluation 
metrics. (3) Testing on real motion artifact af- 
fected data was carried out using a manual QC 
evaluation where no ground-truth was avail- 
able and SSIM/pSNR where a minimal mo- 
tion paired “ground-truth ” was available. (4) 
Cortical reconstruction quality improvement 
was assessed using a manual quality control. 
(5) Examining whether motion correction was 
able to better identify morphological changes 
in Parkinson’s disease . (For interpretation of 
the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.) 
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.3. Motion artifact simulation 

.3.1. Overall framework 

The simulated head motion including translations and rotations were
enerated in the frequency domain and inversely Fourier transformed to
he image domain. As T1-weighted MP-RAGE acquisitions are typically
D volume acquisitions, in our simulations we assumed a densely sam-
led line-by-line cartesian trajectory with a single frequency encoding
imension and 2 phase encoding directions. Because head motions are
low relative to the frequency encoding sampling interval, we assume
heir variations to be negligible within each frequency encoding line: i.e.
he same motion parameter vector was used at each frequency encoding
ine. The frequency encoding direction was randomly selected to be one
f the 3 dimensions ( x,y,z ), while the other 2 dimensions were assumed
o be phase-encoding. Artifacts were simulated by applying translations
w  

3 
nd rotations to a random sampling of p phase-encoding lines in the
ourier transformed magnitude image ( Fig. 2 a ). 

.3.2. Motion types 

Each point in the Fourier domain was described by a motion parame-
er vector with 3 directional translations ( x,y,z ) and 3 rotations with re-
pect to each of the x, y , and z axes. Translational motion was simulated
y a pointwise multiplication with a linear phase term in the Fourier do-
ain e.g. translation in the x direction is given by: 𝑒𝑥𝑝 ( −2 𝑖 𝑘 𝑥 𝜃𝑡 ) , where
 𝑥 is the Fourier line and 𝜃𝑡 is the magnitude of translation in voxels.
otations about the center of an image are equivalent to rotations in
ourier space around the zero-frequency component. However, once
oints in the Fourier domain are rotated, they no longer lie on a uniform
rid requiring non-uniform FFT (NUFFT) methods to transform the data
ack to the image domain. Here, in order to simulate rotational motion,
e first rotated the Fourier domain coordinates and then used the fast
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Fig. 2. Schematic of motion artifact simulation 

along with example images for different simula- 

tion parameters. (a) Schematic of motion artifact sim- 
ulation, which involves a 3D FFT followed by cor- 
ruption of lines in the Fourier domain. Phase shifts 
are used to mimic translational motion and rotations 
(also in the Fourier domain) to simulate head rotation. 
(b) Different sampling schemes with image examples. 
Three sampling schemes were tested: Gaussian, piece- 
wise transient and piecewise constant. For the Gaus- 
sian model, artifacts were less coherent compared to 
the piecewise constant or piecewise transient models 
where ghosting was more evident. The colorbar in- 
dicates the motion magnitude (in voxels) applied in 
the Fourier domain. (c) Examples of different motion 
severities for the piecewise constant model, generated 
by varying the percentage of motion affected Fourier 
lines. Upper panel – example images. Lower panel –
Difference between the corrupted image and ground 
truth motion free image. (For interpretation of the ref- 
erences to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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nd efficient multithreaded FINUFFT software library ( Barnett et al.,
018 ) for computing the type-1 ( Greengard and Lee, 2004 ) NUFFT, a
ethod for evaluating a set of Fourier series coefficients at specified

rbitrary locations. The 3D type-1 NUFFT evaluates the function: 

( 𝑘 1 , 𝑘 2 , 𝑘 3 ) = 

1 
𝑁 

𝑁−1 ∑

𝑗=0 
𝑐 𝑗 𝑒 

𝑖 ( 𝑘 1 , 𝑘 2 , 𝑘 3 ) ⋅𝑥 𝑗 

or the points 𝑘 1 , 𝑘 2 , 𝑘 3 on a uniform grid, where 𝑐 𝑗 are the complex
ignal strengths at the transformed non-uniform locations, 𝑥 𝑗 in the fre-
uency domain. The FINUFFT library evaluates the NUFFT using the
4 
exponential of semicircle ” spreading kernel, which is faster than grid-
ing using the more commonly used Kaiser-Bessel kernel ( Barnett et al.,
018 ). Performing this NUFFT on an image of size 128 × 128 × 128
ook around 1.2 s on a 3.6 GHz Intel Core i7–6850 K CPU which made
t possible for it to be carried out online during training. 

.3.3. Sampling strategies 

Three different sampling schemes for simulating motion across suc-
essive phase encoding lines were compared and are illustrated in
ig. 2 b : (1) Where the (translation and rotation) motion parameters at
ach corrupted line were sampled independently from a Gaussian distri-
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ution. (2) A piecewise transient approach, where the motion corrupted
ines were transient within each segment. This approach was similar to
he piecewise constant approach except the segments were not contigu-
us, resulting in transient motions within each segment. (3) A piecewise
onstant approach, where the frequency domain was divided into seg-
ents with each segment being assigned the same translation and rota-

ion vectors. This method was used to apply the same motion to grouped
ampling intervals. For example, given k segments and p Fourier lines to
e corrupted, then each corrupted line was randomly assigned to be in
ne of the k motion segments. The SD of the Gaussian distributions was
et equal to 5, 10 or 20 voxels for translation and 3° for rotation and the
umber of segments ( k ) was chosen from a uniform distribution. Three
ifferent ranges of k were investigated: 1–4, 1–8, and 1–16. Both meth-
ds (2) and (3) enabled the simulation of coherent ghosting artifacts,
hich was not the case for method (1) because the motion parameter
ector was uncorrelated between adjacent corrupted lines. Fig. 2 c shows
xamples of image generated by corrupting the same image with 0, 10,
0, 30, 40 and 50% of phase-encoding lines. 

Corrupting 50% of the total number of phase-encoding lines resulted
n more severely affected images than images that we aimed to correct,
herefore this provided a useful upper bound on p . Artifacts generated
sing the piecewise constant or piecewise transient methods resulted
n adjacent corrupted phase encoding lines being highly correlated and
herefore generated coherent ghosting artifacts that were more realis-
ic compared to where adjacent corrupted lines were drawn randomly
rom a Gaussian distribution ( Fig. 2 c ). We hypothesized that training
he model with these more coherent artifacts would produce better re-
ults. 

We opted to preserve the center k-space lines. The central 7% (0–
.5% on each side of the center) were preserved as applying transfor-
ations to these lines led to displacement of the lowest frequencies and

hus excessive distortion of the image. In contrast to this, corrupting a
and of the frequencies higher than 3.5% from the center did not yield
he same issue ( Fig. S1 ). Ghosting of the bright fat tissue outside of the
kull is a common problem for structural MRI data ( Mortamet et al.,
009 ) that we were able to preserve in our simulations by performing
orruption of the Fourier domain without brain masking and prior to
ropping the images. 

As illustrated in Fig. 2 c , changing the distribution of p enabled us
o simulate different levels of motion severity and subsequently allowed
he CNN model to learn the variety of motion severity. 

We thus constructed and evaluated 4 different training-sets where
e sampled various ranges of p phase-encoding lines using a uniform
istribution ranging from: 0–20, 0–30, 0–40% of the total number of
ines in each phase-encoding direction. Source code for the motion sim-
lation is available at https://github.com/bduffy0/motion-correction . 

.4. Image preprocessing 

Online preprocessing during CNN training consisted of motion sim-
lation, cropping and histogram intensity normalization based on the
edian signal intensity of the brain extracted image ( Nyul et al., 2000 )

espectively. Brain masking was carried out to ensure that the intensity
ormalization performed well and loss masking using this mask was
mployed to ensure background artifacts did not contribute to the CNN
oss function. Brain masks were generated using the Human Connec-
ome project (HCP) pre-FreeSurfer preprocessing pipeline ( Glasser et al.,
013 ), which was found to perform well on both motion-free and
otion-corrupted images. 

.5. CNN training and inference 

CNNs were trained using NiftyNet version v0.6 ( Gibson et al., 2018 )
nd TensorFlow v.1.15 ( Abadi et al., 2016 ). After initial experimen-
ation with different architectures, a memory-efficient modified 18-
onvolutional layer No New-Net architecture ( Isensee et al., 2018 ) was
5 
ound to perform the best. The No New-Net architecture is a modifica-
ion of the original U-Net architecture ( Çiçek et al., 2016 ; Milletari et al.,
016 ; Ronneberger et al., 2015 ) except with trilinear upsampling in-
tead of transpose convolutional upsampling, leaky ReLUs, and a re-
uction in the number of features before the upsampling layer using a
 × 3 convolution layer ( Isensee et al., 2018 ). Transpose convolution
as been shown in certain situations to generate artifacts ( Odena et al.,
016 ), therefore the No New-Net architecture which employs trilinear
psampling was favored over the standard U-net architecture. Prelimi-
ary experiments suggested that instance normalization was inferior to
atch normalization, therefore contrary to Isensee et al. we opted to use
he latter with a decay parameter of 0.9. 

In preliminary experiments this improved UNet architecture was
ompared against a HighRes3dNet architecture ( Li et al., 2017 ) as well
s a GAN model ( Goodfellow et al., 2014 ) using the same U-Net ar-
hitecture as the generator with the adversarial loss term weighted by
 × 10 − 4 . Diagrams of these architectures are shown in Fig. S2 . 

The input to the CNN consisted of patches of size 128 × 128 × 128
nd the regression CNN produced motion corrected output patches of
28 × 128 × 128 ( Fig. S2 ). We trained the network patch-wise in na-
ive space because training the network with the full uncropped images
ould (depending on the image size) not always fit into GPU mem-
ry. In general, patch-wise training provides less context and is not as
omputationally efficient at inference time as using the full 3D volume.
owever, taking advantage of the full 3D volume would require larger
rchitectures with larger receptive fields and in addition, using patches
rovides further augmentation of the training dataset which can pre-
ent overfitting. Inference was also carried out using 128 × 128 × 128
atches. In order to reduce border effects ( Li et al., 2017 ), each output
atch was overlapped by 40 voxels in all dimensions, using the mean
f the output at each overlapping voxel. Inference time per patch was
pproximately 170 ms, therefore for an image of size 256 × 256 × 128
he total inference time was around 45 s. 

The CNN was trained using an Adam optimizer Kingma and
a (2014) , an L1 loss function and a batch size of 2 per GPU. The train-

ng data was augmented during training using random rotations with
ngles chosen uniformly between − 10 and 10° and random scaling be-
ween − 5% and 5%. Networks were trained on two GPUs, averaging the
radient at each iteration. NiftyNet draws samples from a queue to avoid
O bottlenecks. A queue length of 150 was adopted with 30 samples per
olume. Each network was trained for 80k iterations which took around
8 h on two Nvidia GTX1080Ti GPUs. 

.6. Evaluation on simulated data 

Unseen good quality images from the ABIDE I dataset were used to
est the generalizability of the model to different levels of simulated
otion severity. Different levels of simulated severity were tested by

orrupting different percentages of Fourier lines. The image quality was
ssessed relative to the ground-truth using the structural similarity index
SSIM) ( Wang et al., 2004 ) and peak signal-to-noise ratio. 

.7. Evaluation on real motion artifact affected data 

As simulated data has limited utility for assessing the performance on
eal motion artifact affected data and could be considered to constitute
n inverse crime Colton and Kress (2019) , two independent T1-weighted
est datasets (based on ABIDE and ADNI) containing real artifacts were
sed for hyperparameter optimization and performance evaluation re-
pectively. Details of each dataset are provided below. 

.7.1. ABIDE dataset 

A subset of images ( n = 10) from the ABIDE dataset with various de-
rees of motion severity but no ground-truth was used for investigating
he performance of different motion sampling schemes and simulation
arameters. The image quality was assessed manually on a scale of 1–5

https://github.com/bduffy0/motion-correction
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poorest to best) by an operator blinded to the group identity. The image
as scored 1 if the entire volume was moderately or severely corrupted
ith artifacts, 2–3 if there were moderate to mild artifacts distributed
cross the 3D volume, 4 if there were artifacts that were only observable
ocally and 5 if there were no detectable artifacts. 

.7.2. ADNI dataset 

The second test set was from the ADNI dataset which consisted of
 n = 13) pairs of images with real motion artifact and their rescans with-
ut observable motion from the same imaging session. This was used
or quantitative evaluation as the minimal-motion images served as a
ground-truth ” for comparison. In order to produce reliable similarity
easurements, each image was bias-field corrected using N4 ( Sled et al.,
998 ; Tustison et al., 2010 ), followed by non-linear registration to its
orresponding ground-truth image using FSL’s FNIRT, followed by in-
ensity normalization ( Nyul et al., 2000 ). The image quality before and
fter correction was assessed using SSIM and pSNR. 

.8. Cortical reconstruction and quality control 

Cortical reconstruction and volumetric segmentation on the PPMI
ataset was performed with the FreeSurfer image analysis suite v6
 http://surfer.nmr.mgh.harvard.edu/ ) Fischl and Dale (2000) . Specifi-
ally, the T1w images along with their corresponding brain masks gen-
rated from the HCP preFreeSurfer preprocessing pipeline were fed into
he HCP FreeSurfer pipeline ( Glasser et al., 2013 ). Quality control (QC)
as performed manually on the FreeSurfer surface reconstructions. The

ortical surface quality was assessed by manually scoring the quality of
he pial and white matter surfaces by overlaying these on the T1w im-
ges in the axial view. QC on the cortical surfaces was performed by an
perator blinded to the group identity i.e. corrected or uncorrected. Im-
ges were scored ‘pass’ – no visually identified widespread or localized
rrors, ‘questionable’ – less than 3 focal defects or ‘fail’ – 3 or more focal
efects and/or a single significant error. Examples of focal defects in-
luded: localized inclusion of non-brain tissue (for example dura mater)
ithin the pial surface, the pial surface being located within brain tissue
r inaccurate localization of the gray/white matter surface. 

.9. Relationship between cortical thickness and Parkinson’s disease 

After excluding subjects that failed the surface quality control, in
otal there were n = 247 control subjects and n = 309 participants
ith PD. Or if “questionable ” quality surfaces were also excluded,

here were n = 238 controls and n = 300 participants with PD. Us-
ng these data, a region-of-interest (ROI) analysis was performed based
n the mean cortical thickness of the regions in the Desikan-Killiany
DK) Atlas ( Desikan et al., 2006 ). Using the Python StatsModels mod-
le ( http://www.statsmodels.org ), a general linear model was employed
ith cortical thickness as the dependent variable and group as the inde-
endent variable, covarying for age and sex. 

.10. Testing on brain tumor data 

The ability of algorithm to generalize to images that contained con-
picuous pathology was also assessed visually. For this, five images from
he BRATs dataset ( Menze et al., 2014 ) were used, and the regions within
nd surrounding the tumor were evaluated for any potential distortions
r artifacts introduced by applying the algorithm. 

. Results 

.1. Image domain vs. fourier domain simulation 

Initially, we compared performing the motion simulation in the im-
ge domain to the Fourier domain. As to be expected, using the same
otion parameters resulted in an almost identical image regardless of
6 
hether the image or the Fourier domain was used for simulation ( Fig.

3 ). The advantage of carrying out the simulation in the Fourier do-
ain was therefore predominantly related to run-time. The run-time of

he image domain simulation, as to be expected, scales linearly with the
umber of discrete motion steps. This is in contrast to performing the
imulation in the frequency domain which was constant with respect to
he number of motion steps ( Fig. S3 ). Videos displaying example im-
ges from multiple different slices for the image and frequency domain
ethods have been provided in Supplementary videos 1 and 2 respec-

ively. 

.2. Neural network architecture 

In preliminary experiments, we evaluated 3 different CNN architec-
ures, based on a manual QC score on the 10 ABIDE test set images.
isually as well as based on this QC, the U-Net style architecture signif-

cantly outperformed the HighRes3DNet architecture ( p = 0.04, paired
 -test). The U-Net GAN architecture did not perform as well as the corre-
ponding architecture without adversarial loss, although the difference
as not significant ( Fig. S4 ). For this reason, only the U-Net style archi-

ecture was considered from hereon. 

.3. Simulated validation data 

In order to test the generalizability of different models to different
evels of motion artifact severity, a simulated validation set was em-
loyed. On these images, the model significantly improved the image
uality both visually and quantitatively as evaluated by the image qual-
ty metrics: SSIM and pSNR, relative to the ground truth ( Fig. 3 ab ). The
bility of the CNN model to generalize to different motion severities was
nvestigated by comparing the image similarity metrics on the held-out
alidation set before and after motion correction. 

For these experiments, we used the piecewise constant scheme
rained on a variety of different severity ranges: 0–20%, 0–30% and
–40% of corrupted k-space lines. Each of these models was able to
eneralize well across the 0–50% range of simulated severities in the
alidation set. As expected, the 0–20 model did not perform as well
s the other two models on the more severe 40% and 50% corrupted
alidation images. Despite this, all models significantly improved the
mage quality at every severity level according to the SSIM measure-
ents and every severity level except for the 10% and 20% levels based

n pSNR ( Fig. 3 ab ). Even where the image was uncorrupted (sever-
ty = 0%), applying the CNN model did not result in a statistically sig-
ificant loss in image quality for any of the three models as measured by
SIM. 

After having validated the method on this simulated validation set,
e then tested on real motion artifact affected data. First, the simulation
arameters were optimized using manual scoring as the evaluation met-
ic on the ABIDE test data, then we assessed the ability of the algorithm
o generalize to new datasets. 

.4. Real motion-artifact affected data for optimization of training 

arameters 

1. Manual quality control assessment: The performance of each
raining parameter set was assessed using a manual quality control
rocedure across a set of n = 10 images. Both visually and accord-
ng to the manual QC scores, all motion simulation approaches signif-
cantly improved the motion-artifact affected image quality ( p < 0.05,
ig. 4 a ). As hypothesized, for the same simulation severity range, the
iecewise constant and piecewise transient approaches outperformed
he uncorrelated Gaussian model, where the simulation parameters
or different k -space lines were drawn independently from a Gaussian
istribution. ( Fig. 4 a ). The piecewise constant approach with trans-
ational motion only, was found to perform approximately as well

http://surfer.nmr.mgh.harvard.edu/
http://www.statsmodels.org
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Fig. 3. On the validation dataset CNN models trained with 

different severity levels (0–20, 0–30 and 0–40) significantly 

improved both data quality metrics at all levels of motion 

severity. (a) Example images before and after correction with the 
0–30 model. The corresponding difference image compared to the 
ground-truth is shown below each image. The ground-truth image 
is indicated by simulated severity = 0% before correction. (b) Sim- 
ilarity metrics relative to the ground-truth before correction and 
for different models trained on different severity ranges. Upper 
panel – structural similarity index (SSIM). Lower panel – pSNR. 
pSNR is not defined for the before correction 0% corruption case 
where the images are identical. ∗ represents statistically signifi- 
cant differences at a significance level of p < 0.05 (paired t -test). 
( n = 46). 
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s the model which combined translations with rotations (using the
ufft). 

After having investigated different sampling strategies, we then as-
essed how artifact severity affected model performance on the piece-
ise constant model. Visually, some ghosting artifacts were still evident
n the model trained with the least severe (0–20) range of simulated
otion ( Fig. 4 b ). The 0–30 model visually and quantitatively outper-

ormed the 0–20 model ( p < 0.05, Fig. 4 b ). Training at the more severe
–40% range did not result in additional improvements, therefore the
–30 piecewise constant model was used for subsequent experiments to
void unnecessary smoothing of the data that could be caused by train-
ng with excessively corrupted images. In addition, for the same model,
he magnitude of translation of 10 voxels ( ≈ 10 mm) standard deviation
utperformed that of using 5 voxels as well as 20 voxels ( Fig. S5 ). Fur-
hermore, a range of 1–4 motion segments ( k ) did not perform as well
s 1–8 or 1–16 ( Fig. S6 ). The optimal model with 0–30% k-space lines
orrupted, a translation = 10 voxels (S.D.) and 1–8 segments, was here-
fter used for evaluation of the motion correction method. Additional
t  

7 
xamples including multiple axial image slices have been provided in
upplementary videos 3 and 4. 

2. Evaluation on scans with motion and rescans with minimal

otion . On the separate ADNI test dataset ( n = 13), the CNN model
isually removed blurring as well as ringing artifacts ( Fig. 5 ). At the
ame time the image quality was significantly improved as assessed by
oth image quality metrics, SSIM and pSNR calculated with respect to
he minimal motion reference images ( Table. 1 ). SSIM was improved
n 9 of the 13 images, and pSNR in 10 of 13. The mean of each perfor-
ance metric was significantly improved as assessed by a paired t -test

 p = 0.021, p = 0.047 for SSIM and pSNR respectively) suggesting arti-
act correction generalized well to new datasets. 

.5. Improvements in surface reconstruction quality 

T1-weighted structural datasets that passed the image QC and were
ildly affected by motion artifacts frequently failed the surface recon-

truction quality control protocol. After performing the motion correc-
ion, these QC failures due to motion were significantly reduced in num-
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Fig. 4. Motion correction visually and quantitatively improves the image quality of real motion artifact affected data. Models trained with coherent motion, 
the piecewise transient and piecewise constant outperformed that trained with samples drawn independently from a Gaussian distribution. Upper panels – Example 
images. Lower panels – Quality score as assessed manually on a scale between 1 and 5. (a) Original and corrected results from models trained using different motion 
simulation approaches. From left-to-right: Gaussian, piecewise transient, piecewise constant, piecewise constant-nufft (with rotations) (b) Model performance on 
different motion serveries for the piecewise constant model, trained using increasing levels of simulated severity from left-to-right: 0–20, 0–30, 0–40% of phase- 
encoding lines. Error bars indicate the standard deviation across n = 10 images. 

Table 1 

Image similarity metrics relative to a minimal motion 

reference image from the ADNI dataset. SSIM and pSNR 
were all significantly improved after motion correction for 
n = 13 paired subjects from the ADNI dataset. Data is dis- 
played as mean ± S .E.M. 

SSIM pSNR 

Before motion correction 0.985 ± 0.002 31.73 ± 1.00 

After motion correction 0.988 ± 0.001 33.34 ± 0.79 
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er. Quantitatively, 536 of 617 (87%) of the images passed the sur-
ace reconstruction quality control before motion correction ( Fig. 6 a) ,
hich was increased to 553 (90%) after motion correction. The num-
er of QC failures was reduced by 38% from 61 to 38. Surface recon-
tructions that were deemed to be of questionable quality were often
elated to subtle motion artifacts and low signal-to-noise ratio in the
emporal lobes that resulted in failure of the surface reconstruction al-
orithm to estimate the true cortical surface. Many of these subtle errors
ere alleviated by the motion correction procedure ( Fig. 6 b ). Surface

econstructions that failed QC due to the number or errors or severity of
uch errors were most commonly related to images exhibiting blurring,
hosting artifacts and low SNR. These were often dramatically improved
y the motion correction procedure as indicated by the examples in
ig. 6 c . 

.6. Relationship between cortical thickness and Parkinson’s disease 

To investigate the relationship between cortical thickness and PD,
n ROI-based GLM analysis was carried out using the DK atlas with age
8 
nd sex included as covariates. Surface reconstructions that failed qual-
ty control were excluded and initially we looked at the effect of motion
orrection with surfaces that scored both “questionable ” and “pass ” on
he QC. Before motion correction, significant decreases in cortical thick-
ess were limited to the orbital frontal cortices of both cerebral hemi-
pheres, the left inferior frontal gyrus, middle and superior temporal
yrus, the right temporal pole and insula as well as bilaterally across
he anterior cingulate and parahippocampal gyri ( Fig. 7 a) . After mo-
ion correction, in addition to the regions that were significant before
orrection, reductions in cortical thickness were more widespread and
ilateral and included the left inferior temporal gyrus, the right middle
emporal gyrus, the superior frontal gyrus as well as the right supra-
arginal gyrus ( Fig. 7 b ). Bilaterally the insula, entorhinal and fusiform

yrus were also found to be significantly thinner in participants with
D at the p < 0.05 FDR corrected threshold after motion correction. The
egression statistics for each ROI are shown in Supplementary Table 3. 

Upon analyzing cortical surface representations, another possibility
ight be to exclude questionable surface reconstructions. Given this

hoice (i.e. including only surface reconstructions that scored “pass ” on
he QC) without applying the correction, the regions of cortical thinning
n the PD group were slightly more widespread. For example, as illus-
rated in Fig. 8 , the right middle temporal gyrus also exhibited signifi-
ant thinning, which was not the case where questionable data were in-
luded, suggesting that borderline group differences could be obscured
y including lower quality surface reconstructions. After motion cor-
ection, the cortical thinning pattern was consistent with that where
he questionable surfaces were included, with the exception of the right
emporal pole and left frontal pole, which were close to but did not ex-
eed the significance threshold. The region-wise regression statistics are
hown in Supplementary Table 4. 
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Fig. 5. Example images from five different subjects from the ADNI dataset 

before and after motion correction compared to a minimal motion refer- 

ence image. Left column: minimal motion reference image. Middle column: 
motion affected image. Right column: Motion affected image after motion cor- 
rection. 
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Fig. 6. Motion correction improves the cortical reconstruction quality as indica

category: pass, questionable and fail. (b) Examples of cortical reconstructions that w
QC after correcting the image and re-running the reconstruction pipeline. (c) Example
QC after correcting the image and re-running the reconstruction pipeline. The orange

9 
Finally, given that the model was trained on scans without obvious
tructural abnormalities, the ability of algorithm to generalize to images
hat contained lesions was investigated. Five images from the BRATs
ataset are shown before and after correction alongside their ground-
ruth tumor segmentation in Fig. S7 . On these examples, there was no
vidence that the correction algorithm obscured or distorted the appear-
nce of large or small hyper- or hypointense lesions. However, on some
mages within the ADNI dataset, we observed that hypointense white
atter lesions resembling motion artifacts, and in proximity to real mo-

ion artifacts, had the potential to be further obscured by the correction
lgorithm ( Fig. S8 ). 

. Discussion 

Here, we have developed an image domain retrospective motion
orrection framework based on a Fourier domain motion simulation
odel combined with various state-of-the-art 3D neural network ar-

hitectures (U-Net style CNN, HighRes3DNet, GAN). To validate the
ethod, we performed a systematic qualitative and quantitative eval-
ation on simulated and real motion artifact-affected images from three
eparate multi-site datasets. To validate the method, we performed a
ystematic qualitative and quantitative evaluation on simulated and real
otion artifact-affected images. Results from this study suggested that

raining the model using a database of motion-free images as a ground
ruth and adding simulated motion enabled the network to generalize
ell to both unseen validation images with a broad range of unseen

imulated motion artifacts, as well as real motion artifact-affected data.
hese results demonstrate the ability of CNN models trained using sim-
lated data to correct for real motion artifacts as well as improve the
uality of cortical surface reconstructions. In this way it was possible
o uncover Parkinson’s disease group differences that would otherwise
e masked by including cortical surface reconstructions of questionable
ted by a manual QC procedure. (a) Proportions and number of images in each 
ere deemed to be of questionable quality before motion correction but passed 
s of cortical reconstructions that failed QC before motion correction but passed 
 arrowheads indicate specific areas of QC failures. 
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Fig. 7. Cortical thinning in Parkinson’s disease is more significant and more widespread after motion correction compared to before correction. Left 
column: T-statistic maps at FDR corrected p < 0.05 threshold, indicating significant differences in cortical thickness between PD subjects and controls. Blue regions 
indicate significantly reduced thickness. Right column: Cortical thickness (adjusted for age and sex) vs . group for the 8 most significantly different regions identified 
after motion correction. P-values are shown before correction for multiple comparisons. (a) Before applying motion correction, decreases in cortical thickness were 
limited to the orbital frontal cortices, the left inferior frontal gyrus, middle and superior temporal gyri, the right temporal pole, right insula as well as the left and 
right anterior cingulate and parahippocampal gyri. (b) After motion correction, there were more significant and more widespread decreases in cortical thickness 
across both temporal lobes as well as the superior frontal gyrus. (CTL: n = 247, PD: n = 309) . (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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uality, highlighting the potential utility for clinical and research stud-
es. 

It has been well established that Parkinson’s Disease is associated
ith widespread bilateral cortical thinning across the frontal and tem-
oral cortex ( Mak et al., 2015 ). Before applying motion correction, we
ound decreases in cortical thickness to be limited to the orbital frontal
ortices, the left inferior frontal gyrus, middle and superior temporal
yri, the right temporal pole, right insula as well as the left and right
nterior cingulate and parahippocampal gyri. After the CNN-based cor-
ection, there was found to be more significant bilateral cortical thin-
ing across the temporal lobe as well as the superior frontal gyrus,
ight supramarginal gyrus, insula, entorhinal and fusiform gyrus. This is
roadly in line with other investigations which have found widespread
ortical thinning in patients with PD compared to controls. Specifically,
everal studies have identified the orbital frontal cortex ( Lyoo et al.,
010 ; Tinaz et al., 2011 ; Wilson et al., 2019 ) as a region that is vul-
erable even in the case of mild PD. In addition to this, the temporal
obe ( Lyoo et al., 2010 ; Madhyastha et al., 2015 ; Pereira et al., 2012 ;
ribe et al., 2016 ) has also been frequently identified as a region that is
t risk in PD. Finally, the cingulate gyrus has been implicated in more
oderate to severe PD ( Pagonabarraga et al., 2013 ; Wilson et al., 2019 ).

In any study, researchers face a challenging decision regarding
hether or not to include questionable quality surface reconstructions.
ere, instead of discarding these data from the analysis, we used deep

earning to improve the quality of the artifact affected data, in order to
10 
aintain a larger sample size. Notably, around 10% of the PPMI data
ere deemed to have a poor-quality surface reconstruction. However,
fter motion correction this decreased to around 6%. Whilst it is well ac-
epted that PD leads to widespread cortical thinning, there is still some
ncertainty regarding the exact pattern of these changes. For this rea-
on, we also investigated how the significance of the detected regions
hanged upon excluding the questionable quality surfaces. Before mo-
ion correction, excluding these questionable quality surfaces led to a
ore widespread bilateral pattern of cortical thinning across the tempo-

al lobe that more closely resembled the pattern after correction. More-
ver, excluding questionable quality surfaces after motion correction in
eneral resulted in a reduced number of statistically significant regions
.e. the right temporal pole was no longer significant, likely due to the
educed statistical power. As to be expected, there exhibited a high cor-
espondence between the thinning patterns before and after correction
pon examining only the subset of surfaces that passed QC. However,
t is also worth noting that subtle inaccuracies in the cortical surface
econstruction that were not significant enough to be revealed in the
urface QC score, might preclude a perfect agreement. While there was
o evidence of deep learning induced hallucinations, in specific cases,
hite matter lesions that resembled motion artifacts had the potential

o be further obscured by the correction procedure. Such limitations will
e important to address in future studies, potentially by including such
ases in the training dataset. Another limitation relates to the inability to
orrect artifacts in different imaging sequences or other kinds of imag-
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Fig. 8. T-statistic maps and box plots indicating regions of significant cortical thinning in PD vs. Controls upon only including cortical reconstructions 

that passed QC i.e. after excluding questionable surfaces in addition to those that failed QC. Left column: T-statistic maps at FDR corrected p < 0.05 threshold, 
indicating significant differences in cortical thickness between PD subjects and controls. Blue regions indicate significantly reduced thickness. Right column: Cortical 
thickness (adjusted for age and sex) vs . group for the 8 most significantly different regions identified after motion correction. P-values are shown before correction 
for multiple comparisons. (CTL: n = 238, PD: n = 300). 
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ng artifacts, for example those that are hardware or physiology related.
n addition, the algorithm requires a GPU for inference and would be
rohibitively expensive on current CPU architectures. 

Whilst the correction procedure was able to correct mild to moder-
tely affected images, more severe cases with highly coherent artifacts
ere beyond its capabilities. It is possible that recent developments

n artifact correction techniques that address the issue at the recon-
truction stage will prove to be more powerful in this regard ( Cordero-
rande et al., 2018 ; Cordero ‐Grande et al., 2020 ). However it also likely

hat a retrospective deep learning approach will provide a powerful tool
or data that cannot be fixed at the acquisition or reconstruction stage.
ndeed, one of the major strengths in the proposed approach is that it
oes not require availability of raw k -space data and could be used if
he original complex data is unavailable. Furthermore, we have demon-
trated that carrying out the simulation in the Fourier domain is more
dvantageous than performing it in the image domain as this way it can
e performed online during training for any number of motion steps.
NNs can easily be adapted to operate on complex data ( Zhu et al.,
018 ) and the Fourier domain simulation could therefore be combined
ith iterative or k -space-based reconstruction for potentially improved

esults. Furthermore, given an appropriate forward model, future work
ould explore a similar approach to correct for other commonly occur-
ing artifact types, such as, RF spikes, field inhomogeneities, aliasing or
ow SNR/CNR. 

It is likely that including any number of real motion artifact affected
ata in training of CNNs would improve the performance of the model
nabling the model to generalize to patterns of artifacts that are not
ully characterized by the simulation. However, generating paired data
ith and without motion artifacts is challenging as even if a subject is
 E

11 
maged during the same session, there may be intensity differences be-
ween scans that are unrelated to the motion. Further improvements in
he method could be yielded by using real k -space trajectories, although
his is complicated by the widespread use of under sampled and paral-
el imaging reconstructions and the wide range of trajectories used in
tructural MRI acquisitions. 

In summary, our method has the potential to improve performance
f image post processing such as cortical reconstruction, eventually in-
reasing the statistical power as demonstrated in the analysis of Parkin-
on’s disease compared to healthy controls. In the image quality control
rocedure, scoring the severity of the given artifact is a crucial step to-
ards the decision to exclude the artifactual image or not in the subse-
uent image analysis. Instead of predicting a corrected image, the pro-
osed simulation method could be adapted to train a model for estimat-
ng a motion severity score as the CNN output. This could be used as a
core for quality control or as a nuisance covariate in subsequent sta-
istical analyses ( Iglesias et al., 2017 ). There is excellent potential for
uture work to adapt the method for use in image reconstruction. 
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Source code for the motion simulation is available at https://github.
om/bduffy0/motion-correction . The ABIDE, PPMI and ADNI datasets
re available from http://fcon_1000.projects.nitrc.org/indi/abide/ and
ttps://www.ppmi-info.org/ , https://ida.loni.usc.edu/ respectively. 

cknowledgements 

This study was supported by the National Institutes of Health
rants (P41EB015922, R01EB028297) and the BrightFocus Foundation
A2019052S). 

PPMI data was obtained from the Parkinson’s Progression Markers
nitiative (PPMI) database ( www.ppmi-info.org/data ). For up-to-date
nformation on the study, visit www.ppmi-info.org . PPMI – a public-
rivate partnership – is funded by the Michael J. Fox Foundation for
arkinson’s Research and funding partners, including Abbvie, Avid Ra-
iopharmaceuticals, Biogen Idec, Bristol-Myers Squibb, Covance, GE
ealthcare, Genentech, GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso
cale Discovery, Pfizer, Piramal, Roche, Servier, and UCB found at
ww.ppmi-info.org/fundingpartners . 

Data collection and sharing for the ADNI dataset was funded by
he Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National In-
titutes of Health Grant U01 AG024904) and DOD ADNI (Department
f Defense award number W81XWH-12–2–0012). ADNI is funded by the
ational Institute on Aging, the National Institute of Biomedical Imag-

ng and Bioengineering, and through generous contributions from the
ollowing: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discov-
ry Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
quibb Company; CereSpir, Inc.;Cogstate; Eisai Inc.; Elan Pharmaceu-
icals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche
td and its affiliated company Genentech, Inc.; Fujirebio; GE Health-
are; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Devel-
pment, LLC.; Johnson & Johnson Pharmaceutical Research & Develop-
ent LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnos-

ics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Phar-
aceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
harmaceutical Company; and Transition Therapeutics. The Canadian
nstitutes of Health Research is providing funds to support ADNI clin-
cal sites in Canada. Private sector contributions are facilitated by the
oundation for the National Institutes of Health ( www.fnih.org ). The
rantee organization is the Northern California Institute for Research
nd Education, and the study is coordinated by the Alzheimer’s Thera-
eutic Research Institute at the University of Southern California. ADNI
ata are disseminated by the Laboratory for Neuro Imaging at the Uni-
ersity of Southern California. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.neuroimage.2021.117756 . 

eferences 

badi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G.S. , Davis, A. ,
Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. ,
Jia, Y. , Jozefowicz, R. , Kaiser, L. , Kudlur, M. , Levenberg, J. , Mane, D. , Monga, R. ,
Moore, S. , Murray, D. , Olah, C. , Schuster, M. , Shlens, J. , Steiner, B. , Sutskever, I. , Tal-
war, K. , Tucker, P. , Vanhoucke, V. , Vasudevan, V. , Viegas, F. , Vinyals, O. , Warden, P. ,
Wattenberg, M. , Wicke, M. , Yu, Y. , Zheng, X. , 2016. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems . 

tkinson, D. , Hill, D.L.G. , Stoyle, P.N.R. , Summers, P.E. , Keevil, S.F , 1997. Automatic
correction of motion artifacts in magnetic resonance images using an entropy focus
criterion. IEEE Trans. Med. Imaging 16 (6), 903–910 . 

arnett, A.H. , Magland, J.F. , Klinteberg, L , 2018. A Parallel Non-Uniform Fast Fourier
transform Library Based On an" Exponential of semicircle" Kernel arXiv preprint
arXiv:1808.06736 . 

içek, Ö. , Abdulkadir, A. , Lienkamp, S.S. , Brox, T. , Ronneberger, O. , 2016. 3D U-Net:
Learning Dense Volumetric Segmentation from Sparse annotation. International con-
ference On Medical Image Computing and Computer-Assisted Intervention. Springer,
pp. 424–432 . 
12 
olton, D. , Kress, R. , 2019. Inverse Acoustic and Electromagnetic Scattering Theory.
Springer Nature . 

ordero-Grande, L. , Hughes, E.J. , Hutter, J. , Price, A.N. , Hajnal, J.V. , 2018. Three-di-
mensional motion corrected sensitivity encoding reconstruction for multi-shot multi-
-slice MRI: application to neonatal brain imaging. Magn. Reson. Med. 79 (3), 1365–
1376 . 

ordero-Grande, L. , Ferrazzi, G. , Teixeira, R.P.A. , O’Muircheartaigh, J. , Price, A.N. , Ha-
jnal, J.V , 2020. Motion-corrected MRI with DISORDER: distributed and incoherent
sample orders for reconstruction deblurring using encoding redundancy. Magn. Re-
son. Med. 84 (2) . 

esikan, R.S. , Segonne, F. , Fischl, B. , Quinn, B.T. , Dickerson, B.C. , Blacker, D. , Buck-
ner, R.L. , Dale, A.M. , Maguire, R.P. , Hyman, B.T. , Albert, M.S. , Killiany, R.J. , 2006. An
automated labeling system for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. Neuroimage 31 (3), 968–980 . 

i Martino, A. , Yan, C.G. , Li, Q. , Denio, E. , Castellanos, F.X. , Alaerts, K. , Anderson, J.S. , As-
saf, M. , Bookheimer, S.Y. , Dapretto, M. , Deen, B. , Delmonte, S. , Dinstein, I. , Ertl-Wag-
ner, B. , Fair, D.A. , Gallagher, L. , Kennedy, D.P. , Keown, C.L. , Keysers, C. , Lain-
hart, J.E. , Lord, C. , Luna, B. , Menon, V. , Minshew, N.J. , Monk, C.S. , Mueller, S. ,
Müller, R.A. , Nebel, M.B. , Nigg, J.T. , O’Hearn, K. , Pelphrey, K.A. , Peltier, S.J. ,
Rudie, J.D. , Sunaert, S. , Thioux, M. , Tyszka, J.M. , Uddin, L.Q. , Verhoeven, J.S. , Wen-
deroth, N. , Wiggins, J.L. , Mostofsky, S.H. , Milham, M.P. , 2014. The autism brain imag-
ing data exchange: towards a large-scale evaluation of the intrinsic brain architecture
in autism. Mol. Psychiatry 19 (6), 659–667 . 

olz, J. , Desrosiers, C. , Ayed, I.B. , 2018. 3D fully convolutional networks for subcortical
segmentation in MRI: a large-scale study. Neuroimage 170, 456–470 . 

uffy, B.A. , Zhang, W. , Tang, H. , Zhao, L. , Law, M. , Toga, A.W. , Kim, H. , 2018. Retrospec-
tive correction of motion artifact affected structural MRI images using deep learning
of simulated motion 1st Conference on Medical Imaging with Deep Learning . 

ngelhardt, E. , Inder, T.E. , Alexopoulos, D. , Dierker, D.L. , Hill, J. , Van Essen, D. , Neil, J.J. ,
2015. Regional impairments of cortical folding in premature infants. Ann. Neurol. . 

ischl, B. , Dale, A.M. , 2000. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97 (20), 11050–11055 . 

u, J. , Yang, Y. , Singhrao, K. , Ruan, D. , Chu, F.I. , Low, D.A. , Lewis, J.H. , 2019. Deep
learning approaches using 2D and 3D convolutional neural networks for generating
male pelvic synthetic computed tomography from magnetic resonance imaging. Med.
Phys. 46 (9), 3788–3798 . 

ibson, E. , Li, W. , Sudre, C. , Fidon, L. , Shakir, D.I. , Wang, G. , Eaton-Rosen, Z. , Gray, R. ,
Doel, T. , Hu, Y. , Whyntie, T. , Nachev, P. , Modat, M. , Barratt, D.C. , Ourselin, S. , Car-
doso, M.J. , Vercauteren, T. , 2018. NiftyNet: a deep-learning platform for medical
imaging. Comput. Methods Programs Biomed. 158, 113–122 . 

lasser, M.F. , Sotiropoulos, S.N. , Wilson, J.A. , Coalson, T.S. , Fischl, B. , Andersson, J.L. ,
Xu, J. , Jbabdi, S. , Webster, M. , Polimeni, J.R. , Van Essen, D.C. , Jenkinson, M. , Con-
sortium, W.U.-M.H. , 2013. The minimal preprocessing pipelines for the human con-
nectome project. Neuroimage 80, 105–124 . 

oodfellow, I. , Pouget-Abadie, J. , Mirza, M. , Xu, B. , Warde-Farley, D. , Ozair, S. ,
Courville, A. , Bengio, Y. , 2014. Generative adversarial nets. Adv. Neural Inf. Process.
Syst. 2672–2680 . 

reengard, L. , Lee, J.-.Y. , 2004. Accelerating the nonuniform fast fourier transform. SIAM
Rev. 46 (3), 443–454 . 

ammernik, K. , Klatzer, T. , Kobler, E. , Recht, M.P. , Sodickson, D.K. , Pock, T. , Knoll, F. ,
2018. Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med 79 (6), 3055–3071 . 

askell, M.W. , Cauley, S.F. , Wald, L.L. , 2018. Targeted motion estimation and reduction
(TAMER): data consistency based motion mitigation for MRI using a reduced model
joint optimization. IEEE Trans. Med. Imaging 37 (5), 1253–1265 . 

edley, M. , Yan, H. , Rosenfeld, D. , 1991. An improved algorithm for 2-D translational
motion artifact correction. IEEE Trans Med Imaging 10 (4), 548–553 . 

glesias, J.E. , Lerma-Usabiaga, G. , Garcia-Peraza-Herrera, L.C. , Martinez, S. ,
Paz-Alonso, P.M. , 2017. Retrospective Head Motion Estimation in Structural
Brain MRI With 3D CNNs. Springer, Cham, pp. 314–322 . 

sensee, F. , Kickingereder, P. , Wick, W. , Bendszus, M. , Maier-Hein, K.H. , 2018. No new-net.
International MICCAI Brainlesion Workshop . Springer, pp. 234–244 . 

ohnson, P.M. , Drangova, M. , 2019. Conditional generative adversarial network for 3D
rigid-body motion correction in MRI. Magn. Reson. Med. 82 (3), 901–910 . 

amnitsas, K. , Ledig, C. , Newcombe, V.F. , Simpson, J.P. , Kane, A.D. , Menon, D.K. , Rueck-
ert, D. , Glocker, B. , 2017. Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 . 

im, H. , Lepage, C. , Maheshwary, R. , Jeon, S. , Evans, A.C. , Hess, C.P. , Barkovich, A.J. ,
Xu, D. , 2016. NEOCIVET: towards accurate morphometry of neonatal gyrification and
clinical applications in preterm newborns. Neuroimage 138, 28–42 . 

ingma, D.P. , Ba, J. , 2014. Adam: A Method For Stochastic Optimization . 
ustner, T. , Armanious, K. , Yang, J. , Yang, B. , Schick, F. , Gatidis, S. , 2019. Retrospec-

tive correction of motion-affected MR images using deep learning frameworks. Magn.
Reson. Med. 82 (4), 1527–1540 . 

üstner, T. , Liebgott, A. , Mauch, L. , Martirosian, P. , Bamberg, F. , Nikolaou, K. , Yang, B. ,
Schick, F. , Gatidis, S. , 2018. Automated reference-free detection of motion artifacts
in magnetic resonance images.. Magn. Resonance Mater. Phys. Biol. Med. 31 (2),
243–256 . 

i, W. , Wang, G. , Fidon, L. , Ourselin, S. , Cardoso, M.J. , Vercauteren, T. , 2017. On the
Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain
Parcellation As a Pretext Task. Cham. Springer International Publishing, pp. 348–360 .

oktyushin, A. , Nickisch, H. , Pohmann, R. , Schölkopf, B. , 2013. Blind retrospective motion
correction of MR images. Magn. Reson. Med. 70 (6), 1608–1618 . 

oktyushin, A. , Schuler, C. , Scheffler, K. , Schölkopf, B. , 2015. Retrospective Motion Cor-
rection of Magnitude-Input MR Images. Springer, Cham, pp. 3–12 . 

https://github.com/bduffy0/motion-correction
http://fcon_1000.projects.nitrc.org/indi/abide/
https://www.ppmi-info.org/
https://www.ida.loni.usc.edu/
http://www.ppmi-info.org/data
http://www.ppmi-info.org
http://www.ppmi-info.org/fundingpartners
http://www.fnih.org
https://doi.org/10.1016/j.neuroimage.2021.117756
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0032


B.A. Duffy, L. Zhao, F. Sepehrband et al. NeuroImage 230 (2021) 117756 

L  

 

M  

 

M  

 

 

M  

M  

 

M  

 

M  

 

M  

 

 

N  

O  

O  

 

 

P  

 

 

P  

P  

P  

 

 

P  

 

R  

 

R  

 

S  

 

 

S  

 

 

S  

 

S  

 

T  

T  

 

T  

 

 

T  

 

U  

 

W  

W  

 

W  

Y

Y  

Z  

Z  
yoo, C.H. , Ryu, Y.H. , Lee, M.S. , 2010. Topographical distribution of cerebral cortical
thinning in patients with mild Parkinson’s disease without dementia. Mov. Disord. 25
(4), 496–499 . 

adhyastha, T.M. , Askren, M.K. , Boord, P. , Zhang, J. , Leverenz, J.B. , Grabowski, T.J. ,
2015. Cerebral perfusion and cortical thickness indicate cortical involvement in mild
Parkinson’s disease. Mov. Disord. 30 (14), 1893–1900 . 

ak, E. , Su, L. , Williams, G.B. , Firbank, M.J. , Lawson, R.A. , Yarnall, A.J. , Dun-
can, G.W. , Owen, A.M. , Khoo, T.K. , Brooks, D.J. , Rowe, J.B. , Barker, R.A. , Burn, D.J. ,
O’Brien, J.T. , 2015. Baseline and longitudinal grey matter changes in newly diagnosed
Parkinson’s disease: ICICLE-PD study. Brain 138 (Pt 10), 2974–2986 . 

eding, K., Loktyushin, A., Hirsch, M. Automatic Detection of Motion Artifacts in MR
Images Using CNNS. 2017/03. IEEE. pp. 811–815. 

enze, B.H. , Jakab, A. , Bauer, S. , Kalpathy-Cramer, J. , Farahani, K. , Kirby, J. , Burren, Y. ,
Porz, N. , Slotboom, J. , Wiest, R. , 2014. The multimodal brain tumor image segmen-
tation benchmark (BRATS). IEEE Trans. Med. Imaging 34 (10), 1993–2024 . 

illetari, F. , Navab, N. , Ahmadi, S.-.A. , 2016. V-net: fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 fourth international conference

on 3D vision (3DV) . IEEE, pp. 565–571 . 
oradi, E. , Khundrakpam, B. , Lewis, J.D. , Evans, A.C. , Tohka, J. , 2017. Predicting symp-

tom severity in autism spectrum disorder based on cortical thickness measures in
agglomerative data. Neuroimage 144, 128–141 . 

ortamet, B. , Bernstein, M.A. , Jack Jr., C.R. , Gunter, J.L. , Ward, C. , Britson, P.J. , Meuli, R. ,
Thiran, J.P. , Krueger, G. Alzheimer’s Disease Neuroimaging, I, 2009. Automatic qual-
ity assessment in structural brain magnetic resonance imaging. Magn Reson Med 62
(2), 365–372 . 

yul, L.G. , Udupa, J.K. , Xuan, Z. , 2000. New variants of a method of MRI scale standard-
ization. IEEE Trans Med Imaging 19 (2), 143–150 . 

dena, A. , Dumoulin, V. , Olah, C. , 2016. Deconvolution and checkerboard artifacts. Distill
1 (10), e3 . 

ksuz, I. , Ruijsink, B. , Puyol-Antón, E. , Bustin, A. , Cruz, G. , Prieto, C. , Rueckert, D. , Schn-
abel, J.A. , King, A.P. , 2018. Deep learning using K-space based data augmentation
for automated cardiac MR motion artefact detection. In: International Conference on

Medical Image Computing and Computer-Assisted Intervention . Springer, pp. 250–258 . 
agonabarraga, J. , Corcuera-Solano, I. , Vives-Gilabert, Y. , Llebaria, G. , Garcia-Sanchez, C. ,

Pascual-Sedano, B. , Delfino, M. , Kulisevsky, J. , Gomez-Anson, B. , 2013. Pattern of re-
gional cortical thinning associated with cognitive deterioration in Parkinson’s disease.
PLoS ONE 8 (1), e54980 . 

awar, K. , Chen, Z. , Shah, N.J. , Egan, G.F. , 2018. Moconet: Motion correction in 3D
MPRAGE Images Using a Convolutional Neural Network Approach arXiv preprint . 

ayan, A. , Montana, G. , 2015. Predicting Alzheimer’s disease: a Neuroimaging Study With
3D Convolutional Neural Networks arXiv preprint . 

ereira, J.B. , Ibarretxe-Bilbao, N. , Marti, M.J. , Compta, Y. , Junque, C. , Bargallo, N. ,
Tolosa, E. , 2012. Assessment of cortical degeneration in patients with Parkinson’s
disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum
Brain Mapp 33 (11), 2521–2534 . 

ham, C.-.H. , Ducournau, A. , Fablet, R. , Rousseau, F. , 2017. Brain MRI super-resolution
using deep 3D convolutional networks. In: 2017 IEEE 14th International Symposium on

Biomedical Imaging (ISBI 2017) . IEEE, pp. 197–200 . 
euter, M. , Tisdall, M.D. , Qureshi, A. , Buckner, R.L. , van der Kouwe, A.J.W. , Fischl, B. ,

2015. Head motion during MRI acquisition reduces gray matter volume and thickness
estimates. Neuroimage 107, 107–115 . 
13 
onneberger, O. , Fischer, P. , Brox, T. , 2015. U-net: convolutional networks for biomed-
ical image segmentation. In: International Conference on Medical image computing and

computer-assisted intervention . Springer, pp. 234–241 . 
atterthwaite, T.D. , Wolf, D.H. , Loughead, J. , Ruparel, K. , Elliott, M.A. , Hakonarson, H. ,

Gur, R.C. , Gur, R.E. , 2012. Impact of in-scanner head motion on multiple measures
of functional connectivity: relevance for studies of neurodevelopment in youth. Neu-
roimage 60 (1), 623–632 . 

habanian, M. , Eckstein, E.C. , Chen, H. , DeVincenzo, J.P. , 2019. Classification of Neu-
rodevelopmental Age in Normal Infants Using 3D-CNN based on Brain MRI. In:
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) . IEEE,
pp. 2373–2378 . 

led, J.G. , Zijdenbos, A.P. , Evans, A.C. , 1998. A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17 (1),
87–97 . 

tucht, D. , Danishad, K.A. , Schulze, P. , Godenschweger, F. , Zaitsev, M. , Speck, O. , 2015.
Highest resolution in vivo human brain MRI using prospective motion correction.
PLoS ONE 10 (7), e0133921 . 

inaz, S. , Courtney, M.G. , Stern, C.E. , 2011. Focal cortical and subcortical atrophy in early
Parkinson’s disease. Mov Disord 26 (3), 436–441 . 

isdall, M.D. , Hess, A.T. , Reuter, M. , Meintjes, E.M. , Fischl, B. , van der Kouwe, A.J.W. ,
2012. Volumetric navigators for prospective motion correction and selective reacqui-
sition in neuroanatomical MRI. Magn. Reson. Med. 68 (2), 389–399 . 

rivizakis, E. , Manikis, G.C. , Nikiforaki, K. , Drevelegas, K. , Constantinides, M. , Drevel-
egas, A. , Marias, K. , 2018. Extending 2-D convolutional neural networks to 3-D for
advancing deep learning cancer classification with application to MRI liver tumor
differentiation. IEEE J. Biomed. Health Inform. 23 (3), 923–930 . 

ustison, N.J. , Avants, B.B. , Cook, P.A. , Zheng, Y. , Egan, A. , Yushkevich, P.A. , Gee, J.C. ,
2010. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29 (6),
1310–1320 . 

ribe, C. , Segura, B. , Baggio, H.C. , Abos, A. , Marti, M.J. , Valldeoriola, F. , Compta, Y. , Bar-
gallo, N. , Junque, C. , 2016. Patterns of cortical thinning in nondemented Parkinson’s
disease patients. Mov. Disord. 31 (5), 699–708 . 

ang, Z. , Bovik, A.C. , Sheikh, H.R. , Simoncelli, E.P. , 2004. Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13 (4), 600–612 . 

hite, N. , Roddey, C. , Shankaranarayanan, A. , Han, E. , Rettmann, D. , Santos, J. , Kuper-
man, J. , Dale, A. , 2010. PROMO: real-time prospective motion correction in MRI using
image-based tracking. Magn. Reson. Med . 

ilson, H. , Niccolini, F. , Pellicano, C. , Politis, M. , 2019. Cortical thinning across Parkin-
son’s disease stages and clinical correlates. J. Neurol. Sci. 398, 31–38 . 

ang, Z., Zhang, C., Xie, L. Sparse MRI For Motion correction. 2013/04. IEEE. pp. 962–
965. 

oshida, S. , Oishi, K. , Faria, A.V. , Mori, S. , 2013. Diffusion tensor imaging of normal brain
development. Pediatr. Radiol. 43 (1), 15–27 . 

aitsev, M. , Maclaren, J. , Herbst, M. , 2015. Motion artifacts in MRI: a complex problem
with many partial solutions. J. Magn. Resonance Imaging 42 (4), 887–901 . 

hu, B. , Liu, J.Z. , Cauley, S.F. , Rosen, B.R. , Rosen, M , 2018. Image reconstruction by
domain-transform manifold learning. Nature . 

http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00033-1/sbref0066

	Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions
	1 Introduction
	2 Methods
	2.1 Framework
	2.2 Datasets
	2.3 Motion artifact simulation
	2.3.1 Overall framework
	2.3.2 Motion types
	2.3.3 Sampling strategies

	2.4 Image preprocessing
	2.5 CNN training and inference
	2.6 Evaluation on simulated data
	2.7 Evaluation on real motion artifact affected data
	2.7.1 ABIDE dataset
	2.7.2 ADNI dataset

	2.8 Cortical reconstruction and quality control
	2.9 Relationship between cortical thickness and Parkinson’s disease
	2.10 Testing on brain tumor data

	3 Results
	3.1 Image domain vs. fourier domain simulation
	3.2 Neural network architecture
	3.3 Simulated validation data
	3.4 Real motion-artifact affected data for optimization of training parameters
	3.5 Improvements in surface reconstruction quality
	3.6 Relationship between cortical thickness and Parkinson’s disease

	4 Discussion
	Credit author statement
	Data_Code_Avail_Statement
	Acknowledgements
	Supplementary materials
	References


