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Abstract
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data

for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment

(MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET pro-

vide valuable insights into brain abnormalities, while genetic data such as single nucleotide poly-

morphism (SNP) provide information about a patient's AD risk factors. When these data are

used together, the accuracy of AD diagnosis may be improved. However, these data are hetero-

geneous (e.g., with different data distributions), and have different number of samples (e.g., with

far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective

model using these data is challenging. To this end, we present a novel three-stage deep feature

learning and fusion framework, where deep neural network is trained stage-wise. Each stage of

the network learns feature representations for different combinations of modalities, via effective

training using the maximum number of available samples. Specifically, in the first stage, we learn latent

representations (i.e., high-level features) for each modality independently, so that the heterogeneity

among modalities can be partially addressed, and high-level features from different modalities can

be combined in the next stage. In the second stage, we learn joint latent features for each pair of

modality combination by using the high-level features learned from the first stage. In the third stage,

we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To

further increase the number of samples during training, we also use data at multiple scanning time

points for each training subject in the dataset. We evaluate the proposed framework using Alzhei-

mer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results

show that the proposed framework outperforms other state-of-the-art methods.
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1 | INTRODUCTION

Alzheimer's disease (AD) is the most common form of dementia for

people over 65 years old (Chen et al., 2017; Mullins, Mustapic,

Goetzl, & Kapogiannis, 2017; Rombouts et al., 2005; Zhou,

Thung, Zhu, & Shen, 2017; Zhou et al., 2018). According to a recent

research report from Alzheimer's association (Association, 2016), the

total estimated prevalence of AD is expected to be 60 million world-

wide over the next 50 years. AD is a neurodegenerative disease that

is associated with the production of amyloid peptide (Suk et al., 2015),

and its symptoms typically start with mild memory loss and gradual

losses of other brain functions. As there is no cure for AD, the early

detection of AD and especially its prodromal stage, that is, mild cogni-

tive impairment (MCI), is vital, so that treatment can be administered

to possibly slow down the disease progression (Thung, Wee, Yap, &

Shen, 2016; Wee et al., 2012). On the other hand, it is also highly

desirable to further classify MCI subjects into two subgroups, that is,

progressive MCI (pMCI) that will progress to AD, and stable

MCI (sMCI) that will remain stable. Thus, more resources can be

applied directly to pMCI subjects for their treatment (Thung, Yap

et al., 2018).

In search of biomarkers that can accurately identify AD and its

earlier statuses, data from different modalities have been collected

and examined. One of the most commonly collected data is Magnetic
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Resonance (MR) images, which can provide us anatomical brain infor-

mation for AD study (Chen, Zhang et al., 2016; Cuingnet, Gerardin

et al., 2011; Fox et al., 1996; Koikkalainen et al., 2016; Raamana et al.,

2014; Raamana, Weiner et al., 2015; Sørensen, Igel et al., 2017;

Thung, Wee et al., 2014; Yu Zhang, 2018; Zhanga et al., 2018). For

example, Koikkalainen et al. (Koikkalainen et al., 2016) extracted volu-

metric and morphometric features from T1 MR images and also vascu-

lar features from FLAIR images to build a multi-class classifier based

on the disease state index methodology. Raamana et al. (2014) pro-

posed a novel three-class classifier to discriminate among AD, fronto-

temporal dementia (FTD), and normal control (NC) using volumes,

shape invariants, and local displacements of hippocampi and lateral

ventricles obtained from brain MR images. Raamana, Weiner

et al. (2015) proposed a novel thick-net features that can be extracted

from a single time-point MRI scan and demonstrated their potential

for individual patient diagnosis. Another neuroimaging techniques,

that is, Positron Emission topography (Rasmussen, Hansen, Madsen,

Churchill, & Strother, 2012), which provides us functional brain infor-

mation, has also been widely used to investigate the neurophysiologi-

cal characteristics of AD (Chetelat et al., 2003; Escudero, Ifeachor

et al., 2013; Liu et al., 2015; Mosconi et al., 2008; Nordberg, Rinne,

Kadir, & Långström, 2010). Recent studies have shown that fusing the

complementary information from multiple modalities can enhance the

diagnostic performance of AD (Kohannim, Hua et al., 2010; Perrin,

Fagan, & Holtzman, 2009; Yuan, Wang et al., 2012). For instance,

Kohannim, Hua et al. (2010) concatenated attributes (or better known

as features in machine learning community) derived from different

modalities into a long vector and then trained a support vector

machine (SVM) as classifier. The researchers in (Yuan, Wang et al.,

2012; Zhang, Shen et al., 2012) used sparse learning to select features

from multiple modalities to jointly predict the disease labels and clini-

cal scores. Another work in (Suk et al., 2015) used a multi-kernel SVM

strategy to fuse multimodality data for disease label prediction. In

addition, discriminative multivariate analysis techniques have been

applied to the analysis of functional neuroimaging data (Dai et al.,

2012; Haufe et al., 2014; Rasmussen et al., 2012). For instance, Dai

et al. (Dai et al., 2012) proposed a multi-modality, multi-level, and

multi-classifier (M3) framework that used regional functional connec-

tivity strength (RFCS) to discriminate AD patients from healthy

controls.

Recently, imaging-genetic analysis (Lin, Cao, Calhoun, & Wang,

2014) has been utilized to identify the genetic basis (e.g., Single

Nucleotide Polymorphisms [SNPs]) of phenotypic neuroimaging

markers (e.g., features in MRI) and study the associations between

them. In particular, various Genome-Wide Association Studies

(GWAS) (Chu et al., 2017; Price et al., 2006; Saykin, Shen et al., 2010;

Wang, Nie et al., 2012) have been done investigation on the relation-

ship between the human genomic variants and the disease bio-

markers. For example, GWAS has identified the associations between

some SNPs and AD related brain regions (Biffi, Anderson et al., 2010;

Shen et al., 2014; Shen, Kim et al., 2010), where the SNPs found could

be used to predict the risk of incident AD at earlier stage of life even

before pathological changes begin. If success, such early diagnosis

may help clinicians to identify prospectus subject to monitor for AD

progression and find potential treatments to possibly prevent the

AD. In our study, we aim to use the complementary information from

both the neuroimaging and genetic data for the diagnosis of AD and

its related early statuses. Based on this study, it shows that the com-

plementary information from multimodality data can improve the

diagnosis performance.

There are three main challenges in fusing information from multi-

modality neuroimaging data (i.e., MRI and PET) and genetic data

(i.e., SNP) for AD diagnosis. The first challenge is data heterogeneity,

as the neuroimaging and genetic data have different data distribu-

tions, different numbers of features, and different levels of discrimina-

tive ability to AD diagnosis (e.g., SNP data in their raw form are less

effective in AD diagnosis). Due to the heterogeneity issue, simple con-

catenation of the features from multimodality data will result in an

inaccurate prediction model (Di Paola et al., 2010; Liu et al., 2015;

Ngiam et al., 2011; Zhu, Suk, Lee, & Shen, 2016).

The second challenge is the high dimensionality issue. One neuro-

image scan (i.e., MR or PET image) normally contains millions of vox-

els, while the genetic data of a subject has thousands of AD-related

SNPs. In this study, we address the high dimensionality issue of the

neuroimaging data by first preprocessing them to obtain the region-

of-interest (ROI) based features using a predefined template. How-

ever, we do not have similar strategy to reduce the dimensionality of

genetic data. Thus, we still have a high-dimension-low-sample-size

problem, as we have thousands of features (dominated by SNPs) as

compared to just hundreds of training samples.

The third challenge is the incomplete multimodality data issue,

that is, not all samples in the training set have the complete three

modalities. This issue will worsen the small-sample-size issue men-

tioned above, if we only use samples with complete multimodality

data for training. In addition, using few samples during training may

also degrade the performance of the classifier algorithm that relies on

a large number of training samples to learn an effective model, such as

deep learning (Schmidhuber, 2015; Zhou et al., 2017).

To address the above challenges, we propose a novel three-stage

deep feature learning and fusion framework for AD diagnosis in this

article. Specifically, inspired by the stage-wise learning in (Barshan &

Fieguth, 2015), we build a deep neural network and train it stage-wise,

where, at each stage, we learn the latent data representations (high-

level features) for different combinations of modalities by using the

maximum number of available samples. Specifically, in the first stage,

we learn high-level features for each modality independently via pro-

gressive mapping of multiple hidden layers. After the first stage of

deep learning, the data from different modality in the latent represen-

tation space (i.e., the output of the last hidden layer) are theoretically

more discriminative to the target labels, and thus more comparable to

each other. In other words, the heterogeneity issue of multimodality

data is partially alleviated. In the second stage, we learn a joint feature

representation for each modality combination by using the high-level

latent features learned from the first stage. In the third stage, we learn

the diagnostic labels by fusing the learned joint features from the sec-

ond stage. It is worth emphasizing that we use the maximum number of

all available samples to train each stage of the network more effectively.

For example, in the first stage, to learn the high-level latent features

from MRI data, we use all the available MRI data; in the second stage,

to learn the joint high-level features from MRI and PET data, we use
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all the samples with complete MRI and PET data; in the third stage,

we use all the samples with complete MRI, PET and SNP data. In this

way, the small-sample-size and incomplete multimodality data issues can

be partially addressed. Moreover, to learn a more effective deep classi-

fication model, we further significantly increase the number of training

samples by using multiple time-point data for each training subject, if

available.

The main contributions of our work are summarized as follows:

(a) To our best knowledge, this is the first deep learning framework

that fuses multimodality neuroimaging and genetic data for AD diag-

nosis. (b) We propose a novel three-stage deep learning framework to

partially address the data heterogeneity, as well as small-sample-size

and incomplete multimodality data issues. (c) We propose to signifi-

cantly increase the number of training samples by using multiple time-

point data scanned for each training subject in ADNI study, which is

completely different from most of the existing methods that often

consider only the data scanned at one time-point.

The rest of this article is organized as follows. We briefly describe

the background and related works in Section 2, introduce the pro-

posed framework in Section 3, describe the materials and the data

preprocessing method used in this study in Section 4, present the

experimental results in Section 5, and conclude our study in Section 6.

2 | BACKGROUND

2.1 | Feature extraction of neuroimaging data

There are basically three approaches for extracting features from neu-

roimaging data for analysis (Jack, Bernstein et al., 2008): (a) voxel-

based approach, which directly extracts features by using voxel

intensity values from neuroimaging data, (b) patch-based approach,

which extracts features from local image patches, and (c) region of

interest (ROI) based approach, which extracts features from the pre-

defined brain regions. Among these three approaches, the voxel-

based approach is perhaps the most straightforward method, as it

uses the raw low-level image intensity values as features. Because of

that, it has the drawbacks of having high feature dimensionality and

high computation load, as well as ignoring the regional information of

the neuroimages as it treats each voxel in the neuroimaging data inde-

pendently. In contrast, patch-based approach can capture brain

regional information by extracting features from image patch. As

diseased-related information and brain structures are more easily

found in image patches, this approach generally can obtain much bet-

ter classification performance than the voxel-based approach. A

higher level of information can be extracted by using brain anatomical

prior, as in the ROI-based approach. The dimensionality of ROI-based

features depends on the number of ROIs defined in the template,

which is comparatively smaller than the aforementioned approaches,

and thus this is a good feature reduction method that can reflect the

entire brain information (Barshan & Fieguth, 2015; Cuingnet, Gerardin

et al., 2011; Suk et al., 2015; Wan et al., 2012; Zhou et al., 2017).

Accordingly, we also use the ROI-based approach in this study to

reduce the feature dimensionality of neuroimaging data.

2.2 | Deep learning in AD study

Deep learning has been widely used in learning high-level features

and conducting classification, and achieves promising results

(Barshan & Fieguth, 2015; Farabet, Couprie, Najman, & LeCun, 2013).

Deep learning can effectively capture hidden or latent patterns in the

data. Recently, deep learning algorithms have been successfully

applied to medical image processing and analysis (Litjens et al., 2017).

For instance, Zheng et al. (2016) proposed a multimodal neuroimaging

feature learning algorithm with the stacked deep polynomial networks

for AD study. Fakoor et al. (2013) presented a novel method to

enhance cancer diagnosis from gene expression data by using unsu-

pervised deep leaning methods (e.g., stacked auto-encoder [SAE]). Suk

et al. (2015) adopted SAE to discover the latent feature representa-

tion from the ROI-based features, and then used a multi-kernel learn-

ing (MKL) framework to combine latent features from multimodality

data for AD diagnosis. Liu et al. (2015) also adopted an SAE-based

multimodal neuroimaging feature learning algorithm for AD diagnosis.

Suk, Lee et al. (2014) adopted Restricted Boltzmann Machine (RBM)

to learn multi-modal features from 3D patches for AD/MCI diagnosis.

Plis et al. (2014) adopted RBM and Deep Belief networks (DBN) to

learn high-level features from MRI and fMRI for schizophrenia diagno-

sis. The common limitation of these deep learning methods is that

they assume the data are complete, and thus only the data with com-

plete multimodality can be used in the training and testing. This limita-

tion may also reduce the effectiveness of training the deep learning

model, as few number of samples can be used in the training. In the

next section, we show how we address this limitation by proposing a

stage-wise deep learning model.

3 | PROPOSED FRAMEWORK

Figure 1 shows the overview of our proposed three-stage deep fea-

ture learning and fusion framework for AD classification by using

multimodality neuroimaging data (i.e., MRI and PET) and genetic

data (i.e., SNP). Our framework aims to maximally utilize all the

available data from the three modalities to train an effective deep

learning model. There are three stages in our proposed deep learn-

ing framework, where each stage is composed of a set of different

deep neural networks (DNNs), with each DNN used to learn feature

representations for different combinations of modalities by using

the maximum number of available samples. In particular, the first

stage learns the latent representations for each individual modality,

the second stage learns the joint latent representations for each

pair of modalities, and finally the third stage learns the classification

model using the joint latent representations from all the modality

pairs. The details of each stage of the framework are described in

the following.

3.1 | Stage 1 - individual modality feature learning

The ROI-based features for MRI and PET data are continuous and

low-dimensional (i.e., 93), while SNP data are discrete (i.e., 0, 1, or 2)

and high dimensional (i.e., 3,123). Direct concatenation of these data

will result in an inaccurate detection model, as SNP data, which are
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only indirectly related to the target labels, will dominate the feature

learning process. In addition, there is also incomplete multimodality

data issue, that is, not all samples have all the modalities and also the

PET data has a far less number of samples than the numbers of MRI

and SNP data. This implies that, if we train a single DNN model for all

three modalities, only samples with complete multimodality data can

be used, thus limiting the effectiveness of the model.

Therefore, in Stage 1 of our proposed framework, we employ a sep-

arate DNN for each individual modality, as depicted in Figure 1. Each

DNN contains several fully-connected hidden layers and one output

layer (i.e., Softmax classifier). The output layer consists of three neurons

for the case of three-class classification (i.e., AD/MCI/NC classification

task), or four neurons for the case of four-class classification

(i.e., AD/sMCI/pMCI/AD classification task). During the training, we use

the label information from the training samples at the output layer to

guide the learning of the network weights. After training, the outputs of

the last hidden layer of each DNN are regarded as the latent representa-

tions (i.e., high-level features) for the corresponding modality.

There are several advantages of this individual modality feature

learning strategy. First, it allows us to use the maximum number of

available training samples for each modality. For example, assume

that we have N subjects, where only N1 subjects contain MRI data,

N2 subjects contain PET data, and N3 subjects contain SNP data.

The conventional multimodality model uses only the subjects with

all three modality data, which is much less than min(N1, N2, N3). On

the other hand, by using our proposed framework, we can use all

the N1, N2 and N3 samples to train three separate deep learning

models for three modalities, respectively. It is expected that, by

using more samples in training, our model can learn better latent

representations for each model. Furthermore, this setting also par-

tially addresses the incomplete multimodality data issue, as the

framework is applicable for the training set with incomplete multi-

modality data. Second, it allows us to use both different number of

hidden layers and different number of hidden neurons (for each

layer) to learn the latent representations of each modality and

modality combination. We argue that, as our multimodality data are

heterogeneous with different feature size and discriminability for

AD diagnosis, the number of hidden layers and the number of neu-

rons in the neural network should be modality-dependent. For

instance, for the modality with more number of features (i.e., SNPs

in our case), we use more hidden layers and then gradually reduce

the number of neurons for each layer to reduce the dimensionality

of the modality; while for the modalities with less number of fea-

tures or more direct relationship to the targets (i.e., ROI-based MRI

and PET features in our case), we can use a few number of hidden

layers to obtain the latent features. This strategy is also consistent

with the strategy used in previous studies that also fuse multimod-

ality data at the later stage of the hidden layers (Ngiam et al., 2011;

Srivastava & Salakhutdinov, 2012; Suk, Lee et al., 2014). As a result,

the high-level features (i.e., the output of the last hidden layer) of

each modality should be more comparable to each other as they are

semantically closer to the target labels, thus partially addressing the

modality heterogeneity issue.

3.2 | Stage 2 - joint latent representation learning of
two modalities

In Stage 2, we learn the feature representations for different combina-

tions of modality pairs (i.e., MRI-PET, MRI-SNP, PET-SNP). The aim of

this stage is to fuse the complementary information from different

modalities to further improve the performance of the classification

framework. The complete DNN architecture used in Stage 2 is

depicted in Figure 1. There are a total of three DNN architectures,

one for each pair of modalities. Note that, the outputs from hidden

layers in Stage 1 are regarded as intermediate inputs in Stage 2, and

the weights from Stage 1 can be regarded as the initial weights to ini-

tialize the DNN architecture in Stage 2. In addition, we use three out-

puts to train each DNN architecture. Two of the outputs are used to

FIGURE 1 The proposed overall framework of three-stage deep neural network for AD diagnosis using MRI, PET, and SNP data. We first learn

latent representations (i.e., high-level features) for each modality independently in stage 1. Then, in stage 2, we learn joint latent feature
representations for each pair of modality combination (e.g., MRI and PET, MRI and SNP, PET and SNP) by using the high-level features learned
from stage 1. Finally, in stage 3, we learn the diagnostic labels by fusing the learned joint latent feature representations from the stage 2 [Color
figure can be viewed at wileyonlinelibrary.com]
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guide the learning of high-level features from two different modalities,

while third output is used to guide the learning of joint high-level fea-

tures for the two modalities.

Note that we also use the maximum number of available samples

for this stage. For instance, to learn feature representation for the combi-

nation of MRI and PET data, we use the samples with complete MRI and

PET data to train the DNN model. Using the same example of the previ-

ous section, where N1 subjects contain MRI data, N2 subjects contain

PET data, N3 subjects contain SNP data, and Nmp = min(N1, N2) subjects

contain both MRI and PET data. Then, we use Nmp samples to train net-

work for modality pair of MRI & PET in Stage 2, while use N1 samples

and N2 samples to train the independent MRI and PET network models,

respectively. The weights learned from Stage 1 are used as initial weights

for Stage 2. We use a similar strategy to train neural network for other

modality pairs; thus, in Stage 2, we train totally three DNN models for

three combinations of modality pairs.

3.3 | Stage 3 - final feature fusion of three
modalities

After Stage 2, we obtain the joint feature representations of all the

modality pairs. We then fuse all the joint representations in a final

DNN prediction model. The architecture used in this stage is depicted

as Stage 3 in Figure 1. In Stage 3, we use the learned joint high-level

features from Stage 2 as input and the target labels as output. As fea-

tures from all the three modalities are involved in the DNN architec-

ture in Stage 3, we can only use the samples with complete MRI, PET,

and SNP data to train this part of network, and then fine-tune the

whole network (i.e., DNN architecture in Stage 1, Stage 2, and Stage

3). Note that the networks in Stage 1 and Stage 2 are learned by using

more available training samples. This is the major advantage of stage-

wise network training which can make full use of all available samples

for training. After training the whole network, we may obtain the diag-

nostic label for each testing sample (with complete data from three

modalities) at the output layer. Due to the limited number of subjects

with complete multimodality data in this study, the classification

results at the last output layer may suffer from over-fitting issue.

Thus, we use majority voting strategy for all the seven soft-max out-

put layers in Stage 3 (shown in Figure 1), as our final classification

result.

4 | MATERIALS AND IMAGE DATA
PREPROCESSING

We use the public Alzheimer's disease neuroimaging initiative (ADNI)

database to evaluate the performance of our framework. The ADNI

dataset was launched in 2003 by the National Institute on Aging, the

National Institute of Biomedical Imaging and Bioengineering, the Food

and Drug Administration, private pharmaceutical companies and non-

profit organizations with a 5-year public private partnership. The main

goal of ADNI is to investigate the potential of fusing multimodality data,

including neuroimaging, clinical, biological, and genetic biomarkers, to

diagnose AD and its early statuses.

4.1 | Subjects

In this study, we used 805 ADNI-1 subjects, including 190 AD,

389 MCI, and 226 normal controls (NC) subjects, which have their MR

images scanned at the first screening time (i.e., the baseline). Out of

these subjects, 360 have PET data, and 737 have SNP data. The

detailed demographic information of the baseline subjects is summa-

rized in Table 1. In addition, Table 2 shows the numbers of subjects

with different combinations of modalities. From Table 2, it is clear to

see that some subjects have certain modalities missing, as only

360 subjects have complete multimodality data.

After the baseline scan, follow-up scans were acquired every 6 or

12 months for up to 36 months. However, not all the subjects came

back for follow-up scans, and also not all kinds of neuroimaging scans

were acquired for each subject. Thus, the number of longitudinal data

for each subject is different, and also the number of modality data at

each time point is different for each subject. Nevertheless, our frame-

work is still applicable in this case, as it is robust to incomplete

multimodality data.

For the MCI subjects, we retrospectively labeled those who pro-

gressed to AD after a certain period of time as pMCI subjects, while

those who remained stable as sMCI subjects. Following this convention,

the labeling of sMCI/pMCI could be affected by both the reference

time-point and the time period in which the patients are monitored for

conversion to AD. We considered the 18-th month as the reference and

30 months as the time period to monitor for conversion, so that there is

a sufficient number of earlier scan samples (i.e., samples at baseline, 6th

and 12th month) in each cohort (i.e., pMCI and sMCI) for our study. Thus,

MCI patients who were converted to AD within the 18th to 48th month

(the duration of 30 months) are labeled as pMCI patients, while MCI

patients whose conditions remained stable are labeled as sMCI patients.

MCI patients who were progressed to AD prior to the 18th month were

excluded from the study, because they were no longer MCI patients at

the reference time point. Similarly, MCI patients who were converted to

AD after the 48th month were also excluded to avoid ambiguity in label-

ing. In addition, as some MCI subjects dropped out of the study after the

baseline scans, their sub-labels (pMCI or sMCI) cannot be determined.

Hence, the total number of pMCI (i.e., 157) and sMCI (i.e., 205) subjects

does not match with the total number of baseline MCI subjects.

4.2 | Processing of neuroimages and SNPs

For this study, we downloaded the preprocessed 1.5 T MR images

and PET images from the ADNI website.1 The MR images were col-

lected by using a variety of scanners with protocols individualized for

TABLE 1 Demographic information of the baseline subjects in this

study (MMSE: Mini-mental state examination)

Female/male Education Age MMSE

NC 108/118 16.0 � 2.9 75.8 � 5.0 29.1 � 1.0

MCI 138/251 15.6 � 3.0 74.9 � 7.3 27.0 � 1.8

AD 101/89 14.7 � 3.1 75.2 � 7.5 23.3 � 2.0

Total 347/458 15.5 � 3.0 75.2 � 6.8 26.7 � 2.7 1http://www.loni.usc.edu/ADNI

ZHOU ET AL. 5

http://www.loni.usc.edu/ADNI


each scanner. In order to ensure the quality of all images, ADNI had

reviewed these MR images and had corrected them for spatial distor-

tion caused by B1 field inhomogeneity and gradient nonlinearity. For

PET images, which were collected by 30–60 min post Fluoro-Deoxy

Glucose (FDG) injection, multi-operations including averaging, spa-

tially alignment, interpolation to standard voxel size, intensity normali-

zation, and common resolution smoothing had been performed.

After that, following some previous studies (Barshan & Fieguth,

2015; Suk et al., 2015), we further processed these neuroimages to

extract ROI-based features. Specifically, the MR images were pro-

cessed using the following steps: anterior commissure-posterior com-

missure (AC-PC) correction by using MIPAV software,2 intensity

inhomogeneity correction using N3 algorithm (Sled, Zijdenbos, &

Evans, 1998), brain extraction using robust skull-stripping algorithm

(Wang, Nie et al., 2014), cerebellum removal, tissues segmentation

using FAST algorithm in FSL package (Zhang, Brady, & Smith, 2001) to

obtain three main tissues (i.e., white matter (WM), gray matter (GM),

and cerebrospinal fluid), registration to a template (Kabani, 1998)

using HAMMER algorithm (Shen & Davatzikos, 2002), and projection

of ROI labels from the template image to the subject image. Finally,

for each ROI in the labeled image, we computed the GM tissue vol-

ume, normalized it with the intracranial volume, and used it as ROI

feature. Moreover, for each subject, we aligned the PET images to

their respective T1 MR images by using affine registration, computed

the average PET intensity value of each ROI, and regarded it as a fea-

ture. Thus, for a template with 93 ROIs, we obtained 93 ROI-based

neuroimaging features for each neuroimage (i.e., MRI or PET). In addi-

tion, for SNP data, according to the AlzGene database,3 only the SNPs

belonging to the top AD gene candidates were selected. The selected

SNPs were used to estimate the missing genotypes, and the illumina

annotation information was also adopted to select a subset of SNPs

(An et al., 2017; Saykin, Shen et al., 2010). In this study, we adopted

3,123 dimensional SNP data.

5 | EXPERIMENTAL RESULTS AND
ANALYSIS

5.1 | Experimental setup

In this section, we evaluate the effectiveness of the proposed deep

feature learning and fusion framework by considering four classifica-

tion tasks: (a) NC versus MCI versus AD, (b) NC versus sMCI versus

pMCI versus AD, (c) NC versus MCI, and (d) NC versus AD. For each

classification task, we used 20-fold cross-validation for our experi-

ments due to limited number of subjects. Specifically, we first split our

dataset to 20 parts according to the subjects' unique Roster IDs

(RIDs), where one part is used as testing set. Then, for the remaining

RIDs, 10% is used as validation set, while 90% is used as training set.

Furthermore, as the success of deep learning model relies greatly on

adequate number of training samples, which enables the neural net-

work to learn a generative nonlinear mapping of the input features to

the target labels, we have taken two strategies to increase the number

of samples in our study. First, we trained our model stage-wise, where

each stage of neural network learns feature representation for differ-

ent modality combinations. In this way, we can use all the available

samples in each stage of deep learning model training. In contrast, if

we train our deep learning model directly, we can only use a limited

number of samples with complete modalities. Second, as ADNI has

been longitudinally collecting data for all the participating subjects

and monitoring their disease status progressions, we propose to

exploit these longitudinal data in our model. More specifically, we

used the samples from multiple time points for all the training RIDs in

our study. These two strategies can significantly increase the number

of training samples to train our model. Figure 2 shows how we split

the data for training, validation, and testing. For training set, we can

either use the baseline data (single time-point) or the longitudinal data

(multiple time-points) to train our deep learning model.

Next we discuss how to set the network structure of our pro-

posed deep learning framework. For clarity, we define “hyperpara-

meters” as the parameters that are related to the network structure

(e.g., the number of layers, the number of nodes in each layer, etc.)

and network learning (e.g., regularization parameters, dropout, etc.).

As in many deep learning related studies, it is challenging to determine

network hyperparameters. The tuning of these hyperparameters

involves a lot of experience, guesswork, assumptions, prior knowledge

of the data, and experiments. As the cost (in terms of time and money)

to train a deep neural network for each hyperparameter combination

is high due to the large number of network parameters, it is not feasi-

ble to use inner cross-validation to determine all the hyperparameters

for each fold of data. For example, for the case of using inner cross-

validation to select the number of layers and the number of neurons

in each layer (while fixing other hyperparameters), we will have

5 × 5 = 25 combinations for each stage of network, even considering

just 5 possible values for the number of layers and the number of neu-

rons at each layers, respectively. As we have three modalities and

three stages (but just needing one combination in the third stage) in

FIGURE 2 Dataset separation procedure used in our study. For the

training set, we can either use the most available baseline data (single
time-point) or longitudinal data (multiple time-points) to train our
deep learning model

TABLE 2 Numbers of subjects with different combinations of modalities

Modality MRI PET SNP MRI & PET MRI & SNP PET & SNP MRI & PET & SNP

Number 805 360 737 360 737 360 360

2http://mipav.cit.nih.gov/clickwrap.php
3www.alzgene.org

6 ZHOU ET AL.

http://mipav.cit.nih.gov/clickwrap.php
http://www.alzgene.org


our proposed deep neural network, there is a total of

25 × 3 × 2 + 25 = 175 hyperparameter value combinations. In each

fold, if we use 5 subfolds and 5 repetitions for inner cross-validation,

we will end up with a total of 175 × 5 × 5 = 4,375 simulations in each

fold of experiment. The mean computation time for each simulation is

about 1 min (note that, as I used the lab server, which was shared by

other lab members, to run our experiments, the computation time

could be more when the server is busy). Thus, we may need about

4375/60/24 ≈ 3 days for one fold of experiment. If we use 20 fold

cross-validation and repeat for 50 times, the computation cost could

become 3,000 days/GPU, which is not practical.

Due to the enormous computation cost of adopting the inner

cross-validation strategy, we have limited our search range to a small

predefined range. First, we consider how to set the number of layers.

We have investigated the effects of different number of layers and

found that the performance could degrade when more layers are

used. As we have a limited number of training samples, too many

layers (thus more network parameters) will cause over-fitting issue.

Thus, we consider the number of hidden layers to be fewer than five.

Second, we need to set the number of neurons in each layer. In our

study, we use ROI-based neuroimaging features for PET and MRI

data. From the literature (Zhu et al., 2016), we know that not all the

ROIs are related to the disease. Thus, with the feature selection, we

set the number of neurons to be smaller than the number of ROI-

based input features for each neuroimaging data. Similarly, for SNP

data, previous studies have indicated that only a handful of SNPs is

helpful for AD diagnosis (An et al., 2017). Thus, in our study, we also

use a small number of hidden neurons for SNP data.

The hyperparameter combination to be selected for each stage of

network is given as follows. In Stage 1, we search the best hyperpara-

meter setting from the following four combinations, that is,

64, 64–32, 64–32–32, 64–32–32–16. In Stage 2 and Stage 3, we

select the best number of hidden layers from the following two

options, that is, 32, 32–16. We use few number of layers in Stage

2 and 3, as we assume features have become more semantic (high-

level) after Stage 1 training. The details of our experiment are

described as follows. In our proposed stage-wise method, we first

selected hyperparameters using the inner-cross-validation loop (using

only the training set) in Stage 1 for each modality data (i.e., MRI, PET,

SNP). Next, we fixed network architectures in Stage 1, and then

implemented an inner-cross-validation loop to tune network architec-

tures in Stage 2 for each modality combination (i.e., MRI + PET, MRI +

SNP, MRI + PET + SNP). Finally, we fixed network architectures in

Stage 1 and Stage 2, to tune network architectures in Stage 3 for

three-modality combination. Compared with the previous version of

our paper (i.e., we fixed hyper-parameters in all stages and folds), our

model now selects parameter setting based on the best result of

inner-cross-validation experiment by using only the training dataset.

We used only two fold for the inner-cross-validation experiment to

reduce the computation cost, but employed 20-fold outer-cross-vali-

dation, with 50 repetitions, to get a more accurate estimate of model

performance. Furthermore, L1 and L2 regularizations were also

imposed on the weight matrices of the networks. The regularization

parameters for L1 and L2 regularizers are empirically set to 0.001 and

0.1, respectively.

5.2 | Implementation details

As described in Sec. 4.1, we totally have 737 subjects (the corre-

sponding RID set is denoted as “Rall”), in which 360 subjects (with

their corresponding RIDs denoted as “Rcom”) have complete multi-

modality data (i.e., MRI, PET, and SNP). Besides, we denote the RID

set corresponding to the subjects with MRI, PET, and SNP data as

“RMRI”, “RPET”, and “RSNP”, respectively. In the following, we introduce

the implementation details of how to apply this dataset for our three-

stage training. First, we split the 360 subjects with complete data

(“Rcom”) into 20 subsets according to their RIDs, where one of the sub-

sets are used as testing set, and the remaining subsets are further

divided into two parts: validation set (10%) and training set (90%). We

denote the RIDs corresponding to the testing set as “Rte” and the RIDs

corresponding to the validation set as “Rva”. In the Stage 1 of our deep

learning model, we learn feature representations for each modality

independently. For example, for MRI modality, we use all training sub-

jects with available MRI data to train the MRI submodel, where the

corresponding RID set used is RMRI − Rva − Rte. In other words, all

MRI data corresponding to RID set RMRI − Rva − Rte (including data

from other time points if using longitudinal data), are used to train our

MRI model. Similarly, the corresponding RID sets used to train PET

and SNP submodels are given as RPET − Rva − Rte and RSNP − Rva −

Rte, respectively. It can be clearly seen that the subject sets used in

training, validation, and testing are mutually exclusive. In Stage 2, we

train three neural network submodels for three different combinations

of modality pair using the output from Stage 1. Similar to Stage 1, we

also use all available subjects to train the submodels in Stage 2. For

example, for MRI + PET submodel, the corresponding RID set used is

RMRI \ RPET − Rva − Rte (\ denotes intersection). Similarly, the corre-

sponding RID sets for MRI + SNP and PET+SNP submodels are given

as RMRI \ RSNP − Rva − Rte and RPET \ RSNP − Rva − Rte, respectively.

In Stage 3, we use the subjects with complete three modalities to train

the whole network. Thus, the corresponding RID set used is RMRI \
RPET \ RSNP − Rva − Rte. It is clearly shown that we have most number

of training subjects in Stage 1, smaller number of training subjects in

Stage 2, and the least number of training subjects in Stage 3. In brief,

in each stage, we first find the RID set corresponding to the training

subjects, and then use all data corresponding to the RID set (including

data from time point other than the baseline, if using longitudinal data)

as training samples.

5.3 | Comparison with other feature representation
methods

We compared the proposed framework with four popular feature rep-

resentation methods, that is, principal component analysis (PCA)

(Wold, Esbensen, & Geladi, 1987), canonical correlation analysis (Bron,

Smits et al., 2015; Hardoon, Szedmak, & Shawe-Taylor, 2004), locality

preserving projection (LPP) (He et al., 2006), and L21 based feature

selection method (Nie et al., 2010). For PCA and LPP, we determined

the optimal dimensionality of the data based on their respective

eigenvalues computed by the generalized eigen-decomposition

method according to (He et al., 2006). For CCA, we optimized its regu-

larization parameter value by cross-validation in the range of
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{10−4, 10−3, � � �, 10−2}. For L21 method, we optimized its sparsity reg-

ularization parameter by cross-validating its value in the range of

{10−4, 10−3, � � �, 10−2}. To fuse the three modalities, we concatenated

the feature vectors of the multimodality data into a single long vector

for the above four comparison methods. We also compared our pro-

posed framework with a deep feature learning method, that is, SAE

(Suk et al., 2015). For this method, we obtained SAE-learned features

from each modality independently, and then concatenated all the

learned features into a single long vector. We also set the hyper-

parameters of SAE to the values suggested in (Suk et al., 2015), that

is, we used a three-layer neural network for multi-modality data by

using a grid search from [100; 300; 500; 1,000]-[50; 100]-[10; 20; 30]

(bottom-top). As a baseline method, we further included the results

for the experiment using just the original features without any feature

selection (denoted as “Original”). In addition, we also compared to our

method with Multiple Kernel Learning (MKL) (Althloothi, Mahoor,

Zhang, & Voyles, 2014; De Bie et al., 2007), as MKL is a common

multi-modality fusion method. For this method, we first used PCA to

reduce feature dimension for each modality, adopted MKL to fuse

features from different modalities via a linear combination of kernels,

and then used a support vector machine (SVM) classifier for classifica-

tion. For MKL, we optimized the weights of different kernels by cross-

validating its value in the range of (0, 1) with the sum of weights set

to 1. We used SVM classifier from LIBSVM toolbox (Chang & Lin,

2011) to perform classification for all the above comparison methods.

For each classification task, we use grid search to determine the best

parameters for both the feature selection and classification algo-

rithms, based on their performances on the validation set. For

instance, the best soft margin parameter C of SVM classifier was

determined by grid searching from {10−4, � � �, 104}. Also note that, for

fair comparison with other comparison methods, we used only the

data at baseline time-point (i.e., corresponding to “Ours-baseTP”) to

train our network in this subsection.

In order to verify the effectiveness of our method, we have con-

ducted the comparison experiments for two multi-class classification

tasks (i.e., NC/MCI/AD and NC/sMCI/pMCI/AD) and two binary clas-

sification tasks (i.e., NC/AD and NC/MCI). Figures 3 and 4 show the

results in violin plot achieved by different methods. We choose violin

plot to present our results as it can visualize the distribution of the

results. In addition, in Figure 5, we show the confusion matrix results

achieved by the proposed method for two multi-class classification

tasks. Note that we report the final confusion matrices by averaging

the 50 repetitions of 20-fold cross validation results. Further, we use

a nonparametric Friedman test (Demšar 2006) to evaluate the perfor-

mance difference between our method and other competing methods.

Friedman test is generally used to test the difference between two

groups of variables that are corresponding to the same set of objects.

Table 3 shows the Friedman test results (in term of p-values) by com-

paring the predictions between our method and each competing

method. Note that smaller p-value indicates bigger prediction differ-

ence between our method and another comparison method.

From Figures 3–5 and Table 3, we have the following

observations.

1. From Figures 3 and 4, it can be seen that our proposed AD diag-

nosis framework outperforms all the comparison methods in term

of classification accuracy.

2. From Table 3, it can be seen that most p-values are less than

.00001, which indicates statistically significant improvement of

our proposed method compared to other method under compari-

son. This is consistent with the accuracy comparison results using

violin plots in Figures 3 and 4.

3. From Figure 5, we can see the percentages of both the correct

and wrong classifications in each cohort of data. As the MCI is

considered as the intermediate stage between AD and NC, it is

much more difficult to differentiate MCI subjects from AD and

NC subjects, which is supported by a relatively higher percentage

of miss-classification rate in MCI cohort.

5.4 | Effects of different components of the
proposed framework

We have two settings for our proposed framework, that is, “Ours-

baseTP”, which uses only the baseline time-point data, and “Ours-mul-

tiTP”, which exploits the longitudinal data scanned at multiple time-

points. As “Ours-multiTP” uses more data than “Ours-baseTP” when

training the network, we expect “Ours-multiTP” would have better

generalized network and would perform better than “Ours-baseTP”. In

addition, the good performance of our proposed framework could be

due to the stage-wise feature learning strategy, which uses the

FIGURE 3 Violin plots for the distributions of classification accuracy of the two multi-class classification tasks, that is, NC/MCI/AD (left) and

NC/sMCI/pMCI/AD (right), where the hollow white dot and the box denote the median, and the interquartile range of the classification results of
50 repetitions, respectively. From the violin plot, it can be clearly seen that our proposed method outperforms other comparison methods [Color
figure can be viewed at wileyonlinelibrary.com]
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maximum number of all available samples for training. In order to ver-

ify this, we also compare our proposed methods with our degraded

deep learning method that do not use stage-wise training strategy,

that is, “Ours-complete”, which uses only the baseline samples with

complete three-modality data for training, with the deep learning

architecture shown in Figure 6. Figure 7 shows that comparison

results for the four classification tasks. The bars labeled with “Ours-

complete” and “Ours-baseTP” use only the baseline time-point data,

while “Ours-multiTP” exploits the longitudinal. It can be seem from

Figure 7 that the proposed methods (i.e., “Ours-baseTP” and “Ours-

multiTP”) outperform “Ours-complete”, implying the effectiveness of

our stage-wise feature learning and fusion strategy that can best use

of all the samples in the training set, regardless of their modality com-

pleteness. Besides, we first use a nonparametric Friedman test to

evaluate the performance difference between “Ours-multiTP” and

other competing methods (i.e., “Ours-complete” and “Ours-baseTP”),

as shown in Figure 7. From Figure 7, the Friedman test results have

indicated that “Ours-multiTP” is significantly better than “Ours-com-

plete” and “Ours-baseTP as demonstrated by very small p-values.

Moreover, we also use a nonparametric Friedman test to evaluate the

performance difference between “Ours-baseTP” and “Ours-complete”,

the results have verified that “Ours-baseTP” performs better than

“Ours-complete”. In summary, our experimental results indicate that

the performance of deep neural network can be improved when using

more data samples.

5.5 | Effects of different modality combinations

To further analyze the benefit of neuroimaging and genetic data

fusion, Figure 8 illustrates the performance of our proposed frame-

work for different combinations of modalities on the baseline time-

point data. Note that, in Figure 8, we show the comparison results

using the base time-point data. From Figure 8, we can see that the

performance of using only MRI modality is better than using PET or

SNP, and the SNP shows the lowest performance. This is understand-

able as SNP data are the genotype features which are least related to

the diagnostic label, compared to the MRI and PET data, which are

the phenotypes features that are closely related to diagnostic labels.

Nevertheless, when we combined all the three modalities, the classifi-

cation results are better than the results from any single modality or

two-modality combinations (bimodal). The interesting part of the

results in Figure 8 is that, for bimodal that involves SNP, the classifica-

tion results are not always better than the results using individual

modality. For example, for PET+SNP combination, its classification

result is better than the results using individual modality for four-class

(AD/pMCI/sMCI/NC) classification, but not for the three-class

(AD/MCI/NC) and two-class (NC/AD and NC/MCI) classifications.

For MRI + SNP combination, it can be seen that its performances for

four-class classification and NC/MCI tasks are better than the results

using only its individual modality. These findings show that the SNP

data have positive effect for four-class classification task when it com-

bines with MRI, PET or both modality data. The effect of SNP data in

FIGURE 4 Violin plots for the distributions of classification accuracy of the two multi-class classification tasks, that is, NC/AD (left) and NC/MCI

(right), where the hollow white dot and the box denote the median, and the interquartile range of the classification results of 50 repetitions,
respectively. From the violin plot, it can be clearly seen that our proposed method outperforms other comparison methods [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 5 Confusion matrices achieved by the proposed method on the two multi-class classification tasks: (left) NC/MCI/AD and (right)

NC/sMCI/pMCI/AD [Color figure can be viewed at wileyonlinelibrary.com]
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bimodal network for other classification tasks is not consistent, and, in

some cases, the inclusion of SNP data will degrade the classification

performance. This could be caused by the network structure that we

used, which is probably not optimal for bimodal network that involves

SNP. Probably we should reduce the number of neurons for the out-

put layer of the SNP submodel, so that the less discriminant SNP fea-

tures can take less contribution in bimodal network, to circumvent the

negative effect of SNP data. Nevertheless, it is worth noting that

when all the three modalities are used, the performance of our model

is better than any single modality or bi-modality models. Besides, we

also use a nonparametric Friedman test to evaluate the performance

difference between our method with three modalities and the other

methods with single modality or any two-modality combination, as

shown in Figure 8, the results have indicated statistically significant

improvement of our proposed method combing three modalities

(i.e., MRI + PET+SNP) compared to the methods using single modality

or any two-modality combination.

5.6 | Normal aging effects

Some studies (Dukart et al., 2011; Franke, Ziegler et al., 2010; Moradi,

Pepe et al., 2015) have discovered the confounding effects of normal

aging and AD, that is, there are overlaps between the brain atrophies

caused by normal aging and AD. In order to evaluate the impact of

removing age-related effects from the features derived from MRI and

PET data, we followed a strategy described in previous studies

(Dukart et al., 2011; Moradi, Pepe et al., 2015). More specifically, we

first estimated the relationship between volumetric features and ages

for the subjects in NC cohort by learning multiple linear regression

models, where ages are used to predict brain volumetric features, with

one regression model learned for each feature. Then, we removed

age-related effects by subtracting the predictions of the linear regres-

sion model from the original features of MRI and PET data, with the

details described in Appendix B of Moradi, Pepe et al. (2015). For con-

venience, we denote “Ours-AgeEffectRemoved” as our method with

the aging effects removed. Figure 9 shows the comparison results

between our methods using neuroimaging data with and without

removal of normal aging effects. From Figure 9, it can be observed

that that the removal of age-related effects from MRI and PET data

can indeed improve the classification performance. This is because, by

removing age-related effects, we can focus more on the AD-related

atrophies for classification. Besides, we also use a nonparametric

Friedman test to evaluate the performance difference between “Ours-

AgeEffectRemoved” and “Ours-baseTP”. From Figure 9, the Friedman

test result has indicated that “Ours-AgeEffectRemoved” is signifi-

cantly better than “Ours-baseTP”.

5.7 | The Most discriminative brain regions
and SNPs

It is important to find out the most discriminative brain regions

(i.e., ROIs) and SNPs for AD diagnosis. In this study, the most fre-

quently selected ROI-based features or SNPs in cross-validations are

regarded as the most discriminative brain regions or SNPs. These

TABLE 3 p-values of the Friedman test results between our method and other competing methods

ORI PCA LPP CCA SAE L21 MKL

NC/MCI/AD <.00001 <.00001 <.00001 <.00001 <.00001 <.00001 <.00001

NC/sMCI/pMCI/AD <.00001 <.00001 <.00001 <.00001 <.00001 <.00001 <.0001

NC/AD <.00001 <.00001 <.00001 <.00001 <.00001 <.00001 <.00001

NC/MCI <.00001 <.00001 <.00001 <.00001 <.00001 <.0001 <.00001

FIGURE 6 The flow of directly fusing three complete modalities by

using high-level features. Specifically, we learn latent representations
(i.e., high-level features) for each modality independently in stage
1, and then learn diagnostic labels by fusing the learned latent feature
representations from stage 2 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Comparison of classification accuracy for the four

classification tasks by using different methods, where “ours-complete”
use baseline time-point data with complete modalities, “ours-baseTP”
use the baseline time-point data, while “ours-multiTP” exploits the
longitudinal data by using the data scanned at multiple time-points (*
denotes the Friedman test with p < .001) [Color figure can be viewed
at wileyonlinelibrary.com]
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discriminative features are important as they can become the poten-

tial biomarkers for clinical diagnosis. For our proposed deep learning

framework, although we did not use weight matrix W to select dis-

criminative features directly, we can rank the features based on the

l2-norm of the weight matrix W. Specifically, for the j-th fold, we have

the weight matrix Wj in the first layer of the neural network. Each row

in Wj is corresponding to one ROI (for MRI and PET data) or SNP.

Then, we define the top 10 ROIs (or SNPs) as the ROIs (or SNPs) that

correspond to the 10 largest summation of absolute values along the

rows of Wj. Thus, for each fold, we select top 10 ROIs (or SNPs) based

on their magnitudes of weights. For 20-folds, we have 20 different

sets of top 10 ROIs (or SNPs). We then define the final top ROIs

(or SNPs) as the ROIs (or SNPs) with the highest selection frequency.

The top 10 ROIs identified from MRI and PET data for the four classi-

fication tasks are shown in Figures 10 and 11, respectively. In MRI,

hippocampal, amygdala, uncus, and gyrus regions are identified. In

PET, angular gyri, precuneus, globus palladus are the top regions iden-

tified. These regions are consistent with some previous studies

(Convit et al., 2000; Zhang, Shen et al., 2012; Zhu et al., 2016) and can

be used as potential biomarkers for AD diagnosis.

The most frequently selected SNP features and their correspond-

ing gene names are summarized in Table 4. The SNPs in APOE have

shown that they are related to neuroimaging measures in brain disor-

ders (An et al., 2017; Chiappelli et al., 2006). Besides, some SNPs are

found to be from DAPK1 and SORCS1 genes, which are the well-

known top candidate genes that are associated with hippocampal vol-

ume changes and AD progression. In addition, most selected SNPs are

from PICLAM, ORL1, KCNMA1, and CTNNA3 genes (An et al., 2017;

Peng et al., 2016), which have been shown to be AD-related in the

previous studies. These findings indicate that our method is able to

identify the most relevant SNPs for AD status prediction.

6 | DISCUSSION

6.1 | Comparison with previous studies

Different from the conventional multi-modality fusion methods, we

proposed a novel stage-wise deep feature learning and fusion

framework. In this stage-wise strategy, each stage of the network

learns feature representations for independent modality or differ-

ent combinations of modalities, by using the maximum number of

available samples. The main advantage is that we can use more

available samples to train our model for improving prediction per-

formance. Further, our proposed method can automatically learn

representations from multi-modality data and obtain diagnostic

results using an end-to-end manner, while the traditional methods

in the literature mostly employ feature selection, feature fusion,

and classification in multiple separate steps (Peng et al., 2016;

Zhang, Shen et al., 2012; Zhu et al., 2016).

In addition, Bron, Smits et al. (2015) reported results of a chal-

lenge, where different algorithms are evaluated using same set of fea-

tures derived from MRI data for AD diagnosis. The features used

include regional volume, cortical thickness, shape, and signal intensity

FIGURE 8 Comparison of classification accuracy of the proposed framework by using different modalities (i.e., MR, PET, and SNP) and modality

combinations (i.e., MRI + PET, MRI + SNP, PET+SNP, MRI + PET+SNP) for four different classification tasks (where * denotes the Friedman test
with p < .0001 and # denotes the Friedman test with p < .00001) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Impact of removing aging-related effects in the two multi-

class classification tasks, where “ours-AgeEffectRemoved” denotes
our method using MRI and PET features after removing age-related
effects (* denotes the Friedman test with p < .0001) [Color figure can
be viewed at wileyonlinelibrary.com]
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values. The best performing algorithm yielded classification accuracy

of 63% for three-class (i.e., NC vs. MCI vs. AD) classification. How-

ever, the results reported in Bron et al.'s paper are not directly compa-

rable with the results reported in our paper. First, both studies used

different set of data. Bron et al.'s study used 384 subjects from three

medical centers (i.e., VU University Medical Center, the Netherlands;

Erasmus MC, the Netherlands; and University of Porto, Portugal),

whereas our study used 805 subjects from ADNI dataset (collected

from over 50 imaging centers). Furthermore, in term of the number of

MCI subjects, our study has higher percentage of subjects coming

from MCI cohort than the Bron et al.'s study, that is, 48.3% versus

34.1%. As MCI can be considered as the intermediate state of NC and

AD, this cohort is much more challenging to be discriminated from the

other two cohorts. As our ADNI dataset is unbalance (in term of

FIGURE 10 Top 10 selected ROIs from MRI data for the four different classification tasks: (a) NC/MCI/AD, (b) NC/sMCI/pMCI/AD, (c) NC/AD,

and (d) NC/MCI [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Top 10 selected ROIs from PET data for the four different classification tasks: (a) NC/MCI/AD, (b) NC/sMCI/pMCI/AD, (c) NC/AD,

and (d) NC/MCI [Color figure can be viewed at wileyonlinelibrary.com]
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disease cohorts), contains higher percentage of hard-to-discriminate

intermediate cohort, incomplete (in term of the completeness of

modalities), and heterogenous (e.g., due to over 50 image collection

centers), our problem is much more challenging than the problem pre-

sented in Bron, Smits et al. (2015). Nevertheless, our method is still

able to achieve 64.4% accuracy for three-class classification task,

comparable to the best result reported in Bron et al.'s study (Bron,

Smits et al., 2015).

Second, the types and number of features used by both works

are different. In Bron et al.'s paper (Bron, Smits et al., 2015), when

using only regional volume features, the reported accuracies are

49.7% for Dolph method and 47.7% for Ledig-VOL method, which are

lower than 61% accuracy achieved by our method that only uses ROI

features from MRI data. Third, the focus of both studies are different.

While Bron et al.'s study is focusing on getting the best classification

algorithm using a combination of multiple-view features from the MRI

data, we are focusing on improving the classification performance by

using a combination of neuroimaging and genetic data. We aim at

overcoming the heterogeneity and incomplete data issues of these

multi-modality data by proposing a novel deep learning based multi-

modality fusion framework. The bottom line is that the experimental

results have validated the efficacy of our proposed framework as it

outperforms the baseline method as well as other state-of-art

methods. For instance, we also achieve an accuracy of 64.4% for

three-class classification using the proposed method, which is about

18% improvement over our baseline method that uses original

features.

6.2 | Clinical interest

AD is a progressive irreversible neurodegenerative disease. Before its

disease onset, there is a prodromal stage called MCI. Some of the MCI

subjects (i.e., pMCI) will progress to AD within few years, while the

others (i.e., sMCI) are relatively stable and do not progress to AD

within the same period. As AD is currently irreversible and incurable,

the detection of its earlier stages, or multi-class classification for dif-

ferent AD stages is actually of much more clinical interest. Thus,

unlike many previous studies in the literature that focused on binary

classification tasks (Zhang, Zhang, Chen, Lee, & Shen, 2017; Zhu, Suk

et al., 2017), we focus our classification results on four different tasks:

(a) NC versus MCI versus AD, (b) NC versus sMCI versus pMCI versus

AD, (c) NC versus MCI, and (d) NC versus AD. The first two are multi-

class classification tasks, which is much more challenging but of more

clinical interest, while the latter two are the conventional binary

classification tasks, added for easier comparison with the results from

previous studies. For four-class classification task (i.e., NC vs. sMCI

vs. pMCI vs. AD), our method achieves about 54% accuracy, outper-

forming other state-of-the-art methods. This performance seems

lower than the other tasks, but it is due to the increased complexity of

the problem, instead of the failure of the algorithm. The bottom line is

that we have shown how to make use of all available data for training

a robust deep learning model for multi-status AD diagnosis. Neverthe-

less, more works need to be done to improve the performance of this

classification task for practical clinical usage, where the performance

of this work could be used as a benchmark, and the strategy used for

this work could be used as the foundation.

6.3 | Future work

Although our proposed prediction method achieves promising results

in four classification tasks, there are several improvements that can be

considered for future work. First, our method is focusing on using ROI

features as input to the deep learning model; however, such hand-

crafted features may limit the richness of structural and functional

brain information from MRI and PET images, respectively. To fully

unleash the power of deep learning model in learning imaging features

that are useful for our classification tasks, we may have to use the

original imaging data, and utilize convolution or other more advanced

deep neural networks in our framework. Second, as discussed in

Section 5.6 about the effects of age, we can incorporate other con-

founding factors (e.g., gender, education level, etc.) into the proposed

framework to possibly improve the performance.

7 | CONCLUSION

In this article, we focus on how to best use multimodality neuroimag-

ing and genetic data for AD diagnosis. Specifically, we present a novel

three-stage deep feature learning and fusion framework for AD diag-

nosis, which integrates multimodality imaging and genetic data gradu-

ally in each stage. Our framework alleviates the heterogeneity issue of

multimodality data by learning the latent representations of different

modality using separate DNN models guided by the same target. As

the latent representations of all the modalities (i.e., outputs of the last

hidden layer) are semantically closer to the target labels, the data het-

erogeneity issue is partially addressed. In addition, our framework also

partially addresses the incomplete multimodality data issue by devis-

ing a stage-wise deep learning strategy. This stage-wise learning strat-

egy allows samples with incomplete multimodality data to be used

during the training, thus also allowing to use the maximum number of

available samples to train each stage of the proposed network. More-

over, we exploit longitudinal data for each training subject to signifi-

cantly increase the number of training samples. As our proposed deep

learning framework can use more data in the training, we achieved

better classification performance, compared with other methods. All

these experimental results (using ADNI database) have clearly demon-

strated the effectiveness of the proposed framework, and the superi-

ority of using multimodality data (over the case of using single

modality data) in AD diagnosis.

TABLE 4 Most related SNPs for AD diagnosis

Gene name SNP name

APOE Rs429358

DAPK1 rs822097

SORCS1 rs11814145

PICLAM rs11234495, rs7938033

ORL1 rs7945931

KCNMA1 rs1248571

CTNNA3 rs10997232
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