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a b s t r a c t

Alzheimer’s disease (AD) is a severe neurodegenerative disease. The identification of patients at high
risk of conversion from mild cognitive impairment to AD via earlier close monitoring, targeted inves-
tigations, and appropriate management is crucial. Recently, several machine learning (ML) algorithms
have been used for AD progression detection. Most of these studies only utilized neuroimaging data
from baseline visits. However, AD is a complex chronic disease, and usually, a medical expert will
analyze the patient’s whole history when making a progression diagnosis. Furthermore, neuroimaging
data are always either limited or not available, especially in developing countries, due to their cost.
In this paper, we compare the performance of five widely used ML algorithms, namely, the support
vector machine, random forest, k-nearest neighbor, logistic regression, and decision tree to predict
AD progression with a prediction horizon of 2.5 years. We use 1029 subjects from the Alzheimer’s
disease neuroimaging initiative (ADNI) database. In contrast to previous literature, our models are
optimized using a collection of cost-effective time-series features including patient’s comorbidities,
cognitive scores, medication history, and demographics. Medication and comorbidity text data are
semantically prepared. Drug terms are collected and cleaned before encoding using the therapeutic
chemical classification (ATC) ontology, and then semantically aggregated to the appropriate level of
granularity using ATC to ensure a less sparse dataset. Our experiments assert that the early fusion of
comorbidity and medication features with other features reveals significant predictive power with all
models. The random forest model achieves the most accurate performance compared to other models.
This study is the first of its kind to investigate the role of such multimodal time-series data on AD
prediction.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is the most severe form of dementia
nd often begins in people over the age of 65 [1]. According to
he World Health Organization (WHO) [2], currently, there are
0 million people who have AD, and this number is expected
o triple by 2050. Unfortunately, there is no cure for AD at
his time, and current treatments can only reduce the future
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progression of the disease [3]. Early diagnosis of Alzheimer’s
disease (AD) is essential because AD treatment options tend to
be most effective during the early stages of the disease [4].
Mild cognitive impairment (MCI) has been commonly viewed as
a transitional stage between healthy aging and AD [5]. Studies
have shown that 10%–15% of patients with MCI progress to AD
per year [6]. A patient who converts from MCI to AD is called
pMCI, whereas a patient who does not progress to AD is called
sMCI [7]. One of the most difficult challenges is distinguishing
between sMCI and pMCI. To date, many machine learning (ML)
methods, such as support vector machine (SVM) have been ap-
plied to differentiate between sMCI and pMCI [8–10]. AD is a
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hronic disease, where multiple modalities are always used to
escribe patients. These heterogeneous data collected over time
an be referred to as time-series multimodalities [6]. The majority
f AD diagnosis and progression studies are based on a single
odality, usually neuroimaging data such as magnetic resonance

maging (MRI) [11]. Mostly, these studies often transform the
D diagnosis or prediction problem into a binary classification
ask (such as AD vs. MCI) to ease the training process. Bron
t al. [12] organized the CADDementia1 challenge to compare ML

algorithms for AD diagnosis, 29 algorithms were evaluated based
on single-visit MRI data only. The problem was formulated as a
three-class classification problem (i.e. CN vs. MCI vs. AD). The
best algorithm achieved an accuracy of 63.0% based on voxel-
based morphometry features. Jiang et al. [13] built an interesting
CNN-BN-DO-DA deep learning model for AD classification based
on an eight-layer convolutional neural network with batch nor-
malization and dropout techniques. This advanced model is based
on the neuroimaging modality, and the authors achieved a high
accuracy of 97.76% using a dataset of 7399 AD and 7399 normal
subjects. Zhang et al. [14] proposed a novel machine learning
system for automatic and fast AD diagnosis. This binary classifier
is based on the volumetric MRI data of 196 subjects collected
from two sources including the Open Access Series of Imaging
Studies (OASIS) [15] and local hospitals (Affiliated Nanjing Brain
Hospital of Nanjing Medical University, Children’s Hospital of
Nanjing Medical University, and Zhong-Da Hospital of Southeast
University). The MRI data is processed by an accurate pipeline of
skull stripping and spatial normalization, one axial slice, and sta-
tionary wavelet entropy. Based on the resulting texture features, a
simple one-hidden layer neural network is used as the classifier,
where the network parameters were trained using the particle
swarm optimization. The resulting model is fast and achieved
an accuracy of 92.73 ± 1.03%. Although these models are highly
accurate and promising, building an AD progression detection
system based only on neuroimaging data is not highly recom-
mended in the medical domain because real domain experts
usually analyze complete patient profiles. Further, these imaging
data are expensive to collect, which delays the AD diagnosis. In
addition, according to standard AD clinical practice guidelines,
neuroimaging is optional for AD diagnosis, and only required in
specific situations like a history of carcinoma, bleeding disorders,
and gait disorders; recent head trauma; age < 60 years; and rapid
unexplained decline [16]. Recently, it has been proven that the
fusion of multiple modalities improves the performance of the
resulting models, where additional data such as position emission
tomography (PET), neuropsychological battery, cognitive scores,
symptoms, and demographics could enhance the model’s confi-
dence and reduce noise [17–20]. In addition, any resulting model
becomes more acceptable in real medical environments. Zhang
et al. [18] combined MRI, FDG-PET, and cerebrospinal fluid (CSF)
modalities to distinguish AD, MCI, and normal controls patients.
Xu, et al. [21] used the volumetric MRI, fluorodeoxyglucose PET
(FDG-PET), and florbetapir PET modalities to classify AD vs. MCI
in a binary classification task. Tong et al. [21] fused the volu-
metric MRI, voxel-based FDG-PET, CSF biomarker, and genetic
modalities. Bouwman et al. [19] suggested incorporating the two
modalities of MRI and CSF to distinguish CN patients from MCI.
Gray et al. [22] used a random forest (RF) algorithm and four
modalities (i.e., MRI, FDG-PET, CSF, and genetics) for the 3-class
classification of AD vs. MCI vs. CN. All these studies were based
only on the baseline data and did not study the role of time series
data to enhance the classification process. In addition, they were
based on advanced and expensive modalities such as MRI and
PET. The technologies used to collect these data are unavailable

1 http://caddementia.grand-challenge.org.
681
in the majority of the medical clinics, which means that these
classifiers are only applicable to limited patients. Furthermore,
the results of using these modalities are not good. Donnelly-
Kehoe et al. [23] concluded that the maximum accuracy achieved
by MRI features did not reach that of using the mini-mental state
examination (MMSE) alone.

Time-series data analysis is intuitive and crucial for the man-
agement of chronic diseases. However, in the AD domain, little
work has used time-series algorithms for AD progression detec-
tion. In this context, Chincarini et al. [24] utilized a time-series
MRI dataset from the Alzheimer’s disease neuroimaging initia-
tive (ADNI) to predict AD progression. These data have four
scans (i.e. twice at baseline, one at 12-months, and one at 24
months). The study concentrated on analyzing the role of bilat-
eral hippocampal volume to track AD progression. The problem
was formulated as two binary classification tasks, and the study
achieved an area under the ROC curve (AUC) of 0.93 for CN vs. AD
and AUC of 0.88 for CN vs. MCI. Moradi et al. [7] predicted MCI-
to-AD conversion in the period between one to three years based
on novel MRI data using a semi-supervised learning technique.
Moore et al. [25] used the random forest to study the relation-
ship between pairs of data points at various time separations.
Demographic, physical, and cognitive data were used to predict
Alzheimer’s disease. Huanget et al. [26] used a random forest
regression algorithm to predict cognitive scores by utilizing the
longitudinal scores of previous time points. To build accurate, sta-
ble, and medically intuitive models, multimodal time series data
should be analyzed using suitable ML models. The usage of multi-
modal time series data for AD progression detection modeling is
expected to improve model performance. In addition to MRI, PET,
CSF, there are other crucial data sources, which are either have
not been studied at all or have had few studies in the literature:
(1) Cognitive score modalities like MMSE, CDRSB, FAQ, and ADAS
13 have only been studied at baseline, (2) drug modalities in-
cluding brain disorders medications and other medications taken
during the patient monitoring period, (3) comorbidity modalities
which include the other diseases that the patient was suffering
from during the monitoring period. These data have a great effect
on a medical expert’s decision to diagnose AD or predict its
next stage [27]. For example, the ADNI collected drug modality
determines the currently or previously taken medicines for the
treatment of AD and other diseases [28–30]. These medicines
have chemical substances that may be accumulating in the body
in some form, so studying the effect of these drugs on the pro-
gression state of the disease is important. However, to the best
of our knowledge, these types of modalities have not been studied
individually or in combination.

In this study, we build a cost-effective and medically ori-
ented AD progression detection system based on conventional
ML techniques. The model is based on the information fusion of
three-time series modalities of comorbidities, medications, and
cognitive scores to predict four patient diagnosis classes: CN,
AD, pMCI, and sMCI. In addition, basic demographics, including
age, number of education years, and gender, are considered. Each
modality is represented by four-time steps (i.e., baseline [bl],
month 6 [M06], month 12 [M12], and month 18 [M18]), and the
model predicts patient progression after 2.5 years (i.e., at month
48 [M48]). To select the optimum model, we optimize and test
a set of five popular ML models, namely, SVM, RF, KNN, logistic
regression (LR), and decision tree (DT), using the real world
ADNI dataset. The preparation of medication and comorbidity
datasets is a challenging task because the names of drugs seem
to have been entered manually. Besides, there is a huge number
of medications used by patients. Building a hot vector to encode
these names created sparse datasets with many 0’s. The resulting

datasets are thus not suitable for ML algorithms. To semantically

http://caddementia.grand-challenge.org
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CN (n = 249) sMCI (n = 363) pMCI (n = 106) AD (n = 318) Combined (n = 1036)

Gender (M/F) 144/105 210/153 44/62 142/176 483/553
Age (years) 73.84 ± 05.78 72.92 ± 07.76 73.89 ± 06.84 75.01 ± 07.81 73.82 ± 07.18
Education (years) 16.43 ± 02.70 15.80 ± 02.97 16.13 ± 02.71 15.13 ± 02.98 15.85 ± 02.90
FAQ 00.28 ± 00.82 02.64 ± 03.31 07.63 ± 04.49 16.42 ± 06.59 06.81 ± 08.01
MMSE 28.91 ± 01.04 27.62 ± 01.95 25.46 ± 01.84 20.95 ± 03.95 25.66 ± 04.17
ADAS 13 08.13 ± 03.63 14.69 ± 06.71 22.69 ± 05.29 33.59 ± 09.39 19.73 ± 12.24

* Data are mean ± standard deviation.
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manipulate these data, we utilized the semantics of the WHO’s
anatomical therapeutic chemical classification (ATC) ontology.2
The drugs are grouped based on their chemical substances into a
smaller number of classes, which significantly reduces the num-
ber of features used to encode drug data. The contributions of the
paper can be summarized as follows.

• We propose a cost-effective, accurate, and medically intu-
itive AD progression detection model. The model is based on
the early fusion of a set of new time series multimodalities
to predict a 4-class classification task (i.e., CN, sMCI, pMCI,
AD).

• We propose a novel methodology to encode the medication
time-series data based on the standard ATC ontology.

• We implement, evaluate, and optimize a set of five models
that are based on popular machine learning algorithms:
SVM, RF, LR, DT, and KNN. These models are optimized to
classify the 4-class problem (i.e., CN, sMCI, pMCI, AD), the
3-class task (CN, MCI, AD), and a set of binary classification
tasks, including CN vs. AD, CN vs. MCI, sMCI vs. pMCI, etc.

• The models are trained and tested using real, time-series
dataset of 1029 patients from the ADNI dataset.

• The results highlight the significant role of medication and
comorbidity datasets to improve the performance of AD
prediction models. The resulting models are more accurate
compared to those in existing studies; besides, all models
are less expensive because these models are based on well
known efficient machine learning algorithms and are built
using easy to collect and cheap historical data from patients.

The rest of this paper is structured as follows. Section 2 explains
our methodology and the architecture of the proposed frame-
work. Section 3 explains the experimental results, and Section 4
concludes the paper.

2. Materials and methods

In this section, we provide a little description of the ATC
ontology, which has been used to encode the medication data. We
also discuss the used cohort from the ADNI dataset. Furthermore,
a detailed description of the proposed framework is discussed.

2.1. ATC ontology

ATC is a standard drug classification ontology established by
the WHO [31] in 1976. This ontology is often used for the clas-
sification of active ingredients in drugs based on the organ on
which they act and their therapeutic, pharmacological, and chem-
ical properties. It has fifteen main anatomical/pharmacological
groups. These groups are classified in hierarchies with five differ-
ent levels (i.e., anatomical, therapeutic, pharmacological, chemi-
cal, and chemical substance). Each ATC main group is divided into
2 levels, which could be either pharmacological or therapeutic
groups. The 3rd and 4th levels are chemical, pharmacological,

2 https://bioportal.bioontology.org/ontologies/ATC.
682
or therapeutic subgroups, and the 5th level is the chemical sub-
stance. The 2nd, 3rd, and 4th levels are often used to identify
pharmacological subgroups when that is considered more ap-
propriate than therapeutic or chemical subgroups. This ontology
is popular in the medical domain, where many research studies
have used it to group drugs [27,32]. A detailed description of ATC
can be found at www.whocc.no/atc/.

2.2. Cohort

We use a dataset obtained from the Alzheimer’s disease neu-
roimaging initiative (ADNI) database with 1029 subjects who
are categorized into four groups: (1) 246 subjects are CN at all
time-points, (2) 362 subjects are sMCI at all time-points, (3) 105
subjects are pMCI, i.e., MCI at baseline + M06 + M12 + M18
visits and then convert to AD within 2.5 years from M18 (at
M48), (4) 297 subjects are AD in all visits. Table 1 shows the
statistics of the selected patients. The study is based on forecast-
effective and medically critical time-series modalities (cognitive
scores [CS], brain disorders medicines [AM], not brain disorders
medicines [NAM], and comorbidities or disorders [D]), in addition
to demographics or baseline data (B). The demographics include
age, gender, education years. For each modality, we select the most
popular features used in the literature that achieved the best
results. The cognitive scores dataset has five features: ADAS 13,
CDG, FAQ, GDTOTAL, and NPISCORE. Brain disorders medicines in-
clude seven features: Aricept, Cognex, Exelon, Namenda, Razadyne,
and Anti-Depressant. These are the most common drugs taken by
the studied patients. We added another feature to the AM, this
feature is None to represent a patient who is not taking any drug.
Not brain disorders medicines dataset includes 15 features which
are encoded as A, B, C, D, G, H, J, L, M, N, P, R, S, and V. Another
eature is added to NAM dataset which is O to represents other
rugs taken. Note that these features represent level 1 of the
TC ontology. The disease dataset includes 17 features: Psychiatric
MHPSYCH), Neurologic (MH2NEURL), etc. The full description of
he dataset features and codes can be found in Supplementary
ile 1.

.3. Proposed framework

The architecture of the proposed model is shown in Fig. 1. It
onsists of the following components: data collection, data pre-
rocessing, dataset splitting, dataset balancing, hyperparameter
ptimization, classifier training, model evaluation, and prediction.
ur data has been collected from the ADNI dataset in the form of
ive time-series modalities. Next, we explain each component in
etail.

.3.1. Data preprocessing
In this step, we prepare the not brain disorders medicines,

rain disorders medicines, and cognitive scores datasets.

https://bioportal.bioontology.org/ontologies/ATC
https://www.whocc.no/atc/structure_and_principles/
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Fig. 1. The architecture of the proposed Alzheimer’s progression prediction system.
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.3.1.1. Temporal data filtering. In this study, we examine the
ole of multimodal time-series data to predict the progression
tatus of AD patients accurately. In each of the four time-series
odalities (CS, D, AM, and NAM), a patient is represented as
collection of four rows, where each row is the description of

he patient at that visit. In ADNI, these visit data are collected
egularly every six months. ADNI collected data for more than
en years. However, the majority of these data are sparse and
issing. In addition, these data are changing slowly, especially for
table patients (CN, sMCI, and AD). Based on statistical analysis,
e found that the first four time-steps (i.e., bl, M06, M12, and
18) are the most complete and discriminative data. As a result,

or each modality, a patient is represented using these four-time
teps. These data summarize the patient’s conditions within 18
onths, and our model predicts the patient’s progression status
t M48, i.e., 2.5 years from M18. Fig. 2 shows the time series
iltering process. The resulting data are used to extract statistical
epresentative features, as discussed in Section 2.3.1.4.

.3.1.2. Preparing the not brain disorders medicine data. Preparing
he raw NAM dataset is a challenging task. The original dataset
as over 5590 unique drug names. Creating a separate feature
or each of these names results in a spare dataset, which is not
uitable for learning. The dataset has so many abbreviations and
rug names from different levels of abstraction. The main goals
f this step are (1) clean drug names, (2) encode them by using
tandard medical oncology (ATC in our case), and (3) select the
ppropriate level of granularity for aggregating related drugs to
nsure less sparse dataset.

• Preparing drug name: This step prepares the medical ter-
inology of drug names to be suitable for searching in ATC
ntology. All abbreviations have been changed to the full drug
ame, e.g. ASA and Vit have been replaced by Aspirin and Vitamin,
espectively. Furthermore, some drugs did not use their original
683
ames, so these drug names are replaced with the drug class. For
xample, Centrum, which is considered as a type of vitamin, is
eplaced by Vitamin, and Lexapro, which is a type of escitalopram,
s replaced by Lexapro and Escitalopram.

ATC encoding: The ATC standard ontology was used to (1)
epresent drug names in a standard format, (2) group related
rugs under different categories to reduce the dimensionality of
he resulting dataset. We propose the ATC medications encoding
lgorithm (AMD), which maps drug names into ATC codes (see Al-
orithm 1). The core function of the AMD procedure is calculating
he similarity between the preprocessed medications’ names and
heir corresponding ATC codes. The inputs of the AMD procedure
re two datasets: the NAM dataset and ATC ontology. The ATC on-
ology is converted into a dataset of ⟨ATC code, medicine name⟩.
ll names are converted to lowercase. For the similarity mea-
urement, we use a fuzzy string-matching similarity measure.
his ratio of similarity between two strings is measured using
he Levenshtein distance function.3 The formal definition of the
evenshtein distance between two strings a and b is shown in
q. (1).

eva,b (i, j)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max (i, j) if min (i, j) = 0,

min

⎧⎨⎩
leva,b (i − 1, j) + 1
leva,b (i, j − 1) + 1

leva,b (i − 1, j − 1) + 1ai ̸=bj

otherwise.
(1)

where 1ai ̸=bj is the indicator function equal to 0 when ai ̸= bj and
equal to 1 otherwise, and leva,b (i, j) is the distance between the
first i characters of a and the first j characters of b. i and j are

3 https://www.datacamp.com/community/tutorials/fuzzy-string-python.

https://www.datacamp.com/community/tutorials/fuzzy-string-python
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Fig. 2. Time series filtering process.
2
p

1-based indices. The fuzzy string-matching similarity (i.e., Lev-
enshtein similarity ratio based on the Levenshtein distance) is
implemented using the FuzzyWuzzyPython library, which gives
the similarity index as a score from 0 to 100, where a score of
100 denotes the two strings are equal. After calculating the fuzzy
similarity between drug names of the NAM and ATC ontology,
we pick all the ATC codes that have similarity scores above 75
to be inserted in the resulting encoded dataset. The final step
is to determine the level of granularity of the resulting codes.
Using ontology semantics can dramatically decrease the number
of features and keep the whole feature space knowledge. For
example, according to the taxonomy of the ATC ontology, the
drug names of Donepezil, Memantine, Ginkgo biloba, Tacrine, Ri-
vastigmine, and Ipidacrine are types of Anticholinesterases, which
is a Psychoanaleptic. As a result, we have replaced all of these
subtypes by their parents in the ontology. The idea of seman-
tically aggregating drug concepts according to formal ontology
structure decreases the dimensionality and sparsity of the data.
The resulting feature set of the AMD technique was at level 5
of the ATC and perfectly converted to 452 features. Aggregating
drugs at the level 4 of ATC summarized the features set to
279 features, and aggregating them at the level 3 of the ATC
summarized the features set to 160 features. Finally, aggregating
the drugs at level 2 of the ATC summarized the features set to
76 features. This feature space was the most suitable because
the number of features has been suitably reduced, and the data
sparsity has been removed. The grouping of medicine names to
levels 1 and 2 of ATC is achieved by removing the right digits
from each code. Fig. 3 depicts level 1 and level 2 of the ATC. The
final AMD database includes the ATC codes at level 1, which are
N, B, C, A, M, G, R, H, S, J, D, V, L, and P. Other feature is O that
represents the patient took another drug.

• Data encoding: In this step, a new dataset is created that
has 15 columns, which represent level 1 of the ATC code. These
columns are N, B, C, A, M, G, R, H, S, J, D, V, L, and P. We add other
features to represent other medicines. Each column will be filled
by 0 or 1. If the patient belongs to the group, the columns will be
marked as 1; otherwise, 0.
684
2.3.1.3. Preparing the brain disorders medicines. The preprocess-
ing of the brain disorders medicines dataset has the following
steps.

• The brain disorders medicines dataset includes one column,
which contains multiple ‘‘:’’ delimited values. Each value is
defined in ADNI by a medication name. These values are
separated into different columns using the one-hot encoding
mechanism.

• The new dataset has eight columns: Aricept, Cognex, Exelon,
Namenda, Razadyne, Anti-depressant, Other, and None. Each
column will be filled by 1 if the patient takes the drug or 0
otherwise.

.3.1.4. Preparing the cognitive scores and demographics. The pre-
rocessing of the cognitive scores dataset has the following steps:

• Handling the missing values: For the demographics data, we
first remove any feature with more than 30% missing. Next,
we use the KNN algorithm to impute missing values, where
missing values are replaced using the information from
other subjects with a similar diagnosis. For CS, the scores
that have more than 30% missing are removed. Patient cases
with missing baseline scores were excluded. Time series
values that are missing are handled using the following
accurate procedure. If the diagnosis has not changed for
a time step compared to its previous step, then we use
forward filling with previous values. If the diagnosis has
changed, we considered the value as missing and use the
mean value according to each specific class (CN, sMCI, pMCI,
and AD).

• Data Normalization: All numerical data were standardized
using the z-score method, i.e., zj = (xj − µj)/σj) where
xj is the participant’s original value for feature j, zj is the
normalized value, µj is the feature’s mean, and σj is the
feature’s standard deviation. This method converts data, so
they have a 0 mean and unit standard deviation.

• Time Series feature extraction: From the CS, we collect one ag-
gregated feature from the four historical time steps. For each
patient, we collect the mean of each cognitive score. For
patient xi, the aggregated feature st1,t2,...,tT

= (s1, s2, . . . , sn),
for vector st1,t2,...,tT

with n dimensions, and sj for j =

1, 2, . . . , n is the mean ( 1
Nxi

∑Nxi
i=0 si), where in our case Nxi =

4. The resulting value is expected to summarize the values
of the four-time steps. After encoding the D, AM, and NAM
modalities, using the hot vector representation, data sum-
marization is achieved by collecting all the patient’s drugs
and comorbidities as a single row. This action is carried out
by adding a value of 1 for the feature representing the drug
dr or disease di, if the patient has taken the drug dr or is
suffering from the disease di within the period of bl-M18.
Please note that at each visit, the patient might be taking
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Fig. 3. ATC hierarchy using level 1 and level 2 groups.
multiple drugs or be suffering from multiple diseases. The
hot vector representation of the ontology-based aggregated
features facilitates the encoding process for these dynamic
numbers representing the drugs and diseases.

2.3.2. Data fusion and splitting
In this step, the five modalities are fused, and the resulting

ataset is split into training (90%) and testing sets (10%) using a
tratified method. The training set is used to optimize and train
he ML models, and the unseen test set is used to evaluate the
esulting models.

.3.3. Dataset balancing
Unbalanced datasets always result in biased results. To pre-

ent this situation, the synthetic minority oversampling tech-
ique (SMOTE) oversampling [33] was utilized to handle the
lass imbalance. This technique was applied to the training set
nly. The testing set was balanced to mimic a real-world situa-
ion. The balanced training set was used to optimize and train
he five machine learning methods based on a stratified 10-fold
ross-validation (CV) mechanism.

.3.4. Classifiers optimization and training process
The grid search method with a stratified 10-fold CV was used

o find the optimal hyperparameters of all ML algorithms. The
L models tested in this study are SVM [34], DT [35], KNN [36],
F [37], and LR [38]. Each model is trained using the 90% training
atasets created using the 10-fold CV techniques. Each exper-
ment is repeated 10 times and the average is reported. The
esulting models are evaluated using the unseen test set.

.3.5. Evaluation metrics
To measure the CV and generalization performance of the pro-

osed model, it must be based on a highly accurate and unbiased
ethodology. First, the data is randomly (and in a stratified way)
ivided into training (90%) and testing (10%) sets. This data split-
ing process is repeated 10 times and the average performance is
685
recorded. In each splitting, the training set is balanced based on
the popular SMOTE oversampling technique; then the balanced
data are used to optimize the hyperparameters of the utilized ML
techniques. Then, the stratified 10-fold CV technique is used to
measure the CV performance. This stratified 10-fold CV process is
repeated 10 times for every outer train/test split and the average
performance is collected. Then, we trained the optimized model
using the whole training set, next, we used the test set only to
evaluate the performance of the final model. This strategy is very
accurate and not biased because of the following:

(1) To correctly prepare the datasets, from the very beginning,
we randomly (and in a stratified way) isolated a separate
test set to be used for measuring the generalization perfor-
mance of the ML models. This test set is not used in data
normalization, and data balancing. The fitted normalization
scaler is used to transform the testing sets. No data bal-
ancing is done before splitting to prevent repeating cases
between training and testing sets. In addition, the selected
features based on the training data were masked on the
testing sets to filter these selected features.

(2) Model selection and hyperparameter optimization (based
on the grid search technique) were performed based on
the stratified 10-fold CV. Please note that the datasets
used for this purpose have 926 cases, enough to measure
stable performance in the evaluated models. In addition,
this whole process was repeated 10 times and the average
results are reported.

(3) Based on the discussion in (1), our data split prevents
the mixing of model-selection and performance estimation,
which supports the estimation of unbiased generalization
performance in the models. As a result, the testing set
measures the models’ generalization performance. The data
splitting process (i.e. training/test split) was repeated 10
times to measure stable testing performance.

Four standard metrics are used to evaluate the models, includ-
ing accuracy, precision, recall, and F1-score, where TP is a true
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ositive, TN is a true negative, FP is a false positive, and FN is a
alse negative, see Eqs. (2)–(5).

ccuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − Score =
2 ∗ Precision ∗ Recall
Precision + Recall

(5)

The non-parametric Friedman test and post-hoc Nemenyi test
are used to measure the statistical significance of the differences
in the performance of the 4-class and 3-class classifiers [39].
Please note that all binary classification classifiers achieved high
performance, so to save space, we did not perform statistical
analyses on all the binary classifiers. The Friedman test is a
rank-based non-parametric equivalent of the repeated-measures
ANOVA. It ranks the algorithms for each dataset separately, where
the best one gets rank 1, the second-best rank 2, and so on. The
statistics of the Friedman test are calculated, as shown in Eq. (6).

χ2
F =

12D
K(K + 1)

[
K∑

k=1

AvR2
j −

K (K + 1)2

4

]
(6)

where AvR2
j =

1
D

∑D
i=1 r

j
i , D and K are the number of datasets

nd classifiers, respectively. r ji is the averaged rank of classifier
on dataset i. The null hypothesis is rejected only if the χ2

F is
ore significant than the critical value. This test only tells that

here is a difference between classifiers, but cannot provide how
certain algorithm is statistically different. For that reason, the
ost-hoc Nemenyi test is used to perform paired comparisons,
hich defines a difference when the averaged ranks differ by at

east a critical difference (CD). Critical values are calculated at the
.05 significance level, and the F-Score metric is used to compare
he models. The CD is calculated as shown in Eq. (7), where qα,∞,k
s computed based on the t-test statistics.

D = qα,∞,k

√
K (K + 1)

12D
(7)

3. Results and discussion

We examine the performance of the five ML models (i.e., RF,
DT, LR, SVM, and KNN) based on different combinations of modal-
ities. The main motivation for these early fusion strategies is to
select the most informative and discriminative list of features and
to highlight the role of different data types. Eight fused datasets
were examined: (1) baseline and cognitive scores (B-CS), (2) base-
line, cognitive scores, and brain disorders medicines (B-CS-AM),
(3) baseline, cognitive scores, brain disorders medicines, and dis-
ease (B-CS-AM-D), (4) baseline, cognitive scores, brain disorders
medicines, and not brain disorders medicines (B-CS-AM-NAM),
(5) baseline, cognitive scores, brain disorders medicines, not brain
disorders medicines, and disease (B-CS-AM-NAM-D), (6) baseline,
cognitive scores, and disease (B-CS-D), (7) baseline, cognitive
scores, not brain disorders medicines, and diseases (B-CS-NAM-
D), and (8) baseline, cognitive score, and not brain disorders
medicines (B-CS-NAM). The five ML classifiers were implemented
using the scikit-learn 0.21.3 package in Python 3.7. Each of the
eight datasets is split into a training set (90%) and a testing
set (10%) using a stratified method. The training set is used to
optimize the hyperparameters of the five models using the grid
search technique. Stratified 10-fold cross-validation is used for
hyperparameter tuning and model training. Each experiment was
686
repeated six times, and the average result with standard deviation
is reported. The testing set is used to evaluate the models on
unseen data, which scores the generalization performance of the
trained models. Three experiments were optimized to select the
best list of features and the most accurate model. The following
three sections discuss the collected results in detail.

Experiment 1 was used to optimize the ML models to solve
the 4-class classification problem (i.e., CN, sMCI, pMCI, or AD).
It has been asserted in the literature that this 4-class classifi-
cation problem is difficult to optimize due to the similarity of
the pMCI patients to AD patients. For instance, the pMCI patients
are currently (i.e., from bl up to M18) MCI patients, but by
M48, they will be AD patients. As a result, they confuse the ML
classifiers because they are quite similar to sMCI from bl to M18,
and quite similar to AD at M48. Our optimized 4-class models
achieved optimum performance compared to previous literature.
However, in Experiment 2, we tested the ML models on an easier
3-class classification task. In this experiment, we examined the
optimized models on less complex classification problems that
were either 3-class and 2-class. To convert the 4-class problem
into a 3-class one, we considered pMCI cases as AD. Furthermore,
the optimized models were then tested in Experiment 3 on a
much easier binary classification task. We evaluated the models’
performance in the binary classifications of AD vs. CN, AD vs.
pMCI, and AD vs. sMCI.

3.1. Feature analysis

This study is based on a list of cost-effective features. These
features are easy to obtain for all patients. As a result, the model
is applicable in most medical domains, even in developing coun-
tries. The selected features, on the other hand, are medically
intuitive and popular in the medical domain. Furthermore, they
have discriminative and informative power to differentiate the
four classes with high performance. For significance testing, the
P-value is used, where 0.05 is the selected significance thresh-
old. For CS displaying normal distributions, including ADAS and
MoCA, we used a one-way analysis of variance (ANOVA) paramet-
ric test to check that the four independent classes are significantly
different. For post-hoc testing after AVOVA, we use the conser-
vative Scheffe test to check each pair of diagnostic groups. For
the groups that had a non-normal distributions, including MMSE,
FAQ, NPISCORE, GDTOTAL, and CDR, we used the non-parametric
Kruskal-Wallis test for the three groups tests followed by Dunn’s
test for post-hoc multiple comparisons based on Bonferroni’s
corrections. The correlation between the categorical features, in-
cluding drugs and comorbidities for all classes, was achieved
using the Chi-Square test.

Regarding the cognitive scores data, only the most significant
scores were selected. The sizes of different diagnostic groups
(i.e., CN, sMCI, pMCI, and AD) are sufficient for all statistical
tests, CS has no outliers. As shown in Fig. 4, these scores are
statistically significantly different among the four classes (P <

001). As can be seen from the distributions in Fig. 4, there are
ignificant differences among the means of the different classes
or each score. As a result, the selected markers can be considered
ignificant predictors of AD progression.
Regarding the list of brain disorders medicines, as shown in

ig. 5, Aricept is the most used drug among patients. In our
ataset, 433 (42.18%) patients took it, with 236, 68, and 129 being
rom the AD, pMCI, and sMCI classes, respectively. Namenda is the
ext most important drug, where 265 (25.75%) patients took it,
ith 192, 37, and 36 being from the AD, pMCI, and sMCI classes,
espectively. The third most important drug is Anti-depressants,
here 247 (24.003%) patients took it, with 68, 52, 32, and 95
eing from the AD, CN, pMCI, and sMCI classes, respectively. The
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Fig. 4. Cognitive scores distributions.

Fig. 5. Percentage of brain disorders medicines in the dataset.

fourth most important drug is Exelon, where 64 (6.21%) patients
ook it, with 34 being from the AD class. Razadyne and Cognex are
less used in AD society, where 31 (3.012%) and 1 (0.09%) patients
took these drugs, respectively, and 16 and 1 patients were from
the AD class, respectively. About 459 (44.60%) patients did not
take any drugs (i.e., the None category), with 211 (45.97%) and
196 (36.82%) being from the CN and sMCI classes, respectively.
Note that most of the normal patients do not take any drugs for
brain disease. However, most AD patients have taken these kinds
of drugs, while some pMCI and sMCI patients have taken them as
well. The resulting features from the encoding of these drugs are
statistically significant to discriminate different classes, except for
Cognex (P > .5) and Razadyne (P > .17), which as a result are
excluded from the dataset.

Regarding the not brain medicine drugs, as shown in Fig. 6, the
N is the most common group in the ATC; see Supplementary File
1. In our dataset, 892 (86.77%) patients took it, with 278 of them
being from the AD class. B is the second most important group,
here 836 (81.32%) patients took it, with 252 of them being from
he AD class. The third most important group is C, where 631
61.28%) patients took it, with 200 of them being from the AD
lass. The fourth most important group is A, where 454 (41.16%)
atients took it, with 130 of them being from the AD class. The
ifth most important group is M, where 353 (37.35%) patients
ook it, with 99 of them being from the AD class. The sixth most
mportant group is G, where 229 (22.27%) patients took it, with
3 of them being from the AD class. The seventh most important
roup is R, where 220 (21.40%) patients took it, with 62 of them
eing from the AD class. The eighth most important group is
, where (177) 17.21% patient took it, with 39 of them being
rom the AD class. The ninth most important group is S, where
47 (14.29) patients took it, with 36 of them being from the AD
lass. J, D, V, L, P are less popular groups, where 118 (11.47%), 73
7.10%), 60 (5.83%), 46 (4.47%) and 19 (1.84%) patients took these
rugs, respectively, with 24, 12, 14, 8 and 7 of them being from
687
Fig. 6. Percentage of not brain disorders medicines in the dataset.

Fig. 7. Percentage of diseases in the dataset.

the AD class, respectively. Finally, around 779 (75.77%) patients
took other drugs, and these patients are grouped under the Other
category. These features are statistically significant, according to
the Chi-Square Test.

Regarding the patient’s medical history, as shown in Fig. 7,
766 (74.61) of the patients did have major surgical procedures
(MH18SURG), with 389 of them being from the AD class. About
701 (74.5%) patients had cardiovascular disorders (MH4CARD),
with 376 of them being from the AD class. Musculoskeletal disor-
ders (MH8MUSCL) is the next most important disease, where 683
(66.43%) patients experienced that, with 370 of them being from
the AD class. The fourth most important group had medical issues
with the head, eyes, ears, nose, or throat (MH3HEAD), where 640
(62.25%) patients experienced that, with 349 of them being from
the AD class. The fifth most important group had endocrine sys-
tem diseases (MH9ENDO), and 474 (46.10%) patients experienced
that, with 264 of them being from the AD class. The sixth most
important group had medical issues with gastrointestinal disorders
(MH10GAST), where 465 (45.23%) patients experienced that, with
238 of them being from the AD class. Allergies (MH13ALLE) and
renal-genitourinary (MH12RENA) include 457 (44.45%) and 437
(42.50%) patients, respectively, with 228 and 223 being from
the AD class, respectively. Smoking group (MH16SMOK) has 413
(40.17%) patients, with 225 being from the AD class. The malig-
nancy(MH17MALI) and respiratory disorders (MH5RESP) have 252
(24.51%), and 214 (20.817%) patients, respectively, with 134, 118,
and 109 of them being from the AD class. Hematopoietic lymphatic
disorders (MH11HEMA), alcohol abuse (MH14ALCH), and hepatic
disorders (MH6HEPAT) were less common, with 90 (8.75%), 47
(4.57%) and 43 (4.18%) patients, respectively. These features were
also found to be statistically significant following the Chi-Square
Test.

3.2. The 4-class experiment

3.2.1. Cross-validation results
This section discusses the 10-fold CV results of the five models

over the eight training datasets (i.e., B-CS, B-CS-AM, B-CS-AM-
D, B-CS-AM-NAM, B-CS-AM-NAM-D, B-CS-D, B-CS-NAM-D, and
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able 2
erformance of ML models in the 4-class task.
Model Dataset Testing performance Cross-validation performance

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF

B-CS 87.85 87.85 87.85 87.85 87.02 ± 2.83 87.23 ± 2.80 86.75 ± 2.96 86.90 ± 2.87
B-CS-AM 90.13 90.13 90.13 90.13 90.11 ± 2.54 90.48 ± 2.42 90.13 ± 2.72 90.23 ± 2.48
B-CS-AM-D 90.51 90.69 90.51 90.41 90.58 ± 2.68 90.95 ± 2.37 90.48 ± 2.54 90.54 ± 2.51
B-CS-AM-NAM 90.16 90.09 90.16 90.09 90.89 ± 2.73 91.26 ± 2.55 91.07 ± 2.74 90.94 ± 2.62
B-CS-AM-NAM-D 89.70 89.82 89.70 89.58 90.78 ± 2.72 91.05 ± 2.78 90.68 ± 2.52 90.62 ± 2.54
B-CS-D 89.47 89.45 89.46 89.38 89.43 ± 2.21 89.99 ± 1.95 89.50 ± 2.09 89.58 ± 2.11
B-CS-NAM-D 89.35 89.32 89.35 89.28 90.33 ± 2.15 90.57 ± 2.00 90.35 ± 2.21 90.17 ± 2.18
B-CS-NAM 88.65 88.75 88.65 88.59 88.76 ± 2.32 89.28 ± 2.32 88.93 ± 2.34 88.86 ± 2.47

DT

B-CS 72.92 72.92 72.92 72.92 78.94 ± 3.54 80.76 ± 3.81 79.17 ± 4.57 79.98 ± 3.90
B-CS-AM 77.32 77.44 77.31 77.05 78.43 ± 4.46 79.49 ± 4.52 79.28 ± 4.03 78.02 ± 5.49
B-CS-AM-D 68.28 68.37 68.28 67.77 72.94 ± 5.48 74.52 ± 5.46 73.63 ± 5.88 72.35 ± 5.23
B-CS-AM-NAM 75.70 75.79 75.69 75.31 77.66 ± 4.30 78.04 ± 4.14 77.29 ± 4.33 78.38 ± 4.65
B-CS-AM-NAM-D 72.45 72.45 72.45 72.17 73.47 ± 4.61 73.60 ± 5.07 73.81 ± 5.58 74.18 ± 4.86
B-CS-D 75.58 75.91 75.57 75.48 76.57 ± 4.15 76.60 ± 4.28 76.26 ± 4.29 76.06 ± 4.84
B-CS-NAM-D 71.64 71.87 71.64 71.56 72.31 ± 6.15 72.51 ± 6.33 72.85 ± 5.73 72.34 ± 5.02
B-CS-NAM 76.39 76.72 76.39 76.31 73.55 ± 5.89 77.06 ± 4.79 75.12 ± 4.65 75.64 ± 4.27

LR

B-CS 79.40 79.40 79.40 79.40 74.33 ± 3.44 73.96 ± 3.72 74.34 ± 3.44 73.57 ± 3.58
B-CS-AM 84.83 84.81 84.83 84.77 76.47 ± 3.21 76.26 ± 3.38 76.45 ± 3.22 76.03 ± 3.33
B-CS-AM-D 85.53 85.63 85.53 85.32 78.65 ± 2.82 78.73 ± 2.92 78.66 ± 2.82 78.45 ± 2.92
B-CS-AM-NAM 84.49 84.29 84.49 84.29 77.59 ± 2.60 77.48 ± 2.83 77.59 ± 2.69 77.28 ± 2.77
B-CS-AM-NAM-D 84.37 84.57 84.37 84.10 79.01 ± 3.44 78.98 ± 3.57 79.03 ± 3.45 78.72 ± 3.55
B-CS-D 81.48 81.63 81.48 81.27 75.85 ± 2.66 75.71 ± 2.80 75.85 ± 2.66 75.28 ± 2.67
B-CS-NAM-D 80.67 80.88 80.67 80.32 76.57 ± 2.27 76.38 ± 2.55 76.57 ± 2.27 76.12 ± 2.49
B-CS-NAM 79.39 79.50 79.39 79.23 75.37 ± 2.17 75.11 ± 2.31 75.36 ± 2.17 74.80 ± 2.28

SVM

B-CS 79.63 79.63 79.63 79.63 83.01 ± 2.97 83.21 ± 3.05 83.01 ± 2.97 82.52 ± 3.13
B-CS-AM 81.59 82.24 81.59 81.47 84.94 ± 2.79 85.04 ± 2.82 84.94 ± 2.79 84.54 ± 2.99
B-CS-AM-D 82.63 82.63 82.63 82.46 86.47 ± 2.59 86.68 ± 2.56 86.47 ± 2.59 86.17 ± 2.69
B-CS-AM-NAM 82.06 82.10 82.06 81.83 87.32 ± 2.23 87.61 ± 2.25 87.32 ± 2.23 87.04 ± 2.29
B-CS-AM-NAM-D 83.68 83.51 83.68 83.52 86.13 ± 3.03 86.37 ± 3.03 86.13 ± 3.03 85.85 ± 3.07
B-CS-D 81.71 81.64 81.71 81.47 86.02 ± 2.41 85.95 ± 2.45 86.03 ± 2.41 85.69 ± 2.51
B-CS-NAM-D 82.40 82.13 82.40 82.16 86.47 ± 2.38 86.47 ± 2.43 86.47 ± 2.38 86.21 ± 2.48
B-CS-NAM 80.78 80.76 80.78 80.48 84.74 ± 2.08 84.58 ± 2.26 84.74 ± 2.08 84.36 ± 2.19

KNN

B-CS 71.52 71.52 71.52 71.53 72.12 ± 3.81 74.34 ± 4.23 72.12 ± 3.81 70.74 ± 3.94
B-CS-AM 74.30 79.80 74.30 72.93 74.63 ± 3.25 77.63 ± 3.65 74.63 ± 3.25 73.03 ± 3.48
B-CS-AM-D 71.18 74.42 71.18 69.97 72.92 ± 3.52 75.61 ± 3.89 72.92 ± 3.52 71.33 ± 3.80
B-CS-AM-NAM 71.41 78.04 71.41 69.41 73.50 ± 3.21 76.98 ± 3.76 73.5 ± 3.21 71.63 ± 3.68
B-CS-AM-NAM-D 71.52 74.70 71.52 70.43 71.46 ± 3.72 73.49 ± 4.26 71.46 ± 3.72 69.88 ± 3.99
B-CS-D 75.69 79.45 75.69 74.94 76.03 ± 2.27 77.93 ± 2.52 76.03 ± 2.27 74.55 ± 2.44
B-CS-NAM-D 75.46 79.51 75.46 74.61 75.88 ± 2.71 77.76 ± 2.96 75.88 ± 2.71 74.33 ± 2.90
B-CS-NAM 71.87 77.06 71.87 70.18 73.55 ± 3.06 75.69 ± 3.23 73.55 ± 3.06 71.82 ± 3.44
p
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B-CS-NAM), as shown in Table 2, where X-Y represents modal-
ity X is fused with modality Y. RF is the best model among
all fused datasets. Accuracies for B-CS, B-CS-AM, B-CS-AM-D,
B-CS-AM-NAM, B-CS-AM-NAM-D, B-CS-D, B-CS-NAM-D, and B-
CS-NAM were 87.02%, 90.11%, 90.58%, 90.89%, 90.78%, 89.43%,
90.33%, and 88.76%, respectively.

Furthermore, the B-CS-AM-NAM dataset has the highest per-
ormance with respect to other fused datasets. We attribute this
ehavior to a fusion of the Alzheimer’s medicine dataset and
he Not Alzheimer’s medicine dataset, which play an important
ole in improving the performance of all ML models. We experi-
entally demonstrate the performance improvement of RF using
ifferent fused datasets compared to the B-CS dataset. As the
esults show, RF accuracy improvement for B-CS-AM-D, B-CS-AM-
AM, B-CS-AM-NAM-D, and B-CS-NAM-D datasets is +4%; for
-CS-AM and B-CS-D datasets it is +3%, and for B-CS-NAM dataset
t is +2%. RF has recoded improvements in precision and F1-score
f 4% for B-CS-AM, B-CS-AM-D, B-CS-AM-NAM, B-CS-AM-D, and
-CS-NAM-D datasets, and +3% and +2% for B-CS-D and B-CS-
AM datasets, respectively. Furthermore, RF recorded a higher
ecall of +5% by using the B-CS-AM-NAM dataset. Note that RF
chieves the highest results by using the B-CS-AM-NAM dataset.
For other ML models, their performance varied based on the

tilized datasets, see Table 2. Regarding the B-CS dataset, the
orst model is KNN (accuracy of 72.12%, precision of 74.34%,
ecall of 72.12%, and F1-score of 70.74%). Regarding the B-CS-AM
688
dataset, the worst model is KNN (accuracy of 74.63%, precision
of 77.63%, recall of 74.63%, and F1-score of 73.03%). Regarding
the B-CS-AM-D dataset, the worst model is KNN (accuracy of
72.92%, precision of 75.61%, recall of 72.92%, and F1-score of
71.33%). Regarding the B-CS-AM-NAM dataset, the worst model
is KNN (accuracy of 71.46%, precision of 73.49%, and F1-score of
69.88%). Regarding the B-CS-AM-NAM-D dataset, the worst model
is DT (accuracy of 73.46%, precision of 73.60%, and F1-score of
74.18%). Regarding the B-CS-D dataset, the worst model is LR
(accuracy of 75.84%, precision of 75.71%, recall of 75.84%, and
F1-score of 75.28%). For the B-CS-AM-NAM dataset, the worst
model is LR (accuracy of 75.48%, precision of 75.71%, and F1-
score of 75.28%). Regarding the B-CS-NAM-D dataset, the worst
model is DT (accuracy of 72.31%, precision of 72.51%, and F1-
score of 72.34%). Finally, DT is the worst model for the B-CS-NAM
dataset (accuracy of 72.31%, precision of 72.51%, and F1-score of
72.34%). Although KNN recorded the lowest performances using
B-CS-AM, B-CS-AM-D, and B-CS-AM-NAM datasets, the trained
model showed improvements compared to using the B-CS dataset
(accuracy of +3%, +1%, and +2% respectively). LR recorded lower
erformances using B-CS-AM and B-CS-AM-D datasets comparing
o RF, but the model showed improvements compared to using
he B-CS dataset (accuracy of +6.84% and +7.72% respectively).

According to Table 2, LR has the highest performance improve-
ents using the B-CS-AM-NAM-D dataset compared to the B-CS
ataset. However, we notice that DT recorded the lowest perfor-
ance using B-CS-AM-NAM-D and B-CS-NAM datasets, and its
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erformance is lower compared to the B-CS dataset. Interestingly,
or the B-CS-D dataset, KNN has lower performance than LR, but
t has a higher performance improvement compared to the B-
S dataset (accuracy of +5%). However, KNN failed to improve
ts performances using the B-CS-AM-NAM-D dataset (accuracy of
1%, precision of −1%, recall of −1%, and F1-score of −1%). DT
chieves the worst performance on the selected modalities using
ll fused datasets compared to the baseline dataset, which means
hat DT is unable to predict AD progression using four classes
ith the training datasets. Compared to RF, SVM reports lower
erformances when using the B-CS-AM-NAM dataset, but it has
higher performance improvement compared to using the B-CS
ataset (accuracy of +5%).
Fig. 8 shows the performance of the best performing models

ased on the selected datasets. These results are the average of
he results collected from ten repeated train/test splits wherein
ach splitting of the training set is performed with stratified 10-
old CV. It is clear that RF achieves the best performance (accuracy
f 90.89%) by using the B-CS-AM-NAM fused dataset followed
y SVM (accuracy of 87.32%) using the B-CS-AM-NAM dataset,
R (accuracy of 79.01%) using the B-CS-AM-NAM-D dataset, DT
accuracy of 78.94%) using the B-CS, and then KNN (accuracy of
6.03%) using the B-CS-D dataset. Generally, the fused datasets
ere more complex than single modalities, and therefore the
lassification tasks became more challenging. It can be noticed
hat the complex models like RF ensemble and SVM are able
o utilize the fused datasets to enhance their performance, but
azy learners like KNN achieved worse results. This indicates
hat these models benefit from added variances in the data and
re able to avoid the effect of added noise. From Table 2, we
oticed that the RF-based model is the most stable because it
as the lowest standard deviations compared to other models. To
onclude, it can be seen from Table 2 that the medication data has
n important role in improving the performance of ML models
hen fused with other modalities.

.2.2. Testing results
This section discusses the generalization performance of the

ive models using the eight unseen test datasets, see Table 2. The
esults are consistent with cross-validation performances. RF is
he best model among all other ML models based on the B-CS-
M-D dataset (accuracy of 90.51%). The fusion of more modalities
o the B-CS dataset improves the performance of RF. Its accuracy
s improved by 3% using the B-CS-AM, B-CS-AM-D, B-CS-AM-
AM, B-CS-AM-NAM-D, B-CS-D, or B-CS-NAM-D datasets, and 1%
sing the B-CS-NAM dataset. A similar improvement is achieved
or precision, recall, and F1-score, where RF records improve-
ents of 3% for B-CS-AM and B-CS-AM-D; 2% for B-CS-AM-NAM,
-CS-AM-D, B-CS-NAM-D, and B-CS-D; and 1% for B-CS-NAM. DT
chieves high performance using B-CS-AM, B-CS-AM-NAM, and
-CS-NAM datasets, compared to B-CS. However, it has lower per-
ormance using B-CS-AM-D, B-CS-AM-NAM-D, and B-CS-NAM-D,
ompared to the baseline dataset. LR achieves higher performance
ompared to B-CS for all fused datasets expect B-CS-NAM. SVM
oes a good job using the B-CS-AM-NAM-D dataset. The greatest
ecall improvements were made by KNN using B-CS-AM, B-CS-
M-NAM, B-CS-D, B-CS-NAM-D, and B-CS-NAM (10%, 8%, 10%,
0%, and 7%, respectively). KNN improved precision by 10%, 4%,
%, 4%, and 7% using the respective B-CS-AM-D, B-CS-AM-NAM,
-CS-AM-NAM-D, and B-CS-NAM datasets. However, it has worse
1-scores of −2%, −3%, −2%, and −2% for B-CS-AM-D, B-CS-AM-
AM, B-CS-AM-NAM-D, and B-CS-NAM, respectively, compared
o the B-CS dataset.

Fig. 9 shows the performance of the best models from each
ategory. To collect the test results, after each split, all models
ere tested using the same test set. The collected testing results
689
Fig. 8. The best CV performance for 4-class models.

Fig. 9. The best generalization results for 4-class models.

from the ten splits were averaged and are shown in Fig. 9. As a
result, every model has been tested 10 times, and every testing
split has been used with every single model. Again, RF achieved
the best testing results by utilizing the B-CS-AM-D dataset (accu-
racy of 90.51%). LR achieved better testing performance than SVM
based on the B-CS-AM-D dataset (85.53%). It can be noticed that
all models utilized the medication and comorbidities datasets to
improve their results. This result shows how much these types
of data may add value to the classification performance. SVM
utilized B-CS-AM-NAM-D to achieve an accuracy of 83.68%. Please
note that this level of performance has not been achieved in
previous literature based on just the MRI data. DT achieved an
accuracy of 77.32% using B-CS-AM, and finally, KNN achieved an
accuracy of 75.69% based on the B-CS-D dataset. All techniques
have better results based on the fused data. More complex models
such as SVM and RF utilized more modalities and benefited from
the added variances of the new features.

To summarize the performance of the compared models, we
explore the average testing results of each model over all datasets.
On average, RF achieved an average testing performance of Ac-
curacy = 89.48%, Precision = 89.51%, Recall = 89.48%, and F1-
Score = 89.41%. By these results, RF achieved the highest av-
erage results over all datasets with a 95%-confidence interval
(CI) of [81.40, 94.10]. LR achieved the second-best results over
all datasets (Accuracy = 82.52%, Precision = 82.59%, Recall =

2.52%, and F1-Score = 82.34%). SVM achieved the third best
verage testing results (Accuracy = 81.81%, Precision = 81.83%,
ecall = 81.81%, and F1-Score = 81.63%). DT and KNN achieved
he lowest average results, where DT has Accuracy = 73.79%,
recision = 73.93%, Recall = 73.78%, and F1-Score = 73.57%, and

KNN has Accuracy = 72.87%, Precision = 76.81%, Recall = 72.87%,
and F1-Score = 71.75%. Fig. 10 illustrates a comparison between
the average performance of all models using the eight test sets.
Fig. 10(a) confirms that the RF ensemble classifier outperformed
all other regular ML models, and simple models like DT or lazy
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Fig. 10. (a) Average performance over the eight test sets for 4-class models, (b) Critical difference diagram.
odels like KNN were unable to benefit from the fused feature
pace. The CD diagram, shown in Fig. 10(b), asserts that RF
chieved the lowest average ranking, statistically outperforming
VM, DT, LR, and KNN. LR and SVM achieved lower average rank
hen compared to DT and KNN. The reason for KNN obtaining
he highest average rank is due to the fact that it always obtains
lower rank for most datasets.

.3. The 3-class experiment

In this experiment, we test the role of multimodal data fusion
n the performance of ML models to solve less complex classi-
ication tasks (i.e., 3-class problem). We examine the previously
ptimized ML models using different fusion schemes.

.3.1. Cross-validation results
This section discusses the 10-fold CV results of the five models

ver the eight training datasets using three classes, as shown
n Table 3. Generally, all models have higher performance for
he 3-class problem compared to the 4-class problem. RF is the
est model among all tested models. Its accuracies for B-CS,
-CS-AM, B-CS-AM-D, B-CS-AM-NAM, B-CS-AM-NAM-D, B-CS-D,
-CS-NAM-D, and B-CS-NAM are 90.86%, 91.58%, 90.81%, 92.04%,
1.35%, 89.82%, 90.08%, and 90.01%, respectively. The B-CS-AM-
AM dataset has the highest performance. RF accuracy improve-
ent for B-CS-AM-D, B-CS-AM-NAM, B-CS-AM-NAM-D, and B-
S-NAM-D datasets is 4%, for B-CS-AM and B-CS-D datasets is 3%
nd for B-CS-NAM dataset is 2%.
Similar to the precision and F1-score, RF has recoded im-

rovements with respect to B-CS, 4% for B-CS-AM, B-CS-AM-D,
-CS-AM-NAM, B-CS-AM-D, and B-CS-NAM-D datasets, 3% and
% for B-CS-D and B-CS-NAM datasets respectively. However, for
F recall improvement, it achieves 5% using the B-CS-AM-NAM
ataset. We attribute this behavior to a fusion of Alzheimer’s
edicine dataset and Not Alzheimer’s medicine dataset, which
as an essential role in improving the performance of all ML mod-
ls. KNN has the worst performances. Using the B-CS dataset, the
odel achieved an accuracy of 72.12%, a precision of 74.34%, a re-
all of 72.12%, and an F1-score of 70.74%. It also has the worst re-
ults using the B-CS-AM dataset (accuracy of 78.27%, precision of
8.64%, recall of 78.27%, and F1-score of 77.56%). However, KNN
as gained significant improvements using other fused datasets.
or the DT model, early fusion slightly improved the model’s
erformance. For example, the performance was improved by
sing the B-CS-AM-NAM-D and B-CS-D datasets by accuracies
f 3% and 2%, respectively. However, DT performance was not
mproved by using the B-CS-NAM-D, and B-CS-NAM datasets.
VM, on the other hand, has gained performance improvements
sing all the fused datasets. LR has superior improvements for all
used datasets. It gained the highest performance improvements

sing the B-CS-AM dataset (i.e. precision and F1-score of 17%).

690
Fig. 11. The best CV performance for 3-class models.

3.3.2. Testing results
Table 3 shows the performance of the ML models using the

unseen testing datasets. RF is the best performing model, where
both B-CS-AM-D and B-CS-AM-NAM datasets have the highest ac-
curacy (91.21%) and recall (91.21%). However, B-CS-AM-NAM has
higher precision and F1-score. On the other hand, DT has the low-
est performances using all unseen datasets, where B-CS-NAM-D
achieved the lowest performances (accuracy of 63.69%, precision
of 63.75%, recall of 63.69%, and F1-score of 63.37%). KNN saw the
best improvement based on fused datasets in comparison to the
B-CS dataset. It improved in accuracy by 12%, 16%, 17%, and 13%
for B-CS-AM, B-CS-AM-D, B-CS-AM-NAM, and B-CS-AM-NAM-D,
respectively, but RF achieved 3%, 4%, 4%, and 4%, respectively for
the same datasets. Furthermore, KNN achieved higher F1-scores
by 18%, 17%, and 19% for B-CS-AM, B-CS-AM-NAM, and B-CS-AM-
NAM-D datasets, respectively. The same behavior was followed
by LR, where fused datasets improved its results compared to
the baseline data. LR models improved their results by 10% for
accuracy, precision, recall, and F1-score for both B-CS-AM and B-
CS-D datasets. In addition, using B-CS-AM-NAM-D datasets with
SVM improved performance by 10%. Even for DT, which has the
worst performances, it achieved slightly improved accuracy using
the B-CS-AM, B-CS-AM-D and B-CS-AM-NAM-D datasets by 3%,
2%, and 1%, respectively.

Fig. 11 shows a comparison among the best models for every
algorithm based on the CV results, and Fig. 12 is based on the
testing results. The CV and testing results were collected using the
same methodology used in the 4-class problem. All models have
better performance compared to the 4-class task. This is intuitive
because the current task is much easier than the previous exper-
iment. As illustrated in the figure, RF beats all other techniques
using the fused dataset of B-CS-AM-NAM (accuracy of 92.05%).
Furthermore, the model is more stable because its results have
lower variance compared to other models. SVM utilized B-CS-AM
to get an accuracy of 90.25%.

LR and DT used the same dataset to achieve accuracies of
88.41% and 85.57%, respectively. KNN achieved the worst perfor-
mance (81.31%) based on the B-CS-AM-NAM dataset. RF behaves,
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Model Dataset Testing performance Cross-validation performance

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF

B-CS 87.26 87.17 87.26 87.17 90.86 ± 2.49 90.84 ± 2.15 90.88 ± 2.29 90.85 ± 2.29
B-CS-AM 90.05 90.07 90.05 90.01 91.58 ± 2.22 91.78 ± 2.04 91.48 ± 2.42 91.73 ± 2.03
B-CS-AM-D 91.21 91.19 91.21 91.10 91.82 ± 2.06 91.83 ± 2.27 91.62 ± 2.21 91.74 ± 2.26
B-CS-AM-NAM 91.21 91.20 91.21 91.19 92.05 ± 2.31 92.29 ± 2.37 92.04 ± 2.44 92.01 ± 2.34
B-CS-AM-NAM-D 90.95 90.94 90.95 90.92 91.35 ± 2.69 91.75 ± 2.45 91.44 ± 2.63 91.49 ± 2.61
B-CS-D 89.40 89.39 89.40 89.37 89.83 ± 2.57 90.08 ± 2.55 89.67 ± 2.67 90.02 ± 2.75
B-CS-NAM-D 89.40 89.38 89.40 89.38 90.08 ± 2.61 90.31 ± 2.60 90.03 ± 2.77 90.11 ± 2.58
B-CS-NAM 87.38 87.44 87.38 87.32 90.01 ± 2.22 90.36 ± 2.28 90.16 ± 2.29 90.39 ± 2.11

DT

B-CS 75.69 76.17 75.69 75.56 78.90 ± 3.97 79.97 ± 3.96 78.62 ± 4.31 79.05 ± 4.30
B-CS-AM 77.90 77.83 77.9 77.68 85.57 ± 4.17 85.54 ± 4.48 85.36 ± 3.87 84.37 ± 3.86
B-CS-AM-D 77.51 77.42 77.51 77.26 83.33 ± 3.85 82.76 ± 4.46 83.31 ± 3.91 83.54 ± 4.09
B-CS-AM-NAM 76.39 76.72 76.39 76.31 83.11 ± 4.39 84.69 ± 4.37 82.13 ± 4.02 84.60 ± 3.38
B-CS-AM-NAM-D 72.22 72.02 72.22 71.95 81.32 ± 6.36 82.05 ± 5.77 81.09 ± 5.77 81.70 ± 5.36
B-CS-D 69.76 69.94 69.76 69.04 80.44 ± 5.14 81.52 ± 3.83 80.10 ± 5.86 80.63 ± 6.03
B-CS-NAM-D 63.69 63.75 63.69 63.37 78.58 ± 5.48 78.22 ± 5.37 77.11 ± 6.56 79.39 ± 5.12
B-CS-NAM 67.36 67.39 67.36 67.10 77.76 ± 4.26 78.30 ± 4.48 76.95 ± 3.93 78.44 ± 4.43

LR

B-CS 79.40 79.45 79.40 79.34 74.34 ± 3.44 73.95 ± 3.72 74.36 ± 3.43 73.58 ± 3.55
B-CS-AM 88.37 88.51 88.37 88.41 88.41 ± 2.79 88.63 ± 2.81 88.41 ± 2.79 88.32 ± 2.88
B-CS-AM-D 86.95 87.04 86.95 86.98 87.97 ± 2.82 88.17 ± 2.86 87.97 ± 2.82 87.86 ± 2.91
B-CS-AM-NAM 87.72 87.76 87.72 87.72 88.01 ± 2.44 88.17 ± 2.47 88.01 ± 2.44 87.89 ± 2.45
B-CS-AM-NAM-D 87.72 87.76 87.72 87.72 87.82 ± 2.50 87.93 ± 2.50 87.82 ± 2.50 87.74 ± 2.53
B-CS-D 87.98 88.001 87.98 87.96 85.78 ± 2.83 85.93 ± 2.84 85.78 ± 2.83 85.70 ± 2.83
B-CS-NAM-D 85.91 86.06 85.91 85.95 85.50 ± 2.55 85.61 ± 2.68 85.50 ± 2.55 85.39 ± 2.60
B-CS-NAM 79.39 79.50 79.39 79.23 75.38 ± 2.18 75.12 ± 2.32 75.38 ± 2.17 74.81 ± 2.29

SVM

B-CS 79.63 82.46 79.63 79.71 83.01 ± 2.97 83.21 ± 3.05 83.01 ± 2.97 82.52 ± 3.13
B-CS-AM 86.04 85.96 86.04 85.97 90.25 ± 2.31 90.61 ± 2.32 90.25 ± 2.31 90.27 ± 2.31
B-CS-AM-D 87.21 87.11 87.21 87.08 89.80 ± 2.46 90.01 ± 2.45 89.79 ± 2.46 89.78 ± 2.47
B-CS-AM-NAM 85.91 86.03 85.91 85.82 89.68 ± 2.31 89.89 ± 2.25 89.68 ± 2.31 89.67 ± 2.29
B-CS-AM-NAM-D 87.69 87.69 87.69 87.69 88.29 ± 2.55 88.54 ± 2.50 88.29 ± 2.55 88.28 ± 2.55
B-CS-D 84.36 84.66 84.36 84.46 87.76 ± 2.98 88.15 ± 2.84 87.76 ± 2.98 87.81 ± 2.93
B-CS-NAM-D 85.53 85.78 85.53 85.61 86.37 ± 2.91 86.82 ± 2.77 86.37 ± 2.91 86.42 ± 2.86
B-CS-NAM 80.78 80.76 80.78 80.48 84.74 ± 2.08 84.58 ± 2.26 84.74 ± 2.08 84.36 ± 2.19

KNN

B-CS 71.52 74.59 71.52 70.35 72.12 ± 3.81 74.34 ± 4.23 72.12 ± 3.81 70.74 ± 3.94
B-CS-AM 81.13 81.96 81.13 85.97 78.27 ± 3.18 78.64 ± 3.33 78.27 ± 3.18 77.56 ± 3.28
B-CS-AM-D 85.27 85.61 85.27 80.83 80.17 ± 2.85 80.56 ± 2.87 80.17 ± 2.85 79.71 ± 2.86
B-CS-AM-NAM 86.56 86.83 86.56 85.18 81.31 ± 2.97 81.75 ± 2.96 81.32 ± 2.97 80.87 ± 3.17
B-CS-AM-NAM-D 82.30 82.90 82.30 86.52 78.07 ± 3.24 78.47 ± 3.48 78.07 ± 3.24 77.28 ± 3.50
B-CS-D 82.30 82.77 82.30 82.03 77.60 ± 3.33 77.56 ± 3.63 77.60 ± 3.33 76.91 ± 3.51
B-CS-NAM-D 82.04 82.48 82.04 82.08 77.77 ± 3.18 77.75 ± 3.37 77.77 ± 3.18 77.09 ± 3.33
B-CS-NAM 71.88 77.06 71.88 81.87 73.55 ± 3.06 75.69 ± 3.23 73.55 ± 3.06 71.82 ± 3.44
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Fig. 12. The best generalization results for 3-class models.

n the same way, using the testing datasets. It achieved the
ighest accuracy of 91.21% based on B-CS-AM-NAM. However, LR
chieved better accuracy than SVM (accuracy of 88.37%) based on
he B-CS-AM dataset. SVM has an accuracy of 87.69% based on the
-CS-AM-NAM-D dataset. DT has the lowest results (77.9%) based
n the B-CS-AM dataset. It can be noticed that a combination
f AM and NAM modalities with the baseline data has a great
ffect on model performance. These results highlighted the main
ole of a patient’s cost-effective history data on improving AD
rogression detection models.
691
For each 3-class classifier, we explore the average testing
results over all datasets. On average, RF achieved the highest
average testing performance of Accuracy = 89.61%, Precision =

9.60%, Recall = 89.61%, and F1-Score = 89.56%, with a 95%-
onfidence interval (CI) of [81.50, 94.20]. LR achieved the second-
est results over all datasets (Accuracy = 85.43%, Precision =

5.51%, Recall = 85.43%, and F1-Score = 85.41%). SVM achieved
he third highest performance in its average testing results (Accu-
acy = 84.64%, Precision = 85.06%, Recall = 84.64%, and F1-Score
84.60%). KNN had average performance of Accuracy = 80.38%,

Precision = 81.78%, Recall = 80.38%, and F1-Score = 81.85%.
DT achieved the lowest average results of Accuracy = 72.57%,
Precision = 72.66%, Recall = 72.57%, and F1-Score = 72.28%.
Fig. 13 illustrates a comparison between the average performance
of all models using the eight test sets. As shown in Fig. 13(a), the
RF ensemble classifier outperformed all other regular ML models.
The CD diagram of Fig. 13(b) shows that RF statistically outper-
forms SVM, DT, LR, and KNN as it achieves the lowest average
ranking. LR and SVM achieved lower average performance when
compared to the DT and KNN models, while DT achieved the
worst results.

3.4. The 2-class experiment

In this section, we test the optimized ML models using the
three binary classification tasks of AD vs.CN, AD vs. sMCI, AD vs.
pMCI, and CN vs. MCI.
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Fig. 13. (a) Average performance over the eight test sets for 3-class models, (b) Critical difference diagram.
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.4.1. Cross-validation results: AD vs. CN
In this subsection, we discuss the results of the 10-fold CV

or the AD vs. CN task using the five models over eight training
atasets, see Table 4. It should be noted that all ML models have
igh performance over all trained datasets with results ranging
etween 98.28% and 99.77% for accuracy, 99.63% and 99.77% for
recision, 96.945% and 99.74 for recall, and 97.025% and 99.74%
or F1-score. RF has the highest performance using all training
ets. It achieves the highest result by using the B-CS-AM dataset
accuracy of 99.71%, precision of 99.77%, recall of 99.65% and F1-
core of 99.68%). Compared to the B-CS dataset, RF has the highest
mprovement in performance (accuracy by+0.24% using B-CS-
and B-CS-NAM-D, precision by+0.14% using B-CS-AM, recall

y+0.12% using B-CS-NAM-D, and F1-score by+0.15% using B-CS-
AM-D). For the DT model, the best results were achieved using
he B-CS-NAM dataset (accuracy of 96.77%, precision of 96.99%,
ecall of 96.945%, and F1-score of 97.03%). DT achieved small
mprovements (accuracy by+0.02% and F1-score by +0.52%) using
he B-CS-AM-NAM dataset. Similarly, LR had a small improve-
ent using all fused datasets compared to the baseline dataset.

ts highest improvements were achieved by using B-CS-AM-NAM
nd B-CS-AM-NAM-D datasets (0.18%, 0.19%, 0.18%, and 0.18% for
ccuracy, precision, recall, and F1-score, respectively). Some fused
ets positively affect the performance of the KNN, but others did
ot. Its highest improvement was achieved using the B-CS-AM-D
ataset (i.e. 0.11%, 0.11%, 0.16%, and 0.11% for accuracy, precision,
ecall, and F1-score respectively). The SVM model showed su-
erior performance improvements. The B-CS-AM-NAM-D dataset
chieved the highest results with SVM (i.e.+0.90%). The CN class
as different characteristics compared to the AD class. As a result,
t is an easy task for all ML models when looking at this class.
s a result, there is a minor difference in results among models.
esides, there is no big difference in performance by adding more
eatures to the training sets.

.4.2. Testing results: AD vs. CN
Table 4 shows the performance of ML models using the unseen

ata for the AD vs. CN task. RF achieved again the best results of
00%. SVM has similar performance except for B-CS-AM-D and
-CS-AM-NAM-D datasets. KNN, LR, and DT have accuracies of
8.44%, 99.74, and 97.40, respectively. It should be noted that
ome models like RF and SVM achieved 100% performance using
ost datasets. Both models achieved this performance using the
-CS dataset. That is because the AD vs. CN classification is an
asy task. On the other hand, some models like KNN, DT, and LR
id not achieve this level of performance, adding more features
id not improve these models’ performance.

.4.3. Cross-validation results: AD vs. sMCI
This section discusses the results of the 10-fold CV for the AD

s. sMCI classification task, see Table 5. The sMCI class is more
imilar to the CN class. Despite this, all ML models were still
ble to discriminate patients with high accuracy. All results are
692
slightly lower than for the previous AD vs. CN task because the
sMCI patients are more similar to AD patients than CN. The per-
formance of the ML models ranged between 88.55% and 94.91%
for accuracy, 88.78% and 95.1% for precision, 87.92% and 94.91%
for recall, and 88.67% and 94.96% for F1-score. The RF model has
the highest performance, while DT has the lowest performance.

Compared to the B-CS dataset results, RF is the only model that
achieved performance improvements for all fused datasets. The
highest improvement was obtained by using the B-CS-AM-NAM
dataset (i.e. +1.61%, +1.77%, +1.66%, and +1.70% for accuracy,
recision, recall, and F1-score respectively). LR only obtained
erformance improvement using the B-CS-AM-NAM-D dataset
i.e., 0.06%, 0.03%, 0.06%, and 0.06% for accuracy, precision, re-
all, and F1-score, respectively). Similarly, SVM and KNN only
btained performance improvements using the B-CS-AM dataset
i.e. 0.54% and 0.03% for accuracy, 0.49% and 0.03 for precision,
.54%, and 0.03% for recall, and 0.54% and 0.03% for F1-score,
espectively). DT did not show any performance improvement
sing any of the fused datasets.

.4.4. Testing results: AD vs. sMCI
Table 5 shows the testing performance of the ML models for

he AD vs. sMCI task. The results assert that the AD vs. sMCI task
s more challenging than the AD vs. CN task, which is medically
ntuitive. For RF, the highest accuracy and recall is 92.36% using
he B-CS-AM dataset with a 2% improvement compared to the
-CS dataset. Its highest precision is 92.19% by using the B-
S-AM-NAM dataset with a 2% improvement, and its highest
1-score is 92.35% using the B-CS-AM dataset. By using B-CS-
M-D and B-CS-NAM-D datasets, LR achieved these results for
ccuracy (89.12%), precision (89.12%), recall (89.12%), and F1-
core (89.12%). Compared to the baseline performance, the results
mproved by 2.8% for recall and 2.9% for accuracy, precision,
nd F1-score. SVM achieved the best improvement (8%) by using
he B-CS-AM-NAM-D dataset. KNN recorded an improvement of
% by using the B-CS-AM-D, B-CS-AM-NAM, and B-CS-NAM-D
atasets. Finally, DT recorded a performance improvement of 3.1%
nd 0.3% for accuracy, precision, recall, and F1-score by using
-CS-D and B-CS-AM-NAM, respectively. It can be noticed that
dding more modalities generally improves the model’s perfor-
ance and stability. We noticed that adding more data has less
ffect when the task is easy for a classifier. For example, on
verage, the models improved performance by 8% in the case of
he AD vs. sMCI task compared to the easier AD vs. CN task.

.4.5. Cross-validation results: AD vs. pMCI
In this experiment, we evaluate the optimized ML models to

ifferentiate AD from pMCI. Although this is a binary classification
ask, it is more difficult than the previous two experiments. The
MCI patients are quite similar to AD patients. They have con-
erted from MCI to AD within 2.5 years from M18. As a result, the
odels performance seen in Table 6 reflects the level of challenge
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erformance for the AD vs. CN task.
Model Dataset Testing performance Cross-validation performance

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF

B-CS 100.0 100.0 100.0 100.0 99.50 ± 0.50 99.63 ± 0.37 99.62 ± 0.38 99.59 ± 0.41
B-CS-AM 100.0 100.0 100.0 100.0 99.71 ± 0.30 99.77 ± 0.23 99.65 ± 0.35 99.68 ± 0.32
B-CS-AM-D 100.0 100.0 100.0 100.0 99.65 ± 0.35 99.66 ± 0.34 99.65 ± 0.35 99.68 ± 0.32
B-CS-AM-NAM 100.0 100.0 100.0 100.0 99.62 ± 0.38 99.61 ± 0.39 99.71 ± 0.29 99.56 ± 0.41
B-CS-AM-NAM-D 100.0 100.0 100.0 100.0 99.48 ± 0.52 99.69 ± 0.31 99.53 ± 0.47 99.59 ± 0.41
B-CS-D 100.0 100.0 100.0 100.0 99.74 ± 0.26 99.73 ± 0.27 99.70 ± 0.30 99.73 ± 0.27
B-CS-NAM-D 100.0 100.0 100.0 100.0 99.74 ± 0.26 99.73 ± 0.27 99.74 ± 0.26 99.74 ± 0.26
B-CS-NAM 100.0 100.0 100.0 100.0 99.70 ± 0.30 99.66 ± 0.34 99.61 ± 0.39 99.70 ± 0.30

DT

B-CS 96.61 96.65 96.61 96.61 98.63 ± 1.46 98.74 ± 1.53 98.86 ± 1.22 98.54 ± 1.64
B-CS-AM 96.87 96.98 96.87 96.87 98.50 ± 1.50 97.99 ± 2.01 98.19 ± 1.08 98.74 ± 1.55
B-CS-AM-D 96.61 96.65 96.61 96.61 98.31 ± 1.93 98.55 ± 1.48 98.34 ± 1.66 98.10 ± 1.90
B-CS-AM-NAM 95.05 95.22 95.05 95.05 98.65 ± 1.44 98.74 ± 1.26 98.67 ± 1.33 99.06 ± 0.04
B-CS-AM-NAM-D 96.87 97.04 96.87 96.87 97.91 ± 2.08 97.80 ± 2.10 97.82 ± 2.18 97.56 ± 2.40
B-CS-D 97.40 97.49 97.40 97.39 98.28 ± 1.70 98.04 ± 1.66 97.30 ± 2.29 97.24 ± 2.65
B-CS-NAM-D 97.13 97.29 97.13 97.13 96.79 ± 3.03 97.86 ± 2.07 97.60 ± 2.06 97.43 ± 2.36
B-CS-NAM 95.31 95.35 95.31 95.31 96.77 ± 3.23 96.99 ± 3.01 96.95 ± 3.05 97.03 ± 2.97

LR

B-CS 99.74 99.74 99.74 99.74 99.12 ± 0.88 99.13 ± 0.87 99.12 ± 0.88 99.12 ± 0.88
B-CS-AM 98.96 98.98 98.96 98.96 99.27 ± 0.73 99.29 ± 0.71 99.27 ± 0.73 99.27 ± 0.73
B-CS-AM-D 98.96 98.98 98.96 98.96 99.30 ± 0.70 99.30 ± 0.70 99.30 ± 0.70 99.30 ± 0.70
B-CS-AM-NAM 99.74 99.74 99.74 99.74 99.30 ± 0.70 99.32 ± 0.68 99.30 ± 0.70 99.30 ± 0.70
B-CS-AM-NAM-D 99.74 99.74 99.74 99.74 99.30 ± 0.70 99.32 ± 0.68 99.30 ± 0.68 99.30 ± 0.68
B-CS-D 99.22 99.22 99.24 99.22 99.15 ± 0.85 99.18 ± 0.82 99.15 ± 0.85 99.15 ± 0.85
B-CS-NAM-D 99.22 99.22 99.24 99.22 99.27 ± 0.73 99.28 ± 0.30 99.27 ± 0.73 99.27 ± 0.73
B-CS-NAM 99.48 99.48 99.48 99.48 99.25 ± 0.75 99.24 ± 0.76 99.23 ± 0.77 99.25 ± 0.75

SVM

B-CS 100.0 100.0 100.0 100.0 98.69 ± 1.30 98.71 ± 1.29 98.69 ± 1.30 98.69 ± 1.30
B-CS-AM 100.0 100.0 100.0 100.0 99.15 ± 0.85 99.16 ± 0.84 99.15 ± 0.85 99.15 ± 0.85
B-CS-AM-D 94.79 95.28 94.79 94.77 99.44 ± 0.56 99.46 ± 0.54 99.44 ± 0.56 99.44 ± 0.56
B-CS-AM-NAM 100.0 100.0 100.0 100.0 99.33 ± 0.67 99.35 ± 0.65 99.33 ± 0.67 99.33 ± 0.67
B-CS-AM-NAM-D 96.61 96.83 96.61 96.61 99.59 ± 0.41 99.61 ± 0.39 99.59 ± 0.41 99.59 ± 0.41
B-CS-D 100.0 100.0 100.0 100.0 99.03 ± 0.97 99.06 ± 0.94 99.03 ± 0.97 99.03 ± 0.97
B-CS-NAM-D 100.0 100.0 100.0 100.0 99.27 ± 0.70 99.29 ± 0.70 99.27 ± 0.70 99.27 ± 0.70
B-CS-NAM 100.0 100.0 100.0 100.0 99.40 ± 0.60 99.41 ± 0.59 99.40 ± 0.60 99.40 ± 0.60

KNN

B-CS 98.44 98.48 98.44 98.44 98.95 ± 1.05 98.99 ± 1.04 98.95 ± 1.05 98.95 ± 1.05
B-CS-AM 98.44 98.48 98.44 98.44 98.98 ± 1.02 99.02 ± 0.08 98.98 ± 1.02 98.98 ± 1.02
B-CS-AM-D 98.44 98.48 98.44 98.44 99.06 ± 0.94 99.10 ± 0.90 99.06 ± 0.94 99.06 ± 0.94
B-CS-AM-NAM 98.44 98.48 98.44 98.44 98.94 ± 1.04 98.98 ± 1.02 98.94 ± 1.04 98.94 ± 1.04
B-CS-AM-NAM-D 98.44 98.48 98.44 98.44 98.94 ± 1.04 98.98 ± 1.02 98.94 ± 1.04 98.94 ± 1.04
B-CS-D 98.44 98.48 98.44 98.44 98.91 ± 1.09 98.96 ± 1.04 98.91 ± 1.09 98.91 ± 1.09
B-CS-NAM-D 98.44 98.48 98.44 98.44 98.89 ± 1.11 98.92 ± 1.18 98.89 ± 1.11 98.89 ± 1.11
B-CS-NAM 98.44 98.48 98.44 98.44 98.89 ± 1.11 98.93 ± 1.17 98.89 ± 1.11 98.89 ± 1.11
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to detect pMCI patients. In this subsection, we will discuss the
cross-validation results.

DT achieved the highest performances by using the B-CS-NAM
ataset (accuracy of 98.44%, precision of 98.19%, recall of 98.29%,
nd F1-score of 97.84%). It achieved high improvements com-
ared to the B-CS data (accuracy of +13.5%, precision of +14.7%,
ecall of +12.7%, and F1-score of +14.3%). By using the B-CS-
AM-D dataset, DT showed the lowest performances (accuracy
f 78.48%, precision of 80.01%, recall of 79.52%, and F1-score of
9.68%). RF saw slight improvements (+3%) using the B-CS-AM-
AM dataset compared to baseline (accuracy of 94%, precision
f 95.1%, recall of 94.91%, and F1-score of 94.96%). LR achieved
ood performance improvements using all fused datasets. For
ccuracy, LR has gained +1.0%, +2.1%, +9.3%, +4.4%, +1.9%,
2.8%, and +2.8% with the B-CS-AM, B-CS-AM-D, B-CS-AM-NAM,
-CS-AM-NAM-D, B-CS-D, B-CS-NAM-D, and B-CS-NAM datasets,
espectively.

LR achieved the highest improvement using the B-CS-AM-
AM dataset (precision of +8.9%, recall of +9.3%, and F1-score
f +9.3%). Similarly, KNN gained significant performance im-
rovement using the B-CS-AM-NAM dataset (accuracy of 93.7%,
recision of 93.86%, recall of 93.71%, and F1-score of 93.7%).
he improvement with respect to the baseline is +9.77% of ac-
uracy, +8.43% for precision, +9.77% for recall, and +9.9% for
1-score. Furthermore, KNN gained non-negligible improvement
y using the B-CS-NAM-D and B-CS-NAM datasets (+0.6%, +1.4%,
693
0.6%, and +0.5 for accuracy, precision, recall, and F1-score,
espectively). However, SVM did not gain any performance im-
rovements for all fused dataset.

.4.6. Testing results: AD vs. pMCI
The performance of the ML models on unseen data for the

D vs. pMCI classification is presented in Table 6. RF and SVM
howed the best performance for all fused datasets. For RF, the
ighest performance is obtained by using B-CS-AM-D and B-
S-AM-NAM datasets, the improvements compared to the B-CS
ataset were accuracy of +4.6%, precision of +4.6%, recall of
4.7% and F1-score of +4.6% for B-CS-AM-D dataset; and accu-
acy of +4.6%, precision of +4.6%, recall of +4.6%, and F1-score of
4.6% for B-CS-AM-NAM dataset. LR obtains the highest perfor-
ance improvement using the B-CS-AM-NAM dataset (accuracy
f +4.8%, precision of +4.6%, recall of +4.8%, and F1-score of
4.8%). On the other hand, DT showed lower improvements by
sing fused sets except for the B-CS-D dataset (accuracy of +0.6%,
ecall of +0.6%, and F1-score of +0.8%). KNN achieved higher
erformance using B-CS-AM, B-CS-AM-NAM-D, and B-CS-NAM-D.
or example, KNN showed a performance improvement of +0.3%
or accuracy, +0.3% for precision, +0.2% for recall, and +0.8%
or F1-score by using the B-CS-AM dataset. SVM also showed
mprovement using all fused datasets expect B-CS-AM-NAM-D.
t showed the highest improvement by using the B-CS-NAM-D
ataset (accuracy of +5%, precision of +4%, recall of +5%, and
1-score of +5%).
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able 5
erformance for the AD vs. sMCI task.
Model Dataset Testing performance Cross-validation performance

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF

B-CS 90.74 90.79 90.74 90.74 93.38 ± 2.80 93.42 ± 2.70 93.33 ± 2.82 93.35 ± 2.82
B-CS-AM 92.36 92.40 92.36 92.35 94.68 ± 2.17 94.81 ± 2.05 94.71 ± 2.06 94.60 ± 2.13
B-CS-AM-D 91.43 91.57 91.43 91.43 94.68 ± 2.16 94.63 ± 2.26 94.71 ± 2.19 94.50 ± 2.34
B-CS-AM-NAM 92.13 92.19 92.13 92.12 94.91 ± 2.41 95.10 ± 2.38 94.91 ± 2.41 94.96 ± 2.36
B-CS-AM-NAM-D 91.43 91.56 91.43 91.42 94.73 ± 2.62 94.75 ± 2.50 94.65 ± 2.71 94.78 ± 2.30
B-CS-D 91.43 91.49 91.43 91.43 93.38 ± 2.62 93.57 ± 2.62 93.61 ± 2.63 93.60 ± 2.74
B-CS-NAM-D 89.81 89.85 89.81 89.81 94.12 ± 2.06 94.36 ± 1.92 94.15 ± 1.98 94.12 ± 2.12
B-CS-NAM 90.51 90.57 90.51 90.50 94.12 ± 2.15 94.30 ± 2.07 94.12 ± 1.96 94.30 ± 2.35

DT

B-CS 85.87 86.02 85.87 85.86 91.70 ± 3.26 91.94 ± 3.60 91.54 ± 3.38 90.83 ± 3.15
B-CS-AM 83.79 84.18 83.79 83.74 89.96 ± 3.44 91.63 ± 3.66 90.19 ± 3.46 89.73 ± 3.90
B-CS-AM-D 84.49 84.91 84.49 84.43 89.68 ± 3.92 89.12 ± 4.22 89.05 ± 4.65 88.95 ± 4.48
B-CS-AM-NAM 86.11 86.24 86.11 86.10 89.36 ± 4.22 90.09 ± 3.38 89.67 ± 3.63 90.09 ± 3.45
B-CS-AM-NAM-D 82.17 82.41 82.17 82.14 88.55 ± 3.84 89.33 ± 4.52 89.37 ± 4.11 88.67 ± 4.59
B-CS-D 88.65 88.76 88.65 88.65 89.24 ± 3.81 89.59 ± 3.01 89.09 ± 4.26 89.15 ± 3.93
B-CS-NAM-D 81.01 81.15 81.01 80.99 88.67 ± 3.85 88.78 ± 3.82 87.92 ± 3.68 88.69 ± 3.81
B-CS-NAM 84.25 84.57 84.25 84.22 90.85 ± 2.91 90.88 ± 2.84 90.03 ± 3.18 90.47 ± 2.77

LR

B-CS 86.57 86.65 86.57 86.56 92.65 ± 3.27 92.84 ± 3.20 92.65 ± 3.27 92.64 ± 3.28
B-CS-AM 88.19 88.29 88.19 88.18 92.90 ± 3.16 93.06 ± 3.10 92.90 ± 3.16 92.89 ± 3.17
B-CS-AM-D 89.12 89.12 89.12 89.12 92.46 ± 3.35 92.62 ± 3.32 92.46 ± 3.35 92.46 ± 3.36
B-CS-AM-NAM 87.50 87.54 87.50 87.49 93.04 ± 2.92 93.20 ± 2.88 93.04 ± 2.92 93.03 ± 2.92
B-CS-AM-NAM-D 85.64 85.84 85.64 85.62 92.71 ± 2.96 92.87 ± 2.94 92.71 ± 2.96 92.70 ± 2.97
B-CS-D 88.89 88.89 88.89 88.89 91.66 ± 2.69 91.86 ± 2.63 91.66 ± 2.69 91.65 ± 2.70
B-CS-NAM-D 89.12 89.12 89.12 89.12 91.89 ± 2.50 92.11 ± 2.47 91.90 ± 2.47 91.86 ± 2.51
B-CS-NAM 88.65 88.68 88.65 88.65 92.53 ± 2.24 92.69 ± 2.26 92.53 ± 2.24 92.52 ± 2.24

SVM

B-CS 83.10 83.25 83.10 83.08 93.46 ± 2.82 93.63 ± 2.73 93.46 ± 2.82 93.45 ± 2.83
B-CS-AM 83.56 83.61 83.56 83.55 93.97 ± 2.72 94.09 ± 2.70 93.97 ± 2.72 93.96 ± 2.72
B-CS-AM-D 84.95 84.97 84.95 84.95 92.03 ± 3.29 92.21 ± 3.25 92.03 ± 3.29 92.02 ± 3.29
B-CS-AM-NAM 86.80 87.55 86.80 86.74 91.97 ± 3.32 92.22 ± 3.24 91.97 ± 3.32 91.95 ± 3.33
B-CS-AM-NAM-D 90.51 90.69 90.51 90.49 92.28 ± 3.07 92.50 ± 3.00 92.28 ± 3.07 92.26 ± 3.07
B-CS-D 88.65 88.76 88.65 88.65 92.77 ± 2.51 92.96 ± 2.45 92.77 ± 2.51 92.76 ± 2.52
B-CS-NAM-D 88.89 89.31 88.89 88.85 93.08 ± 2.30 93.27 ± 2.24 93.08 ± 2.30 93.07 ± 2.31
B-CS-NAM 86.57 86.82 86.57 86.55 92.68 ± 2.16 92.85 ± 2.14 92.68 ± 2.16 92.67 ± 2.16

KNN

B-CS 90.51 90.63 90.51 90.50 93.71 ± 2.33 93.88 ± 2.27 93.71 ± 2.33 93.70 ± 2.34
B-CS-AM 90.51 90.63 90.51 90.50 93.74 ± 2.40 93.91 ± 2.32 93.74 ± 2.40 93.73 ± 2.40
B-CS-AM-D 91.90 91.95 91.90 91.89 93.56 ± 2.41 93.73 ± 2.35 93.56 ± 2.41 93.55 ± 2.42
B-CS-AM-NAM 91.90 91.95 91.90 91.89 93.71 ± 3.18 93.86 ± 3.15 93.71 ± 3.18 93.71 ± 3.19
B-CS-AM-NAM-D 90.74 90.80 90.74 90.74 93.61 ± 3.06 93.76 ± 3.01 93.61 ± 3.06 93.61 ± 3.06
B-CS-D 91.20 91.30 91.20 91.20 92.46 ± 2.49 92.81 ± 2.26 92.46 ± 2.49 92.44 ± 2.52
B-CS-NAM-D 92.82 92.87 92.82 92.81 93.41 ± 2.03 93.63 ± 1.92 93.41 ± 2.03 93.40 ± 2.04
B-CS-NAM 91.20 91.34 91.20 91.19 93.41 ± 2.16 93.64 ± 2.02 93.41 ± 2.16 93.40 ± 2.17
3.4.7. Results for the AD vs. pMCI task
The CV performance of the ML models for the CN vs. MCI clas-

ification are presented in Table 7. RF achieved the best accuracy
f 95.67%±1.62 based on the B-CS-D data, and the best testing

performance (i.e. accuracy of 95.60%) using the B-CS-AM data. LR
and SVM achieved comparable CV performance to RF based on the
B-CS-NAM data. The achieved CV accuracies were 95.09%±2.63
nd 95.25%±2.46 and the testing accuracies were 87.50% and
9.12%, respectively. DT achieved a CV accuracy of 91.95%±3.64
ased on the B-CS data, and testing accuracy of 86.57% based
n the B-CS-NAM-D data. KNN achieved the lowest CV accuracy
f 80.43%±3.95 based on the B-CS-NAM-D data, and the lowest
esting accuracy of 81.94% based on the B-CS-AM-NAM data.

Fig. 14 illustrates the performance of the best models from
he five different experiments based on the accuracy metric. For
he 4-class and 3-class tasks, RF achieves the best accuracies of
0.51% and 91.21% by using the B-CS-AM-D and B-CS-AM-NAM
ataset, respectively. SVM showed the best accuracy (93.23%) for
he AD vs. pMCI task by utilizing the B-CS-NAM-D dataset. For
he AD vs. sMCI task, KNN achieves the best accuracy (92.82%)
y using the B-CS-NAM-D dataset. RF is the best model for the
D vs. CN task (accuracy of 100%). Finally, RF achieved the best
ccuracy (95.60%) for the CN vs. MCI task based on the B-CS-AM
ata. Although the 4-class task is medically a challenge, using
ur fused data, the ML models achieved promising results. In
ddition, the performance was improved by reducing the problem
694
Fig. 14. Comparison among different experiments.

to 3-class and 2-class tasks. RF achieved the best results in most
of the experiments, and it is the most stable technique. The
fused dataset of B-CS-NAM-D is utilized by RF, KNN, and SVM to
achieve the best binary classification results. The comorbidities
features are replaced with brain disease medications (i.e. B-CS-
AM-NAM) for the 3-class task. Therefore, these results obviously
highlight the crucial role of the newly utilized medications and
comorbidities data.

For the 4-class task, the B-CS-AM-NAM dataset achieved the
best CV performance, B-CS-AM-D achieved the best testing per-
formance. For the 3-class task, the same dataset (i.e. B-CS-AM-
NAM) achieved the best performance. For the binary classification
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erformance for the AD vs. pMCI task.
Model Dataset Testing performance Cross-validation performance

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF

B-CS 86.46 86.97 86.46 86.41 92.04 ± 3.58 92.09 ± 3.33 91.92 ± 3.74 92.25 ± 3.36
B-CS-AM 89.58 90.04 89.58 89.55 88.92 ± 3.08 89.51 ± 3.10 89.07 ± 3.02 89.02 ± 3.17
B-CS-AM-D 90.62 91.27 90.62 90.59 90.18 ± 2.72 90.82 ± 2.73 90.41 ± 2.96 90.21 ± 3.01
B-CS-AM-NAM 90.62 91.02 90.62 90.60 94.90 ± 2.41 95.10 ± 2.38 94.91 ± 2.41 94.96 ± 2.36
B-CS-AM-NAM-D 90.36 90.71 90.36 90.34 91.25 ± 3.68 91.30 ± 3.58 90.92 ± 3.67 91.10 ± 3.95
B-CS-D 86.45 87.05 86.45 86.40 89.03 ± 3.32 89.73 ± 3.26 89.36 ± 3.70 88.87 ± 3.42
B-CS-NAM-D 86.72 87.12 86.72 86.68 89.61 ± 3.83 90.08 ± 3.44 89.82 ± 3.57 89.41 ± 3.69
B-CS-NAM 86.98 87.25 86.98 86.95 90.27 ± 3.59 91.09 ± 3.25 90.50 ± 3.71 90.11 ± 3.73

DT

B-CS 80.99 82.21 80.99 80.81 85.12 ± 4.75 83.71 ± 4.98 85.79 ± 3.72 83.81 ± 4.54
B-CS-AM 78.64 78.98 78.64 78.57 84.70 ± 3.80 85.71 ± 4.07 84.65 ± 4.16 85.1 ± 4.30
B-CS-AM-D 76.82 76.96 76.82 76.74 83.50 ± 4.91 82.30 ± 4.51 81.94 ± 5.14 80.94 ± 5.66
B-CS-AM-NAM 78.12 78.24 78.12 78.10 89.36 ± 4.22 90.09 ± 3.38 89.67 ± 3.63 90.09 ± 3.45
B-CS-AM-NAM-D 79.94 80.88 79.94 79.78 82.23 ± 5.25 81.98 ± 5.22 81.69 ± 6.33 81.14 ± 6.15
B-CS-D 81.51 81.62 81.51 81.49 82.76 ± 4.99 82.20 ± 4.94 82.35 ± 5.30 81.88 ± 5.01
B-CS-NAM-D 73.17 74.04 73.17 72.92 78.48 ± 7.05 80.01 ± 6.01 79.52 ± 6.08 79.68 ± 5.16
B-CS-NAM 76.30 76.49 76.30 76.25 98.44 ± 1.46 98.19 ± 1.65 98.29 ± 1.62 97.84 ± 2.12

LR

B-CS 83.59 84.65 83.59 83.47 84.41 ± 4.29 84.90 ± 4.25 84.38 ± 4.34 84.35 ± 4.32
B-CS-AM 86.46 88.13 86.46 86.46 85.30 ± 3.92 85.65 ± 3.87 85.24 ± 3.90 85.23 ± 3.96
B-CS-AM-D 87.24 88.13 87.24 87.16 86.18 ± 3.61 86.56 ± 3.60 86.13±.615 86.11 ± 3.61
B-CS-AM-NAM 87.76 88.70 87.76 87.68 93.04 ± 2.93 93.20 ± 2.88 93.04 ± 2.92 93.04 ± 2.92
B-CS-AM-NAM-D 86.98 87.68 86.98 86.91 88.27 ± 3.97 88.68 ± 3.88 88.27 ± 3.97 88.23 ± 3.99
B-CS-D 86.19 86.55 86.19 86.16 86.03 ± 4.59 86.64 ± 4.44 86.03 ± 4.59 85.96 ± 4.63
B-CS-NAM-D 84.37 85.03 84.37 84.30 86.86 ± 4.27 87.30 ± 4.22 86.83 ± 4.23 86.82 ± 4.29
B-CS-NAM 84.89 85.30 84.89 84.85 86.86 ± 4.27 87.30 ± 4.22 86.83 ± 4.23 86.82 ± 4.29

SVM

B-CS 88.80 89.19 88.80 88.77 93.70 ± 2.84 93.91 ± 2.76 93.70 ± 2.84 93.69 ± 2.85
B-CS-AM 90.10 90.32 90.10 90.09 92.42 ± 3.08 92.77 ± 2.93 92.42 ± 3.08 92.40 ± 3.09
B-CS-AM-D 90.36 90.41 90.36 90.35 91.31 ± 3.18 91.96 ± 3.04 91.31 ± 3.18 91.28 ± 3.21
B-CS-AM-NAM 89.84 89.87 89.84 89.84 90.69 ± 3.17 91.23 ± 3.01 90.69 ± 3.17 90.65 ± 3.20
B-CS-AM-NAM-D 88.02 88.05 88.02 88.01 90.63 ± 3.31 91.21 ± 3.22 90.63 ± 3.31 90.59 ± 3.33
B-CS-D 92.96 93.08 92.96 92.96 89.58 ± 3.49 90.06 ± 3.36 89.58 ± 3.49 89.54 ± 3.52
B-CS-NAM-D 93.23 93.35 93.23 93.22 89.30 ± 3.48 89.97 ± 3.20 89.30 ± 3.48 89.24 ± 3.53
B-CS-NAM 92.19 92.19 92.19 92.19 89.30 ± 3.48 89.97 ± 3.20 89.30 ± 3.48 89.24 ± 3.53

KNN

B-CS 78.12 82.73 78.12 77.32 84.55 ± 3.42 85.95 ± 3.25 84.55 ± 3.42 84.39 ± 3.50
B-CS-AM 78.38 82.88 78.38 77.62 84.52 ± 3.54 85.96 ± 3.39 84.52 ± 3.54 84.35 ± 3.64
B-CS-AM-D 78.12 82.73 78.12 77.32 84.52 ± 3.52 86.05 ± 3.39 84.52 ± 3.52 84.34 ± 3.61
B-CS-AM-NAM 77.08 82.11 77.08 76.14 93.71 ± 3.18 93.86 ± 3.15 93.71 ± 3.18 93.70 ± 3.19
B-CS-AM-NAM-D 77.34 84.03 77.34 76.17 83.91 ± 3.65 86.57 ± 3.12 83.91 ± 3.65 83.58 ± 3.84
B-CS-D 76.82 81.96 76.82 75.84 85.40 ± 3.31 87.67 ± 2.81 85.40 ± 3.31 85.15 ± 3.43
B-CS-NAM-D 77.08 84.28 77.08 75.81 85.06 ± 3.52 87.17 ± 2.98 85.06 ± 3.52 84.81 ± 3.66
B-CS-NAM 76.82 81.96 76.82 75.84 85.06 ± 3.52 87.17 ± 2.98 85.06 ± 3.52 84.81 ± 3.66
tasks, B-CS-NAM-D achieved the best results for the AD vs. CN
task, B-CS-AM-NAM achieved the best results for the AD vs. sMCI
task, and B-CS-AM-NAM achieved the best results for the AD vs.
pMCI task.

As can be seen from these results, the Alzheimer’s medicine
ata (AM) provided critical and discriminative features in most
asks. In addition, non-Alzheimer’s medication (NAM) had a criti-
al role in the 4-class, 3-class, and all binary tasks. As Alzheimer’s
s a complex chronic disease, patients always have many comor-
idities such as hypertension and diabetes. These comorbidity
eatures helped all classifiers to achieve the best results in the
-class task. Medically, the taken drugs for these diseases could
ffect the speed of Alzheimer’s progression. Unfortunately, there
re no studies that explore this issue in the literature. On the
ther hand, large and longitudinal datasets like ADNI have col-
ected these features. In our study, we investigated the role of
edication and comorbidity modalities and discovered a big re-

ationship between these features and the accuracy of disease
rogression detection classifiers. These features have been stud-
ed in many experiments with different complexities (i.e. 4-class,
-class, and 2-class experiments). To study the role of different
ndividual features in each experiment, we calculated the feature
mportance for each case by using two popular techniques: per-
utation importance and SHAP [40]. The importance of the first
0 features for every case is shown in Fig. 15.
Permutation importance is more accurate than the feature

mportance calculated by random forest classifiers. The RF-based
695
method was computed using the statistics derived from training
data. The highest ranks could be linked to features that are not
predictive of the target variable. SHAP values are calculated based
on the shapely values from game theory. The calculated ranks for
every task are consistent between the Permutation importance
and SHAP techniques. As shown in Fig. 15, the cognitive scores
have definitely the highest ranks for all cases and using the
two techniques. Please note that cognitive scores are also more
important than any other modalities including neuroimaging and
lab tests [23]. However, we can find other features from drugs
and comorbidities that have higher ranks compared to the de-
mographics and medical history features. we concentrate on the
comorbidity and drug modalities in this discussion. For example,
in the 4-class task, the Aricept drug has higher importance than
the geriatric depression scale, patient education, and even gender.
Further, Namenda has a high rank compared to other features,
and knowing that the patient is not taking any Alzheimer’s drugs
is more important than patient age. Please note that we se-
lected only the top 20 features out of 54 features. The same
behavior was observed for the other tasks. We observe that the
drug groups of C, H, M, A, and R have important roles in these
classification tasks. As clearly reported in all binary classification
tasks, the comorbidity modality can play a great role in improving
model performance. This observation is asserted in the calculated
feature importance for all binary tasks. For example, MHPSYCH,
MH13ALLE, MH16SMOK, and MHPSYCH all occupy a high rank.
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erformance for the CN vs. MCI task.
Model Dataset Testing performance Cross-validation performance

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF

B-CS 92.82 93.07 92.82 92.81 94.90 ± 2.90 95.01 ± 2.82 95.01 ± 2.83 94.88 ± 2.83
B-CS-AM 95.60 95.69 95.60 95.59 95.31 ± 2.54 95.47 ± 2.39 95.36 ± 2.37 95.28 ± 2.51
B-CS-AM-D 93.05 93.27 93.05 93.04 95.19 ± 2.69 95.35 ± 2.59 95.06 ± 2.73 95.05 ± 2.71
B-CS-AM-NAM 93.28 93.43 93.28 93.28 95.16 ± 2.56 95.32 ± 2.48 95.21 ± 2.45 95.26 ± 2.55
B-CS-AM-NAM-D 93.28 93.70 93.28 93.27 95.47 ± 2.52 95.38 ± 2.58 95.26 ± 2.54 95.26 ± 2.51
B-CS-D 92.59 92.61 92.59 92.59 95.67 ± 1.62 95.69 ± 1.64 95.74 ± 1.71 95.55 ± 1.63
B-CS-NAM-D 93.98 94.06 93.98 93.97 95.59 ± 2.46 95.58 ± 2.32 95.63 ± 2.26 95.49 ± 2.42
B-CS-NAM 94.67 94.71 94.67 94.67 95.63 ± 2.57 95.69 ± 2.53 95.61 ± 2.55 95.57 ± 2.50

DT

B-CS 84.48 84.83 84.48 84.45 91.95 ± 3.64 91.18 ± 4.16 91.72 ± 4.27 91.83 ± 3.91
B-CS-AM 84.02 84.37 84.02 83.98 88.81 ± 5.88 90.65 ± 5.63 90.00 ± 6.03 90.41 ± 4.66
B-CS-AM-D 78.93 79.37 78.93 78.83 86.17 ± 7.05 87.31 ± 7.37 82.87 ± 6.83 85.79 ± 7.20
B-CS-AM-NAM 86.11 86.20 86.11 86.10 89.66 ± 5.94 89.82 ± 5.39 88.79 ± 6.21 86.81 ± 6.41
B-CS-AM-NAM-D 80.55 81.05 80.55 80.45 84.70 ± 7.66 86.51 ± 5.97 86.38 ± 6.26 87.14 ± 6.93
B-CS-D 84.95 85.22 84.95 84.91 88.76 ± 5.39 87.89 ± 4.43 88.69 ± 4.88 89.06 ± 4.70
B-CS-NAM-D 86.57 86.64 86.57 86.56 86.20 ± 5.65 88.34 ± 5.48 87.95 ± 5.71 87.81 ± 5.37
B-CS-NAM 83.10 83.39 83.10 83.04 87.98 ± 6.36 87.72 ± 5.61 89.88 ± 6.03 87.89 ± 6.29

LR

B-CS 87.26 87.29 87.26 87.26 95.09 ± 2.68 95.22 ± 2.61 95.09 ± 2.68 95.08 ± 2.69
B-CS-AM 88.65 88.69 88.65 88.65 94.88 ± 2.78 95.03 ± 2.68 94.88 ± 2.78 94.87 ± 2.78
B-CS-AM-D 88.19 88.22 88.19 88.19 94.88 ± 2.79 95.03 ± 2.69 94.88 ± 2.79 94.87 ± 2.80
B-CS-AM-NAM 88.19 88.33 88.19 88.18 94.78 ± 2.79 94.91 ± 2.72 94.78 ± 2.79 94.77 ± 2.80
B-CS-AM-NAM-D 87.73 87.82 87.73 87.72 93.57 ± 3.05 93.72 ± 3.01 93.57 ± 3.05 93.57 ± 3.05
B-CS-D 88.42 88.47 88.42 88.42 94.67 ± 1.89 94.78 ± 1.88 94.67 ± 1.89 94.67 ± 1.89
B-CS-NAM-D 87.50 87.55 87.50 87.49 94.34 ± 2.50 94.42 ± 2.46 94.34 ± 2.50 94.34 ± 2.51
B-CS-NAM 87.50 87.73 87.50 87.48 95.09 ± 2.63 95.16 ± 2.61 95.09 ± 2.63 95.09 ± 2.63

SVM

B-CS 85.87 85.96 85.87 85.87 94.70 ± 2.90 94.81 ± 2.85 94.70 ± 2.90 94.70 ± 2.91
B-CS-AM 87.03 87.09 87.03 87.03 94.98 ± 2.72 95.10 ± 2.67 94.98 ± 2.72 94.98 ± 2.73
B-CS-AM-D 85.41 85.56 85.41 85.40 94.65 ± 2.61 94.79 ± 2.52 94.65 ± 2.61 94.64 ± 2.62
B-CS-AM-NAM 88.19 88.35 88.19 88.18 95.06 ± 2.23 95.19 ± 2.16 95.06 ± 2.23 95.06 ± 2.23
B-CS-AM-NAM-D 87.26 87.43 87.26 87.25 93.48 ± 2.46 93.68 ± 2.37 93.48 ± 2.46 93.47 ± 2.47
B-CS-D 83.10 83.14 83.10 83.09 95.04 ± 1.96 95.15 ± 1.92 95.04 ± 1.96 95.03 ± 1.96
B-CS-NAM-D 83.79 83.89 83.79 83.78 94.38 ± 2.18 94.45 ± 2.19 94.38 ± 2.18 94.38 ± 2.18
B-CS-NAM 89.12 89.32 89.12 89.10 95.25 ± 2.46 95.32 ± 2.46 95.25 ± 2.46 95.24 ± 2.46

KNN

B-CS 78.01 81.20 78.01 77.43 79.58 ± 3.83 82.12 ± 3.69 79.58 ± 3.83 79.14 ± 4.05
B-CS-AM 78.01 81.20 78.01 77.43 79.32 ± 3.97 82.08 ± 3.72 79.32 ± 3.97 78.84 ± 4.24
B-CS-AM-D 81.25 83.58 81.25 80.90 80.37 ± 3.96 82.73 ± 3.89 80.37 ± 3.96 79.99 ± 4.14
B-CS-AM-NAM 81.94 83.91 81.94 81.67 79.90 ± 4.83 81.70 ± 4.59 79.90 ± 4.83 79.58 ± 5.01
B-CS-AM-NAM-D 78.47 81.92 78.47 77.87 79.30 ± 5.03 81.68 ± 4.82 79.32 ± 5.02 78.88 ± 5.23
B-CS-D 79.86 82.84 79.86 79.39 80.07 ± 3.57 81.67 ± 3.41 80.07 ± 3.57 79.80 ± 3.69
B-CS-NAM-D 80.32 83.80 80.32 79.80 80.43 ± 3.95 81.94 ± 3.82 80.43 ± 3.95 80.19 ± 4.06
B-CS-NAM 78.70 82.54 78.70 78.05 79.65 ± 3.88 81.21 ± 3.64 79.65 ± 3.88 79.37 ± 4.02
These results assert that cost-effective features like drugs taken
and patient history can be used to predict the future status of a
patient with high accuracy.

Most previous studies modeled AD progression as binary clas-
ification problems (e.g. CN vs. AD [41], MCI vs. AD [18], sMCI vs.
MCI [42,43]). Westman et al. [44] utilized the MRI and CSF data
o achieve an accuracy of 91.8% for classifying AD vs. CN, this per-
ormance dropped to 71.8% for MCI vs. CN. Chincarini et al. [24]
tilized longitudinal hippocampal volume features (i.e. four time-
teps) and achieved an AUC of 0.93 for CN vs. AD and an AUC
f 0.88 for CN vs. MCI. Tangaro et al. [45] utilized baseline MRIs
nd cognitive measurement data of 372 ADNI patients to pre-
ict AD progression using SVM. From MRI features, the study
oncentrated on the role of hippocampal volume to predict AD
rogression after one year. The model handled the uncertainty
egrees that affect neuroimaging features by using fuzzy logic.
he authors trained the model using CN vs. AD classes and tested
t using the sMCI vs. pMCI task. This model achieved an AUC of
8.2%. On the other hand, some studies have modeled AD pro-
ression as a 4-class (CN vs. sMCI vs. pMCI vs. AD) classification
ask [44,46]. All of these studies achieved lower performance than
urs. For example, Yao et al. [47] used a hierarchical ensemble
nd baseline data of MRI, age, gender, and MMSE to achieve
4.38% accuracy. Amoroso et al. [48] achieved an accuracy of
6.3% using a deep neural network classifier with RF for the
eature selection step. Nanni et al. [49] achieved 52.92% accuracy
696
using a voting classifier and baseline data of MRI, age, and MMSE.
Liu et al. [50] achieved an accuracy of 51.8% based on a CNN and
baseline MRI data. Sorensen et al. [51] achieved 59.10% accuracy
using bagging and baseline data of MRI, age, gender, and MMSE.
Other studies achieved similar accuracies such as Dimitriadis and
Liparas [52] (61.90%), Ramírez et al. [53] (56.25%), and Jin and
Deng [A2](56.25%). Relaxing the 4-class problem to a 3-class one
enhances the overall performance. For example, Moore et al. [46]
achieved 73% accuracy based on an RF classifier and baseline
data of MRI and CSs. In the CADDementia challenge [12], the
best algorithm achieved an accuracy of 63.0% and, an AUC of
78.8% for AD diagnosis as a three class classification task (i.e. CN
vs. MCI vs. AD). Notice that all the best models are based on
fused datasets. To the best of our knowledge, there are no studies
in the literature which discuss the same issue or use similar
data to ours. The resulting models achieved higher results than
most state-of-the-art models in current literature [47,52–54].
Furthermore, the proposed models are cost-effective and can be
easily implemented in healthcare environments. Besides, by using
these models, patients can check at home their current situation
without the need for any neuroimaging scans.

4. Conclusion

In this paper, we investigated the role of a new cost-effective
and easy to collect set of features for the prediction of AD progres-
sion. We prepared a set of three time-series modalities consisting



S. El-Sappagh, H. Saleh, R. Sahal et al. Future Generation Computer Systems 115 (2021) 680–699

o
w
M
o
f
a
c
w

Fig. 15. Feature importance based on RF and SHAP for all cases.
f cognitive scores, medications, and comorbidities. These data
ere grouped into four time-steps (i.e., baseline, M06, M12, and
18), and used to predict AD up to M48 (i.e., within 2.5 years
f last data collection time). In addition, baseline demographic
eatures were integrated into the feature set. The raw medication
nd comorbidity modalities were spare, and each data type was
arefully preprocessed. For example, patient medications data
ere prepared based on a specific pipeline of three main steps,
697
namely (1) medical names collected and cleaned, (2) data en-
coding based on ATC ontology, and (3) semantic aggregation of
data to the most appropriate level of granularity. To study the
predictive power of these new features, we compared the per-
formance of five ML algorithms: SVM, RF, KNN, DT and LR. These
techniques were optimized to perform a 4-class classification task
of CN, sMCI, pMCI, and AD. The performance of the models was
evaluated using the 10-fold cross-validation technique. Based on
the B-CS-AM-D fused dataset, RF achieved state-of-the-art testing
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erformance (i.e., an accuracy of 90.51%, precision of 90.69%,
ecall of 90.51%, and F1-score of 90.41%). The models were also
valuated for 3-class and 2-class classification tasks, generally, RF
as found to be the most stable and accurate model. Our results
how that the fusion of medication and comorbidity features
ostly improved the performance of all models. This uncovers

he significant role of these cost-effective features in the AD
rediction domain. The proposed model is not only efficient and
asy to deploy in real medical environments but also medically
ntuitive and was able to achieve state-of-the-art performance.
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