
Research Article
A Classification Algorithm by Combination of Feature
Decomposition and Kernel Discriminant Analysis (KDA) for
Automatic MR Brain Image Classification and AD Diagnosis

Farzaneh Elahifasaee , Fan Li, and Ming Yang

Department of Instrument Science and Engineering, School of SEIEE, Shanghai Jiao Tong University, Shanghai 200240, China

Correspondence should be addressed to Ming Yang; myang@sjtu.edu.cn

Received 6 May 2019; Revised 25 September 2019; Accepted 26 October 2019; Published 30 December 2019

Guest Editor: Dimitrios Vlachakis

Copyright © 2019 Farzaneh Elahifasaee et al. /is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Magnetic resonance (MR) imaging is a widely used imaging modality for detection of brain anatomical variations caused by
brain diseases such as Alzheimer’s disease (AD) and mild cognitive impairment (MCI). AD considered as an irreversible
neurodegenerative disorder with progressive memory impairment moreover cognitive functions, while MCI would be
considered as a transitional phase amongst age-related cognitive weakening. Numerous machine learning approaches have
been examined, aiming at AD computer-aided diagnosis through employing MR image analysis. Conversely, MR brain
image changes could be caused by different effects such as aging and dementia. It is still a challenging difficulty to extract the
relevant imaging features and classify the subjects of different groups. /is paper would propose an automatic classification
technique based on feature decomposition and kernel discriminant analysis (KDA) for classifications of progressive MCI
(pMCI) vs. normal control (NC), AD vs. NC, and pMCI vs. stable MCI (sMCI). Feature decomposition would be based on
dictionary learning, which is used for separation of class-specific components from the non-class-specific components in the
features, while KDA would be applied for mapping original nonlinearly separable feature space to the separable features that
are linear. /e proposed technique would be evaluated by employing T1-weighted MR brain images from 830 subjects
comprising 198 AD patients, 167 pMCI, 236 sMCI, and 229 NC from the Alzheimer’s disease neuroimaging initiative
(ADNI) dataset. Experimental results demonstrate that classification accuracy (ACC) of 90.41%, 84.29%, and 65.94% can be
achieved for classification of AD vs. NC, pMCI vs. NC, and pMCI vs. sMCI, respectively, indicating the promising
performance of the proposed method.

1. Introduction

AD, the world’s supreme communal form of dementia,
would be projected for flourishing in the coming years.
Generally speaking, treatment for the disease would be
too financially costly, with a very poorly understood
cause; furthermore, there is no curative treatment up to
now. However, MCI would be considered a transitional
phase between age-related cognitive failing and AD. In
particular, structural kind of MRI scans would be re-
sponsible for the information around interior anatomical
structures and brain tissue morphologies similar to gray
matter (GM), white matter (WM), and cerebrospinal fluid

(CSF). Actually, early diagnosis of AD and its prodromal
stage would be a significant reason for the possible delay
of the disease; moreover, there is a great deal of interest in
new methods developed for earlier detection of this
dementia.

Generally, structural brain anomalies consider a sensi-
tive disease feature that is observable on MR brain images,
actually, one of several known biological markers of the
disease. Machine learning techniques, in particular, based on
the MR brain image are able to effectively handle the high-
dimensional features, i.e., structural MR imaging, and thus
permit the automatic AD classification [1]. However, this
strategy is widely being studied in recent years [2–6]. In the
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previous studies, feature selection (FS) approaches for
bioinformatics application have been moved from a de-
scriptive instance to model building. Most papers explored
are domains, which have up to tens of thousands of features
that are not easy to work with.

In particular, due to the high dimensionality, the clas-
sification task of neuroimaging data would be a big chal-
lenge. Generally, the FS technique could be used for the
supervised and unsupervised learning scenarios; however, in
this paper, we are just attentive on learning classification of
supervised problems. Classification difficulties would serve
more often as a design than regression difficulties, and also
only vectorial input data would be considered [6]. Recent
research studies, which would be focused on characters with
MCI, may have a conversion to the AD higher rates (amount
15% per year) than the individuals in NC [5]. Actually, there
would be many investigator’s study in which MCI would be
very early to AD, as it has been demonstrated that numerous
MCI beings have parallel patterns of the atrophy and
b-amyloid deposition when suffering from AD [6–10]. Al-
though some MCI people are clinically stable over time,
some others may have temporary normal brain structures
[7].

Nowadays, some researchers employed deep learning
for classification of neuroimaging. However, through
deep learning, it tries to fit the model by going deeper
inside the training set, and overfitting happens [8].
Generally speaking, given conversion from MCI to AD
high rates and also plentiful neuropathology previously
evident in the postmortem of the MCI [9, 10], superior
emphasis would be placed on recognizing those NC in-
dividuals who extant developing AD-like brain atrophy
patterns, which could be comparatively more than the
progress of MCI to AD [11]. As a matter of fact, docu-
mentation of such peoples at an initial phase beforehand
symptoms of clinical beginnings might lead to being in
more actual pharmacological treatment intervention for
AD as those become accessible [12, 13]. Consequently,
here, we proposed a classification algorithm of MR brain
images by a combination of feature decomposition and
KDA for MCI/AD classification.

2. Similar Studies

Generally speaking, some normal aging longitudinal re-
search studies have measured the brain variations over the
regions of interest (ROI) and also voxel-based analysis
[7–20]; moreover, they have consideration greater than
before about how dissimilar the regions of brain alteration in
the normal aging populations are. We can say that although
the entire brain or interest volumes regions would be
concentrated with the aging and AD, their individual dif-
ferences and the intersection through populations reduce
accuracy of disease diagnosis through individuals, particu-
larly at the initial stages of the disease.

/ere was a great-dimensional pattern classification
approaches development in the past years [7, 21–23] so that
suggestions are impending for achieving greatly sensitive
and also exact biomarkers of neuroimaging from the

individuals, instead of groups, that has huge significance for
the premature diagnosis and also for the management of the
individual patient. In general, these approaches use algo-
rithms related to sophisticated pattern analysis which would
be trained to recognize normal patterns or abnormal
structures and also function [22], which are used to classify
at the individual level. Actually, researchers have depicted
previously which brain atrophy three-dimensional patterns
discriminate NC and ADwith high accuracy [7]. Actually, in
most of the classification techniques, the two following steps
were included: (1) selection and discriminative features
extraction from the original neuroimaging data and (2)
optimal separating of prime hyperplane learning in the
great-dimensional feature space performing AD classifica-
tion [5]. One technique that could be used vastly would be
partitioning of the MR brain image into multiple anatomical
regions, in other words, ROIs, from side-to-side labeled atlas
warping [2–5].

Generally speaking, for selecting the most discriminative
features, the selection of a discriminative multitask feature
process would be crucial. Marginal Fisher analysis was
combined with norm-based multikernel learning for
obtaining the sparsity of ROIs, which guide to concurrently
select the subset of the relevant brain regions and also learn
dimensionality transformation [13] In addition, to the
features of ROI, deep learning networks were employed for
the hidden huge-level features extraction from the ROI
measurements for the classification of AD [2, 3, 20]. In [3],
the authors proposed using a stacked autoencoder for the
hidden huge features from ROI learning for the improve-
ment of classification performance. Even though promising
outcomes have been reported for analysis of the brain image,
there would be still some limits in ROI constructed
approaches.

Firstly, ROI explanation demands the accumulation of
works and the researcher’s long-term experience. Sec-
ondly, abnormalities in morphology caused by AD do not
every time happen in the predefined ROIs, and also they
may include multiple ROIs or extracted ROI part; in this
way, predictable and performance might not be very
constant. Actually, in the previous years, on the one hand,
numerous huge-dimensional classification approaches
have been proposed for automatically discriminating
patients with AD or MCI and also NC based on T1-
weighted MRI brain images. On the other hand, these
approaches were evaluated on the same features (for
instance, all the features would be class-specific compo-
nents or maybe they are a non-class-specific component).
For example, Moradi et al. [24] used the semisupervised
scheme for making use of data that are unlabeled for
training characteristically not much of labeled data with
so many unlabeled data and could classify MR brain
images with the low-density separation (LDS) method on
semisupervised data.

Moreover, another researcher [13] had used cortical
thickness features and by applying principle component
analysis-linear discriminant analysis (PCA-LDA) succeeded
to obtain a sensitivity of 63% and a specificity of 76% on a
group of 72 pMCI and 131 sMCI patients mentioning that
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using this approach requires lots of time; Ye et al. [25]
engaged AD and also NC subjects as the labeled data and
also subjects of MCI as the unlabeled data, a likewise pre-
dicted disease labels for the MCI cases; the authors also used
semisupervised classification. Problems through ROI fea-
tures would be potentially addressed through the voxel-wise
technique [22], in other words, extracting voxel-wise fea-
tures for classification of the image [25].

In addition, the analysis of the voxel-wise image would
be very sensitive toward the registration error and also the
variability of noise large intersubject. Meanwhile, these
limits would be relieved through smoothing the imaging
features through employing any Gaussian filter; smoothing
would be considered usually complete on the brain entirely
for all subjects uniformly and additionally, therefore, would
be not adaptive for the anatomical structures, shapes, and
abnormal regions.

More essentially, the number of voxel-wise imaging
features from the whole brain would be often very enormous
(in other words, the millions) even though the training
sample numbers would be very small (in other words, in
hundreds) in the neuroimaging field of research. /is could
create a classification technique easy to overfitting on the
training set and moreover does not generalize fine to the test
set. /erefore, how to extract the discriminative features and
classify the imaging features of high dimension through an
imperfect subject number would be still challenging for MR
brain image analysis in AD diagnosis.

3. Methodology

/is section was divided into three parts, where the first
section is about MR brain image preprocessing and feature
extraction that should be done in all MR brain imaging.
Subsequently, feature decomposition and how we divide
entire brain images to class-specific features (features with
label) and non-class-specific features (features without la-
bels) are explained in detail, mentioning that these two
groups of features are achieved by the dictionary learning
algorithm; in the end, this part ends with an MR brain image
that was applied with the feature decomposition algorithm.
Finally, in Section 3.3, we explained the classification of AD
through KDA and clarified KDA would be applied for
mapping original nonlinearly separable feature space to
linearly separable ones. Lastly, the aforementioned selected
features are classified by the nearest neighbor (NN) tech-
nique. Figure 1 shows the proposed algorithm.

3.1. Image Processing and Feature Extraction. In this work,
MR brain images of T1-weighted would be used for testing
our proposed method. In this paper, we used Matlab soft-
ware, statistics, and machine learning toolbox for imple-
mentation. /ough the proposed algorithm makes no
statement on any class-specific neuroimaging modality, the
MR imaging would be extensively obtainable, noninvasive,
and moreover often be used as the first biomarker in brain
diseases difference diagnostics caused by the memory
problems. At this work, MR imaging data of T1-weighted

would be tested, aiming at demonstrating our proposed
performance technique. Generally, in Alzheimer’s disease
neuroimaging initiative (ADNI) [26], MR imaging datasets
comprise standard MR images of T1-weighted attained
sagittal using the volumetric 3D magnetization prepared
rapid gradient echo (MPRAGE) through 1.25×1.25mm in-
plane three-dimensional resolution and 1.2mm dense sag-
ittal slices.

Note that most of these images would be achieved with
the 1.5 T scanners, and a few were developed with the use of
3 T scanners. Comprehensive information about MR brain
images gaining procedures would exist at the website of
ADNI. /e current paper comprises baseline MR brain
images of 229 NC subjects, 198 AD patients, and 403 MCI
cases (comprising 236 sMCI and also 167 pMCI subjects).
/e MR brain images are first preprocessed according to the
previous validation [3]. Precisely, inhomogeneity of in-
tensity on the T1-weighted MR brain images would be
corrected through means of the nonparametric nonuniform
intensity normalization (N3) algorithm [26]. At that mo-
ment, an automated and strong skull stripping technique
would be applied for brain extraction and cerebellum re-
moval [27]. Generally, each brain image would be addi-
tionally segmented obsessed with three tissue volumes types,
for instance, WM, GM, and also CSF volumes. Entire tissue
volumes would be normalized spatially together on a
standard space through an algorithm of mass-preserving
deformable warping [28].

In brief, warped mass-preserving tissue volumes re-
produce tissues spatial distribution in the innovative brain.
/erefore, we call these tissues of warped mass-preserving
volumes as density maps of tissue in this paper. Meanwhile,
GM would be more related to the AD and MCI cases than
WM and CSF, voxel-wise GM densities would be used as
imaging features to demonstrate the classification perfor-
mance of our proposed method. Given M training images,
with each represented by a feature vector and a respective
class label, the brain classification involves the selection step
in most relevant features furthermore by decoding step
disease conditions like the class labels.

During warping of images, the volume of tissue in any
region size would be preserved; in other words, it would be
improved if the region is compressed, and vice versa. As a
matter of fact, the tissue volume of the warped was mass-
preserving that would replicate the distribution of the three-
dimensional distribution in the imaginative brain. Actually,
we would call the volume of the tissues as tissue density maps
in current work. Meanwhile, GM would be more connected
to the AD than CSF or WM, and densities of the voxel-wise
GM are employed as features of imaging for classification of
the testing proposed technique performance of ours. Note
that only the training part of features is used for the de-
composition and classification. Table 1 demonstrates the
demographic characteristics of the studied subjects from the
ADNI dataset.

3.2. Feature Decomposition. As a matter of fact, whole brain
GM densities and voxel-wise densities that are extracted in
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the above section would be of huge dimension, which in-
cludes both noninformative and informative features, and
one way to make classification of disease easy would be by
using some techniques such as the t-test to identify dis-
criminative information from the whole brain moreover
description of result.

However, the extracted features were despoiled by some
common factors such as image capturing and processing.
Besides, the variations of these features for different subjects
may be larger than those caused by disease, which results in
large intraclass variations. /ese problems will cause a re-
duction in discrimination for the features. In this work, we
propose a decomposition of the GM density features into
class-specific and non-class-specific components based on
dictionary learning and using only class-specific compo-
nents with discriminative information for further classifi-
cation. GM densities of the whole brain are concatenated
into a column vector x; suppose there would beN samples of
training x1, . . . , xn, . . . , xN􏼈 􏼉 which fit to the C classes,
represented by X � [X1, . . . , Xl, . . . , XC] ∈ RM×N, wher-
ever N � N1 + · · · + Nl + · · · + NC and also Xl ∈ R

M×Nl

consists of Nl training samples belonging to the l-th class
(mentioning that C � 2 in this work). Except it is noted
especially distinguished, and entire feature vectors in this
work would be represented through column vectors;
moreover, ‖·‖2 means standard Euclidean norm although
‖·‖1 signifies standard L1 norm. In general, test data y could
be represented through any linear training sample combi-
nation from entire categories as follows:

y � Xα + ε, (1)

where α is the coefficient vector, which is associated with the
training samples and ε is the approximation error. For a
perfect representation, a sparsity constraint is often put on
the coefficients α. Note that if rank (y)�M�N, we would
have a distinctive perfect illustration α which leads to e� 0
on behalf of any query image y. Moreover, this could be
realized that there exists a representation αi leading to ei � 0
for any class as long as its training samples are not linear
dependent and ni≫m.

If the dictionary X is overcomplete, i.e., n >m, the
perfect representation α is not unique; i.e., there are an
infinite number of solutions α that lead e � 0. Sparse co-
efficients optimization makes the samples of training
compete against each other for achieving its test image
representation. /e sparse representation of discriminative
nature can be used for classification, i.e., the sparse rep-
resentation-based classification (SRC). However, repre-
sentation features comprise both data of class-specific and
also non-class-specific information. /us, coefficients of
nonzero that consider sparse may be related to the multiple
classes. If representation features can be decomposed into
class-specific, non-class-specific components and class-
specific components of features will have a better dis-
criminating ability for classification. /e feature de-
composition is as follows:

y � Aα + Bβ + ε, (2)

Table 1: Demographic characteristics of the standard subjects from ADNI database.

Diagnosis Number Age Gender (M/F) MMSE (mini-mental state examination)
AD 198 57.5± 7.7 103/95 23.3± 2.0
NC 229 76.0± 5.0 119/110 29.1± 1.0
pMCI 167 74.9± 6.8 102/65 26.6± 1.7
sMCI 236 74.9± 7.7 158/78 27.3± 1.8

Input images GM density map Class-specific component

Non-class-specific component

Image processing and
feature extraction

Feature 
decomposition

KDA
classification

AD/NC

Figure 1: Classification of proposed method.
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whereA denotes representation of class-specific components
and B denotes components of non-class-specific represen-
tation. /is can be achieved by dictionary learning with
training data. During the training process, the training
samples X will be decomposed into the class-specific and
non-class-specific dictionaries for better discriminative
representation as follows:

xn � Aαn + Bβn + εn. (3)

To solve the above decomposition problem, we assume
that α is an identity matrix, and the regularization of the
dictionary decomposition would be modeled as follows [29]:

min
A,B,β,E

‖A‖∗ + μ‖B‖∗ + c‖β‖2F + τ‖E‖1,

s.t. X � A + Bβ + E,

(4)

where μ, c, and τ would be parameters for balancing four
terms minimization, ‖·‖∗ denotes the nuclear norm, and the
squared Frobenius norm ‖β‖2F would be a summation of
squared L2-norms, in which βwould be a constant aimed at a
negotiation amongst α sparsity and representation error
‖e‖22. Moreover, the squared Frobenius norm ‖β‖22 would be
squared l2 norms sum and τ and λ would be parameters for
balancing the minimization of four terms. Regularization of
decomposition could be solved through minimizing two of
the four unknowns through fixed others iteratively as in [30].
/rough the above decomposition of the dictionary, we not
only learned a class-specific dictionary Amoreover any non-
class-specific dictionary B with training data but also alle-
viated the other corrupted training data errors since the
training data E random sparse noise would be removed from
two learned dictionaries. For a test data y, α, β, and ε could be
achieved by solving below optimization obstacle:

min
α,β,ε

‖α‖1 + c‖β‖22 + τ‖ε‖1,

s.t. X � Aα + Bβ + ε.
(5)

With the help of using augmented Lagrange multiplier
(ALM), the above optimization difficulty could be solved
[29, 30]. After decomposition, the class-specific component
consisting of discriminative information would be used for
classification, while the non-class-specific component will
not be considered. As mentioned above, optimization
difficulty could be solved through the ALM technique as in
[31]. After decomposition, the class-specific component
consisting of discriminative information is used for clas-
sification, while the non-class-specific component will not
be considered.

For illustration, Figures 2(a)–2(c) show feature de-
composition results of a sample GM density map, the non-
class-specific component, and also the class-specific com-
ponent, respectively. It should be mentioned that the training
data X will be decomposed into the class-specific and non-
class-specific dictionaries A and B by dictionary learning with
training data during the training process (actually,A and B are
considered as two dictionaries with labeled features and
without labeled features, respectively). After training, the test
set is also decomposed by using A and B.

3.3. AD Classification by Kernel Discriminant Analysis.
/e decomposed class-specific features (labeled features)
from entire brain densities of GMwould be still of enormous
dimensionality, compared to minor subject numbers, that
could create a classification of the disease problematic. KDA
applies the nonlinear function of the kernel to map the high-
dimensional data against the space of nonlinear discrimi-
nant which can overwhelm the variation of interclass and
also would maximize gap that exists amongst images from
dissimilar subjects. As a matter of fact, the discriminative
analysis would be assumed as the supervised arrangements
for classification and also feature extraction; moreover,
technique would be mainly used for unsupervised scenario
wherever distributions of the underlying class are situated
separated in the best criticism. On the contrary, in the real
case due to a solution number, this goal is not fulfilled.

It would be probable realizing any optimal representa-
tion through spending computational power or a certain
time. Nevertheless, with the limited considering time and
also resources, it would be normally incredible to account for
the entire possible feature linear combinations. Other re-
searchers [31, 32] recommended using a sparse principal
component algorithm (SPCA) through the use of the “elastic
net” framework for regression of L1 penalized on ordinary
PCA which was solved so professionally by employing least-
angle regression (LARS) [33, 34]. Other researchers in
[14, 33–36] proposed spectral limits outline for sparse to the
subspace learning. Predominantly, it can be proposed for
both greedy and exact algorithms for sparse LDA and PCA.
Actually, the kernel projective function subspace learning
would be written as below:

f(x) � αT
K(:,x) � 􏽘

m

i�1
αiK xi, x( 􏼁􏼂 􏼃. (6)

Commonly speaking, at normal subspace learning of the
kernel algorithm, αi mostly would be considered nonzero.
Moreover, the projective function would be reliant on entire
samples which belong to the training set. From this aspect,
the algorithm of sparse kernel subspace learning would share
the same support vector machine (SVM) knowledge [33, 34].
Moreover, these with nonzero αi samples could also be called
support vectors. Generally speaking, one of the benefits
would be that it requires less loading time, and obviously,
fewer amount of time is the required amount of time which
considered computational demanded for the testing period.
Following [34–36], sparse regression KDA (SRKDA) could
be shown as follows:

Max
αtKWKα
αtKKα

subjecting to the card(α) � K. (7)

/e possible set would be all sparse α ∈ Rm, that is, with
the k basics of nonzero also cad (α) as their L0-norm. /is
optimization obstacle would not be so easy for solving as it
would be nondeterministic polynomial (NP) hard. Previous
researchers in [14, 33, 34] recommended any spectral bound
framework for the learning of sparse subspace. Mostly, they
advocated both exact algorithms and also greedy algorithms
for sparse PCA moreover sparse LDA. Actually, their
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bounds of the spectral framework would be grounded on
following perfect sparse solution condition. It is defined as
A �KWK and also B �KK for the sake of ease. Any vector
of the sparse α ∈ Rm with cardinality k yielding objective
value of that would be maximum in equation (7) that leads
to that

λmax �
αTAα
αTBα

�
βTAkβ
βTβkβ

. (8)

Generally speaking, β ∈ Rk, where k is the components
of nonzero in the α and also k × k submatrices of principle
which are related to A and also B achieved through re-
moving rows and columns approaching toward zero α
indices.

It is worth mentioning that the β quadratic form that is
assumed to be k dimensional would be equal toward a
standard unconfined generalized Rayleigh proportion, which
could be answered through eigenproblem generally. /e
precise algorithm for subspace learning could be attained by
the overhead observation: discrete research for k indices
creates subproblem (Ak, Bk)λmax maximum though this
observation owns no well-organized algorithm. /e reason
for that would be because a comprehensive search would be
still NP hard. Some previous researches [14, 33, 34] proposed
an effective greedy algorithm for solving this obstacle which
associates background removal and also forward selection
[14, 33–35]. Moreover, as KDA uses the Lasso regularization

technique because of L1 penalty natural surroundings, some
of the coefficients αi would be shrunk for exaction zero if δ
would be considered large enough. /erefore, we could
conclude that could be what we require exactly.

Dissimilar from SRC or LDA which solitarily uses the
distance of L2-norm, KDA could exploit dissimilar distance
measures with the kernel functions for also dissimilar fea-
tures. /rough selecting the suitable kernel, KDA perfor-
mance would be enhanced than LDA and SRC. In this work,
we employ a discriminative spectral regression kernel
analysis (SRKDA) that anticipated in for the final classifi-
cation due to its computational efficiency. /e Gaussian
kernel would be selected in our experiments. SRKDA per-
forms the discriminant analysis by use of spectral graph
analysis and regularization [37–39].

4. Results

In brief, here, we would first present ADNI datasets of images
moreover the implementation of our proposed method; af-
terward, we would have a discussion of our result, and finally,
we compare our method with the earlier techniques.

4.1. Experimental Results. Firstly, it is a brief information
about participants in Table 1 based on their number, age,
gender, andMMSE (mini-mental state examination). At that
point, we would extant the extensive experiments for testing
the proposed technique on the pMCI vs. NC and AD vs. NC

(a) (b) (c)

Figure 2: Decomposition of (a) a sample input GM density map into (b) the component of non-class-specific (without labeled features) and
(c) component of class-specific (labeled features).
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and also classification of pMCI vs. sMCI; moreover, we
would in addition do comparison of our proposed scheme
with the other procedures that can be found in the various
available literatures and also make some discussion. Actu-
ally, in this section, we would indicate the extensive ex-
periments performed for testing the proposed classification
process on pMCI vs. NC and AD vs. NC and also pMCI vs.
sMCI classification. As a matter of fact, this technique on T1-
weighted MR brain images of the ADNI database would be
from 262144 features which include 830 subjects counting
198 patients of AD and also 167 pMCI, 236 sMCI, and 229
NC for evaluation.

In fact, the image processing would be conducted for
the feature extraction as illustrated on image processing
and feature extraction section. /e MR brain images are
automatically cerebellum-removed and skull-stripped
[34]. As declared before, all brain images would be further
segmented to the 3 kinds of tissue, for instance, GM, WM,
and also CSF volumes. Subsequently, an intensity in-
homogeneity correction on the entire specific volume of
tissues could be normalized spatially unmoved against
normal space (known as stereotaxic space) through the
algorithm of a mass-preserving deformable warping
which was proposed in [39].

Volumes of warped mass-preserving tissue replicate three-
dimensional tissue distribution in the innovative and basic
brain. As a matter of fact, we can know these tissue density
maps of warped mass-preserving tissue volumes here. It could
be said that the volumes of the tissue that were three-di-
mensionally normalized would be known as tissue densities in
the current paper; also here, we employ only the GM density
map by imaging features because of its dependency more to
the AD. To decrease the effects of noise, inaccuracy of reg-
istration, and also anatomical differences of interindividual,
the GM density map would be further smoothed with the help
of the Gaussian filter and downsampled from 256× 256× 256
to 64× 64× 64 voxels through a factor of 4. /e voxel size is
4× 4× 4mm. /e downsampled GM density map would be
employed for the feature decomposition and classification.
/is could decrease the computational and memory costs
deprived of sacrificing accuracy.

In brief, for evaluating the performance of classifi-
cation, cross-validation of 10-fold approach was
employed for training and testing our proposed scheme
and to decrease influences of random factors. Every time,
only one dataset fold would be employed for the testing;
meanwhile, the other folds would be employed for
training. In our experimental outcomes, some perfor-
mance measures of classification would be employed for
the ACC for evaluation comprising sensitivity (SEN),
specificity (SPE), and also the area under the curves
(AUCs). Actually, ACC would be calculated by classi-
fying correct subject amongst all populations. SEN would
be calculated as the amount of correctly classified pos-
itive samples (AD subjects) amongst the samples of the
positive total number. SPE would be calculated as the
appropriately classified samples of negative (NC sub-
jects) proportion amongst whole negative sample
numbers.

/e first experiment (Table 2) would be the result of
comparison of the feature decomposition, KDA, and also
the proposed technique for classification of pMCI vs. NC.
For testing the feature decomposition performance, we
employed the L1-regularized SRC on decomposed features
for making the classification. For testing KDA perfor-
mance, we directly apply the KDA on the GM densities
deprived of feature decomposition for making the clas-
sification. Table 3 demonstrates performance comparison
through aforementioned schemes aimed at AD vs. NC
classification. Table 4 indicates classification perfor-
mances comparison through these different methods for
classification of pMCI vs. sMCI. Actually, Table 5 compare
classification performances of three methods (LDA, SRC,
and SVM) with the proposed method ACC for AD vs. NC
case.

Figure 3 depicts the comparison result of feature de-
composition, KDA, and proposed a method for AD vs. NC
classification. Note that all results in our paper have been
tested on publicly available datasets based on ACC, SEN,
SPE, and AUC. Figure 4 shows the proposed method result
based on ACC, SEN, SPE, and AUC parameters. Further-
more, Figure 5 shows the comparison results of the feature
decomposition, KDA, and proposed method for classifica-
tion of pMCI vs. NC cases. Since our MR image data are
same as those in [5], the results of SVM and SRC in [5] are
presented for comparison in Table 5. For LDA, we imple-
ment it through Matlab, statistics, and machine learning
toolbox.

Figure 3 compares the classification accuracy for AD vs.
NC with feature decomposition, KDA, and proposed
technique. Moreover, Figure 4 shows classification accuracy
by a proposed method based on ACC, SEN, SPE, and AUC
parameters.

Figure 5 compares pMCI vs. NC classification based on
ACC, SEN, SPE, and AUC parameters by feature de-
composition, KDA, and proposed a method, while Figure 6
shows the proposed technique classification based on ACC,
SEN, SPE, and AUC parameters.

Figure 6 shows the pMCI vs. NC classification based on
ACC, SEN, SPE, and AUC parameters. Furthermore, Fig-
ure 7 depicts the comparison results of the feature de-
composition, KDA, and proposed technique for
classification of pMCI vs. NC. Figure 8 shows the results of
proposed method in comparison with the other methods
(LDA, SRC, and SVM) and with the proposed method for
AD vs. NC.

In addition, Figure 9 compares the results of the pro-
posed method with the aforementioned methods for AD vs.
NC classification results, while Figure 10 depicts the clas-
sification of pMCI vs. NC based on ACC, SEN, SPE, and
AUC parameters and Figure 11 the results of the proposed
method in comparison with the other methods (LDA, SRC,
and SVM) for pMCI vs. NC. Moreover, Figure 12 shows
identified biomarkers of GM density map by using the t-test
(a) before and (b) after feature decomposition for AD vs. NC
classification. Figure 13 demonstrated identified biomarkers
of the GM density map by using the t-test (a) before and (b)
after feature decomposition for pMCI vs. NC classification,

Computational and Mathematical Methods in Medicine 7



and Figure 14 illustrates identified biomarkers of the GM
density map by using the t-test (a) before and (b) after
feature decomposition for pMCI vs. sMCI classification.

Tables 6 and 7 compare the classification results to those
of classification of existing approaches for pMVI vs. NC and
also pMCI vs. sMCI. SRC was applied for AD classification
in [5]. Since our MR image data are the same as those in [5],
the results of LDA, SRC, and SVM1 reported in this paper
are presented for comparison in Table 5. We applied all of

implementation using the Matlab functions, statistics, and
machine learning toolbox.

4.2.Discussion. Here, we would have evaluated the proposed
method performance of classification with the 830 obser-
vations of MR images, developed from the ADNI study./is
work proposes a new algorithm for the classification tech-
nique created from a combination of feature decomposition
and KDA for automated classification of MR images for
pMCI vs. NC, AD vs. NC, and pMCI vs. sMCI classification.
SEN, SPE, and AUC parameters mention that all SVM that
were used in this paper is radial basis (RBF) kernel SVM,
while Figure 11 shows the proposed method classification
accuracy for pMCI vs. NC.

Feature decomposition based on dictionary learning
would be used to separate the class-specific components and
non-class-specific components in the features, while the
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Figure 4: Proposed method results.
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Figure 5: Comparison results of the feature decomposition of
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Figure 3: Comparison result of the feature decomposition, KDA,
and the proposed method for classification accuracy of AD vs. NC.

Table 5: Results of the proposed method comparison and other
methods for AD vs. NC.

Methods ACC (%) SEN (%) SPE (%) AUC (%)
LDA 87.60 82.89 91.64 92.89
SRC [5] 87.83 80.84 93.85 89.77
SVM1 [5] 84.57 72.82 94.76 91.40
Proposed method 90.41 84.37 95.63 93.83

Table 4: Results comparison of the feature decomposition, KDA,
and the proposed method for classification of pMCI vs. sMCI.

Methods ACC (%) SEN (%) SPE (%) AUC (%)
Feature decomposition 63.46 45.45 76.66 61.32
KDA 63.45 49.29 73.78 68.22
Proposed method 65.94 81.44 54.69 71.02

Table 3: Results comparison of the feature decomposition, KDA,
and the proposed method for classification of AD vs. NC.

Methods ACC (%) SEN (%) SPE (%) AUC (%)
Feature decomposition 88.08 80.87 94.31 92.73
KDA 88.07 80.84 94.31 93.42
Proposed method 90.41 84.37 95.63 93.89

Table 2: Results comparison of the feature decomposition, KDA,
and also the proposed technique for classification of pMCI vs. NC.

Methods ACC (%) SEN (%) SPE (%) AUC (%)
Feature decomposition 82.68 76.9 86.88 83.59
KDA 72.59 55.88 84.78 77.91
Proposed method 84.29 90.4 79.85 83.54
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KDA would be applied for mapping imaginative nonlinearly
separable features space to linearly separable one. Note that
we have used brainMR images of the whole brainmeanwhile
by applying the t-test on features for selecting some features
that were related to AD.

4.3. Results Comparison. Table 8 indicates a comparison
between our proposed classification method results and the
previous approaches. In general, Mistra et al. [40] attained
high extrapolative enactment for the sMCI vs. pMCI clas-
sification. On the contrary, in the research study by Misra
et al., datasets (27 pMCI and 76 sMCI) were so small

compared to the existing researches which make the com-
parison not easy with the other researches. Moreover, in
[41], researchers claim that they achieved fast protein
similarity search tool for short reads. Other researches in
[42] employed 53 AD, 53 NC, and also 237 MCI subjects.
/e authors employed the labeled data for both the AD and
NC and also MCI as unlabeled data and projected disease,
and they could achieve 53.3%.

In addition, other researchers [1] could achieve 79.4%,
with goal of extradomain information that learned from
AD and NC. Another researcher [43] employed AD and
NC subjects as labeled data and also MCI subjects as
unlabeled data and predicted disease labels for MCI cases.
In all of these researches, development in the predictive
performance of the model was great over supervised
learning. Furthermore, by using voxel-stand-D GM fea-
tures and SVM classifier that other researchers used in
2011 [1], we succeeded to achieve 70.40% for pMCI vs.
sMCI by having 76 pMCI and 144 sMCI patients. While
the GM feature of ROIs and SVM classifier achieved the
classification accuracy of 62% for pMCI vs. sMCI on 43
pMCI and 48 sMCI patients in [1]. Actually, Wolz et al.
[44] could achieve 68% of pMCI vs. cMCI on 167 pMCI
and also 238 sMCI patients by using LDA classification
and used them from four MR features. However, other
scientists in 2011 [45] succeeded to achieve 72% for the
classification of pMCI vs. sMCI and 86% for AD vs. NC
classification of subjects by use of 54 pMCI and 115 sMCI
of MR images.
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Figure 9: Diverse results of comparison.
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Figure 7: Comparison results of the feature decomposition, KDA,
and also the proposed technique for classification of pMCI vs. NC.
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Figure 10: Results of proposed method comparison and other
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Figure 11: Results of proposed method comparison and other
methods for pMCI vs. NC.
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(a) (b)

Figure 12: Identified biomarkers of GM density map by using the t-test (a) before and (b) after feature decomposition for AD vs. NC
classification.

(a) (b)

Figure 13: Identified biomarkers of GM density map by using the t-test (a) before and (b) after feature decomposition for pMCI vs. NC
classification.

(a) (b)

Figure 14: Identified biomarkers of GM density map by using the t-test (a) before and (b) after feature decomposition for pMCI vs. sMCI
classification.
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In 2013, Gaser et al. [46] established BrainAGE would be
constructed on MRI data for approximating ages of subjects;
moreover, mentioning the differences among actual and also
estimated age, subjects would be classified into the pMCI or
sMCI groups. Besides, they also displayed BrainAGE

overtook all cognitive measures and also CSF biomarkers in
predicting the conversion ofMCI to the ADwithin 3 years of
development. Meanwhile, in 2013, Eskildsen et al. [47]
likewise studied MRI biomarker predictive performance in
the MCI patients by separating pMCI subjects to the several

Table 7: Results of the proposed method compared with other techniques for pMCI vs. sMCI.

Methods ACC (%) SEN (%) SPE (%) AUC (%)
LDA 63.31 63.04 70.84 65.80
SRC [5] 64.68 63.87 65.21 66.18
SVM1 [5] 64.08 74.35 56.59 69.94
Proposed method 65.94 81.44 54.69 71.021
1It would be a radial basis (BF) kernel SVM.

Table 6: Results of proposed method comparison and other methods for pMCI vs. NC.

Methods ACC (%) SEN (%) SPE (%) AUC (%)
LDA 83.64 78.56 87.33 81.54
SRC [5] 81.23 83.15 79.79 83.27
SVM2 [5] 83.43 88.76 79.50 83.75
Proposed method 84.29 90.4 79.85 83.54

Table 8: Comparison between the proposed classification and previous results.

Methods Subjects Modalities
AD vs.
NC
(%)

pMCI
vs.

sMCI
(%)

pMC
vs.

NC (%)

pMCI
vs.

AD (%)

Baseline and also longitudinal patterns of the
brain [40] 27 pMCI, 76 sMCI MRI — 81.5 — —

Pattern classification using baseline
measurements [42] 53 AD, 53 NC, 237 MCI MRI — — — 53.3

Voxel_stand_D GM features and
SVM classifier [1] 76 pMCI, 134 sMCI MRI — 70 70.40 —

ROI GM feature and via SVM classifier [43] 51 AD, 52 NC, 99 MCI MRI 62

ROI GM feature and via SVM [44] 198 AD, 231 NC, 167 pMCI, 238
sMCI MRI 64.68 82.76 —

Koikkalainen et al. [45] 54 pMCI, 115 sMCI MRI 86 72 — —
BrainAGE framework [46] 188 NC, 171 NC, 133pMCI, 62 sMCI MRI — 75 — —
Separating pMCI subjects from different
individuals [47] 61 pMCI, 134 sMCI MRI 66.7

Casanova et al. [48] 188 NC, 171AD, 153 pMCI, 182
sMCI MRI 81.4 61.5 63 —

Data-driven ROI [49] 97 AD, 128 NC, 117 pMCI, 117
sMCI MRI — 73.69 — —

Tong and Gao [50] 191 AD, 229 NC, 161 pMCI, 100
sMCI MRI 76 — — —

Combining MRI data with cognitive test
results MRI [24] 53 AD, 53 NC 237 MCI MRI — — — 61

Discriminative multitask feature selection
method [51] 51AD, 52 NC, 99 MCI MRI 87.2 53.68 68.02 —

Inherent structure-based multiview learning
method [52] 97AD, 128 NC, 117 pMCI, 175 sMCI MRI 92.51 78.88 — —

Explicitly modeling structural information in
the multitemplate data [53]

97 AD, 128 NC, 117 pMCI, 175
sMCI MRI 93.6 79.25 — —

Proposed method 98 AD, 229 NC, 167 pMCI, 236
sMCI MRI 90.40 65.04 84.33 58.93

Computational and Mathematical Methods in Medicine 11



individuals, in other words, pMCI24, pMCI12, and also
pMCI36, and then, they estimated MRI biomarker enact-
ment in every set disjointedly. As a fact, in 2013, Casanova
et al. [48] used 188 of NC subjects with 171 of AD, 153 pMCI,
and 182 sMCI patients, and they could achieve 62% for AD
vs. NC classification, while Min et al. in [49] by using data-
driven ROI could obtain 73% for pMCI vs. sMCI by
employing 117 pMCI and 117 sMCI cases. Tong and Gao in
[50] succeeded to obtain 76% for AD vs. NC classification.
Moreover, Moradi et al. [24] have employed 53 AD, 53 NC,
and 237 MCI via applying LDS classifier and have used these
combining MRI data with cognitive test results MRI and
could achieve 61% to the pMCI vs. AD classification.
However, at 2016, Ye et al. [51] also employed 51 AD, 52 NC,
and 99 MCI patients and have succeeded to attain ACA of
AD vs. NC to 87.26% and also pMCI vs. NC to 68.02% and
53.68% for the pMCI vs. NC. Moreover, the authors in
[52, 53] by using 128 NC, 97 AD, 117 pMCI, and also 175
sMCI passes could achieve 79% for the task of classification
of AD vs. NC, noting that MRI was used for modality.

Moreover, there is a systematic review of all literature on
machine learning of neuroimaging for assisted diagnosis of
MCI and dementia from 2006 to the end of 2016 in [54].
Furthermore, in [55], genetic algorithm and feature ranking
was used for analyzing structural MR images and prediction
of MCI to AD from 1 to three years before clinical diagnoses.
Moreover, Haller et al. [56] reviewed the basics of pattern
recognition comprising a selection of feature, cross-vali-
dation, and classification methods and explained restriction,
comprising an individual change in NC cases. Last but not
least, based on MRIs, we have proposed a classification
technique by combining feature decomposition and KDA
for AD diagnosis and predicting MCI to AD patients. /e
experimental results and also comparison indicate the
promising performance of the proposed method.

/e proposed method also intends for improving disease
clarification in informative identification biomarkers which
are associated through AD status. Generally, we examine the
features of selected imaging through the proposed algo-
rithm. Note that feature selection would be performed on
training data only. In addition, Figures 12–14 show how the
proposed algorithm can discriminate AD by applying the t-
test before and after feature decomposition on brain MR
images, for AD vs. NC, pMCI vs. NC, and pMCI vs. sMCI
classification, respectively.

Furthermore, after doing some preprocessing as
mentioned before on MR brain images, feature de-
composition was applied on whole MR images of the brain;
meanwhile, the t-test was applied on those images, and we
see that result of those image would signify the features that
are more related to AD; so we see that combination of t-test
and feature decomposition can perform as a good AD
biomarker.

5. Conclusions

/e current paper proposed a technique of classification
through combining feature decomposition and KDA for AD
diagnosis through the help of MR images. At first, MR images

are processed to extract the GM densities as the imaging fea-
tures. /en, to reduce intraclass feature variations, dictionary
learning is applied to decompose the features into the class-
specific and non-class-specific components, and only the class-
specific component of the features is used for classification.
Finally, KDA is applied for mapping high-dimensional space of
feature toward a linearly separable one for classification. Ad-
ditionally, our proposed technique could make available an
influential and also effective way for identification of more
significant biomarkers for classification of brain disease. /e
proposed technique would be evaluated with MR images of T1-
weighted for 830 subjects including 198 AD, 167 pMCI, 236
sMCI, and 229 NC from the ADNI database. /e experimental
and comparison results indicate the promising performance of
the proposedmethod. Our result in the biomarker also indicates
that the proposed scheme could not only be used as a good
biomarker but also could enhance the classification of brain
disease.
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