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ABSTRACT

Objective: Longitudinal MRI studies are often subjected to mid-study scanner changes, which may alter image characteristics such as contrast, signal-to-noise ratio,
contrast-to-noise ratio, intensity non-uniformity and geometric distortion. Measuring brain volume loss under these conditions can render the results potentially
unreliable across the timepoint of the change. Estimating and accounting for this effect may improve the reliability of estimates of brain atrophy rates.

Methods: We analyzed 237 subjects who were scanned at 1.5 T for the Alzheimer's Disease Neuroimaging Initiative (ADNI) study and were subject to intra-vendor or
inter-vendor scanner changes during follow-up (up to 8 years). Sixty-three subjects scanned on GE Signa HDx and HDxt platforms were also subject to a T1-weighted
sequence change from Magnetization Prepared Rapid Gradient Echo (MP-RAGE) to Fast Spoiled Gradient Echo with IR Preparation (IR-FSPGR), as part of the
transition from ADNI-1 to ADNI-2/GO. Two-timepoint percentage brain volume changes (PBVCs) between the baseline “screening” and the follow-up scans were
calculated using SIENA. A linear mixed-effects model with subject-specific random slopes and intercepts was applied to estimate the fixed effects of scanner hardware
changes on the PBVC measures. The same model also included a term to estimate the fixed effects of the T1-weighted sequence change.

Results: Different hardware upgrade or change combinations led to different offsets in the PBVC (SE; p): Philips Intera to Siemens Avanto, —1.81% (0.30; p < 0.0001);
GE Genesis Signa to Philips Intera, 0.99% (0.47, p = 0.042); GE Signa Excite to Signa HDx, 0.33% (0.095, p = 0.0005); GE Signa Excite to Signa HDxt, —0.023% (0.23,
p =0.92); GE Signa Excite to Signa HDx to Signa HDxt, 0.25% (0.095, p=0.010) and 0.27% (0.16, p = 0.098), respectively; GE Signa HDx to Signa HDxt, —0.24%
(0.25, p = 0.34); Siemens Symphony to Symphony TIM, —0.39% (0.16; p = 0.019). The sequence change from MP-RAGE to IR-SPGR was associated with an average
—1.63% (0.12; p < 0.0001) change.

Conclusion: Inter-vendor scanner changes generally led to greater effects on PBVC measurements than did intra-vendor scanner upgrades. The effect of T1-weighted
sequence change was comparable to that of the inter-vendor scanner changes. Inclusion of the corrective fixed-effects terms for the scanner hardware and T1-weighted
sequence changes yielded better model goodness-of-fits, and thus, potentially more reliable estimates of whole-brain atrophy rates.

1. Introduction

Measuring brain atrophy using magnetic resonance imaging (MRI) is
a topic of significant interest in the study of neurological disorders such
as Alzheimer's disease (AD). These diseases result in a range of patho-
logical processes that lead to progressive neuronal, axonal, and dendritic
degeneration, and ultimately, central nervous system (CNS) tissue atro-
phy (Jack et al., 2013). For example, a longitudinal MRI study has re-
ported that the annualized rates of volume loss in the whole-brain (WB)
and hippocampus were on average more than two-fold and four-fold
higher, respectively, in AD patients compared to age-matched healthy
controls (Leung et al., 2013). Indeed, higher rates of brain volume loss in

patients with AD or mild cognitive impairment (MCI) are associated with
higher rates of decline in cognitive measures (Evans et al., 2010). For
these reasons, MRI measures of brain volume change are widely recog-
nized as markers of progression of neurodegeneration (Frisoni et al.,
2010).

Various technical factors can influence MRI-based brain volume
change measurements, especially when calculating longitudinal changes
using serial images. For example, head motion (Preboske et al., 2006),
inconsistent image contrast (Preboske et al., 2006), different levels of
noise (Preboske et al., 2006), gradient non-linearity (Takao et al., 2010),
intensity non-uniformity (Takao et al., 2010), inconsistent subject posi-
tioning (Caramanos et al., 2010), number of head coil channels (Krueger
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et al., 2012), and choice of image analysis methods (Nakamura et al.,
2014; Popescu et al., 2016) all can affect measurement outcomes. Several
single-site studies have investigated the effects of varying acquisition
protocols on MRI outcomes. For example, Preboske and colleagues
showed in a scan-rescan study that 1) implementing different flip angles
and 2) switching from conventional to fast spoiled gradient echo (SPGR)
sequence resulted in significant brain volume differences (Preboske et al.,
2006). Han and colleagues showed that the average cortical thickness
variability did not change significantly across an intra-vendor scanner
upgrade from Siemens Sonata 1.5T to Avanto 1.5 T (Han et al., 2006).
However, different pulse sequences and image processing pipelines led to
poorer scan-rescan reproducibility (Han et al., 2006).

Notably, Jovicich and colleagues assessed the effect of scanner
vendor on brain volumes obtained with FreeSurfer. A scan-rescan
analysis with Siemens Sonata 1.5T and GE Signa 1.5 T showed that
several structures had non-zero bias in the mean volume difference.
Also, depending on the structure, the Sonata-Signa test set had bias in
the mean volume difference compared to the Siemens Sonata scan-
rescan reference. The authors noted that these effects need to be
considered in longitudinal studies in which the effects of interest can be
subtle (Jovicich et al., 2009).

The issue may become more significant when multiple MRI scanners
are used, such as in a multi-center trial or when a significant mid-study
change in the scanner occurs. For example, Kruggel and colleagues
demonstrated that different 1.5 T and 3.0 T scanner platforms provide
different levels of image quality, as measured by signal-to-noise ratio
(SNR), contrast-to-noise ratio (CNR), and mutual information of the
joint histogram, and that these affected brain volume measurements
(Kruggel et al., 2010). Therefore, interpretation of data from multiple
scanning platforms must be done carefully since the effect of the plat-
form change may confound the true effects of interest. Yet, despite the
complexity, multi-center studies have important advantages of being
able to recruit a larger number of participants across a wider range of
population, and to increase the generalizability of the findings. Direct
comparison of the MRI data acquired from multiple scanners, however,
is likely more reliable when the data have been acquired in a similar
manner using similar field strength and acquisition parameters.
Recognizing this, a number of multi-center studies have implemented
harmonized imaging protocols in order to reduce measurement vari-
ability due to protocol differences (Cannon et al., 2014; Mueller et al.,
2005; Shinohara et al., 2017).

The Alzheimer's Disease Neuroimaging Initiative study (ADNI) is a
longitudinal, multi-center study that acquired MRI data using a variety of
1.5 T and 3.0 T scanners from General Electric (GE), Siemens, and Philips
(Jack et al., 2015). In particular, the study focused on designing and
implementing standardized acquisition methods, as well as performing
centralized image post-processing and quality control (Jack et al., 2015).
These qualities make ADNI a suitable dataset to test the hypothesis that a
change in the scanning platform can bias WB volume change measure-
ments, and estimate the magnitude of this effect between unique pairs of
MRI scanners. To do this, we identified all subjects from the ADNI-11.5T
study who had any MRI scanner change or upgrade during the follow-up.
Also, we identified a subset of subjects who had a T1-weighted sequence
change during the follow-up. Then, we used a linear mixed-effects (LME)
model to estimate the rates of WB atrophy, as well as the effects of
different MRI scanner changes or upgrade combinations and
T1-weighted sequence change on percentage brain volume change
(PBVC) measurements.

2. Methods
2.1. Data acquisition
The Alzheimer's Disease Neuroimaging Initiative (ADNI) was

launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
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to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer's dis-
ease (AD). Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu) on 2015-01-21. Detailed MRI
protocols are reported on the ADNI protocol website: (http://adni.loni.
usc.edu/methods/documents/mri-protocols).

2.2. Subject selection

We started with N=819 subjects (screening diagnosis,
Normal = 229, MCI = 401, AD = 189; baseline diagnosis, Normal = 229,
MCI =398, AD = 192) officially enrolled in ADNI-1, who had baseline
and follow-up visits conducted on 1.5T scanners using the ADNI-
specified 3-dimensional (3D) Tl-weighted magnetization-prepared
rapid gradient-echo (MP-RAGE) sequence. Subject demographics are
shown in Table 1. A subset of these subjects continued with 1.5 T MRI
during the ADNI-Grand Opportunity (GO) and ADNI-2 phases. N = 818 of
these subjects coincided with the 1.5T ADNI-1 standard “screening-
visits” dataset reported by Wyman and colleagues (Wyman et al., 2013).
We excluded N = 46 subjects with only a single timepoint. For the
remaining N = 773 subjects, the MRI scanner vendor (GE, Siemens,
Philips) and the scanner model were identified for each timepoint.
Scanner change was noted if the scanner models used during any of the
follow-up timepoints did not match those of the baseline scan. Accord-
ingly, N = 271 (Normal = 80, MCI = 141, AD = 50) subjects had scanner
upgrades or changes (referred to as “Chg+” subgroup) versus N = 502
(Normal = 138, MCI = 241, AD = 123) who did not (referred to as “Chg-"
subgroup) (Tables 2 and 3). Each timepoint had two back-to-back
MP-RAGE scans, and we analyzed the first scan whenever possible.

2.3. MRI scanner information

Baseline scans were distributed between scanners as follows: GE
(N =381, 49.3%), Siemens (N=294, 38.0%), and Philips (N=98,

Table 1
Basic subject demographics — ADNI 1.5 T.
Characteristics All subjects Normal Mild Alzheimer's
(N=773) control cognitive disease
subjects impairment subjects
(N=218) subjects (N=173)
(N=382)

Mean age at 75.3 (6.8) 76.0 (5.1) 74.9 (7.3) 75.2 (7.6)
baseline (SD)  [55.2-91.0] [60.0-89.7] [55.2-89.4] [55.2-91.0]
[range], yr

Sex, 322:451 104:114 137:245 81:92
Female:Male

Subjects with  Normal Mild Alzheimer's
no scanner control cognitive disease
change or subjects impairment subjects
upgrade (N=138) subjects (N=123)
(N=502) (N=241)

Mean age at 75.3 (7.0) 76.0 (5.6) 74.9 (7.3) 75.2(7.7)
baseline (SD) [55.2-91.0] [60.0-89.7] [56.2-89.4] [55.2-91.0]
[range], yr

Sex, 211:291 64:74 89:152 58:65
Female:Male

Subjects with  Normal Mild Alzheimer's
scanner control cognitive disease
change or subjects impairment subjects
upgrade (N =80) subjects (N =50)
(N=271) (N=141)

Mean age at 75.3 (6.5) 76.1 (4.0) 75.0 (7.3) 75.1 (7.5)
baseline (SD) [55.2-87.8] [70.0-87.7] [55.2-87.8] [56.7-85.6]
[range], yr

Sex, 111:160 40:40 48:93 23:27

Female:Male
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Table 2
MRI scanner information for subjects without MRI scanner change or upgrade.

Subjects with no MRI scanner change or upgrade

Baseline 1.5T Total Number of Number of Number of
MRI scanner number of normal MCI Alzheimer's
models subjects control subjects disease subjects
(Total subjects (Total (Total N=123)
N=502) (Total N=241)
N=138)
GE Genesis 38 10 21 7
Signa
GE Signa 117 33 47 37
Excite
GE Signa HDx 10 5 5
Siemens 56 18 25 13
Avanto
Siemens 84 22 45 17
Sonata
Siemens 6 1 4 1
SonataVision
Siemens 108 31 55 22
Symphony
Philips 19 5 10 4
Achieva
Philips Intera 64 18 29 17

12.7%). A scanner change affected subjects who started scanning on one
of seven scanner models distributed as follows: GE (N =216, 79.7%),
Siemens (N = 40, 14.8%), and Philips (N =15, 5.5%). Thirteen combi-
nations of inter- or intra-vendor scanner upgrade or change occurred. The
majority of the cases involved GE scanners (Table 3). Fig. 1 shows an
example pair of images acquired from a single subject using two different
scanners from two different vendors (i.e. an inter-vendor scanner
change). Similarly, Fig. 2 provides an example from two scanning plat-
forms from a single vendor (i.e. an intra-vendor upgrade).

Table 3
MRI scanner information for subjects with MRI scanner change or upgrade.
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2.4. 3D T1-weighted sequence information

All Siemens and Philips scanners used the MP-RAGE sequence. It
should be noted that GE scanners used a “work-in-progress” version of
MP-RAGE during the ADNI-1 phase, and then switched to a GE product
Fast Spoiled Gradient Echo with IR Preparation (IR-FSPGR) sequence
for the ADNI-GO and ADNI-2 phases (Jack et al., 2010). This affected
N = 63 Chg -+ subjects who had extended 1.5 T follow-up (e.g. ADNI-GO
month 48 and beyond, or ADNI-2) on some of the GE Signa HDx or HDxt
scanners. Note that the switch to the IR-FSPGR sequence occurred after
the GE intra-vendor scanner upgrade. Fig. 3 shows an example pair of
images acquired from a single subject using the two different
sequences.

2.5. Image processing

We started with un-preprocessed 3D T1-weighted images (i.e.
“Original”) from the ADNI database. The images were preprocessed using
the following steps: 1) nonparametric intensity non-uniformity normal-
ization using N3 (Sled et al., 1998), 2) standard-space registration using
the ICBM 2009c nonlinear symmetric template (Fonov et al., 2009), 3)
brain extraction using BEaST (Eskildsen et al., 2012). Two-timepoint
PBVCs were measured with SIENA (Smith et al., 2002), part of FSL
(Smith et al., 2004). The baseline “screening” scans were designated as
the reference (i.e. 100%), and all subsequent PBVCs were estimated with
respect to the baseline. This produced a WB volume time course for each
subject.

2.6. Statistical analysis

LME models with fixed (population-average) and random (subject-
specific) effects have been frequently applied to model longitudinal brain
atrophy outcomes (Chua et al., 2015; Jones et al., 2013; Leung et al.,

Subjects with MRI scanner change or upgrade. The combinations included in the analysis are in boldface

1.5 T MRI scanner
model combination;

Number of normal
control subjects

Total number of
subjects (Total

Number of MCI
subjects (Total

Number of Alzheimer's
disease subjects (Total

Type of scanner change

“Original scanner” N=271) (Total N = 105) N=176) N =50)
To “Changed scanner”
GE Genesis Signa To 26 7 12 7 Excluded due to nonconvergence; For all subjects, only
Siemens Avanto one scan at baseline was acquired with GE Signa and the
rest were acquired with Siemens Avanto
Philips Intera To 15 6 7 2 Inter-vendor change; Included
Siemens Avanto
GE Genesis Signa To 7 1 5 1 Inter-vendor change; Included
Philips Intera
GE Genesis Signa ToGE 1 1 Excluded due to nonconvergence
Signa HDx
GE Genesis Signa To 1 1 Excluded due to nonconvergence
Siemens Symphony
GE Signa Excite To GE 85 15 39 31 Intra-vendor upgrade; Included
Signa HDx
GE Signa Excite To GE 24 12 12 Intra-vendor upgrade; Included
Signa HDxt
GE Signa Excite To GE 60 25 35 Intra-vendor upgrade; two upgrades; Included
Signa HDx To GE
Signa HDxt
GE Signa HDx To GE 12 2 9 1 Intra-vendor upgrade; Included
Signa HDxt
Siemens Avanto To GE 1 1 Excluded due to nonconvergence
Signa HDxt
Siemens Avanto To 1 1 Excluded due to nonconvergence
Siemens SonataVision
Siemens Sonata To 4 1 2 1 Excluded due to nonconvergence
Siemens Espree
Siemens Symphony To 34 9 18 7 Intra-vendor upgrade; Included

Siemens Symphony
TIM
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Fig. 1. Example pair of original input images from a single Normal subject (inter-vendor scanner change).
First row: 24 months follow-up, Philips Intera, MP-RAGE. PBVC: —2.4% from the baseline.
Second row: 36 months follow-up, Siemens Avanto, MP-RAGE. PBVC: —4.1% from the baseline.

2013; Nakamura et al., 2015). We considered several previous findings in
building our LME model. Notably, in the case of analyzing data from
multiple T1-weighted protocols, it was shown to be advantageous to
include a categorical fixed-effect term for the different protocols (Jones
et al., 2013). Another study tested various forms of LME models in terms
of the Akaike Information Criterion (AIC) goodness-of-fit measure, and
demonstrated the advantage of including subject-specific random in-
tercepts and slopes with protocol-specific residual variance (Chua et al.,
2015). Also, having protocol as a fixed effect led to a better model fit as
opposed to having protocol-by-study time interactions (Chua et al.,
2015). Finally, a study of N =713 ADNI subjects found no evidence of
acceleration in WB atrophy rates over three years of follow-up (Leung
et al., 2013). Therefore, although many of the subjects in our study had
more than three years of follow-up, we assumed linear time courses of
atrophy.

The estimated PBVCs were modeled with an LME model that
included subject-specific random slopes and intercepts, as well as fixed
effects for the time from baseline and diagnosis groups, interaction
between time and diagnosis group, MRI scanner models, and T1-
weighted sequences. Scanner-specific residual variance was used. The
model was as follows:

APBV = By + f; (time) + PpxGroup (DiagnosisGroup) + BpxGroupRate (Diag-
nosisGroup * time)+ Bscannerchg (ScannerModel) + BsequenceChg
(T1Sequence) + be; + by (time) + g

where

“APBV” was a continuous variable for the percentage WB volume
change from the baseline “screening” reference point;

“time” was a continuous variable for years from the baseline scan
date;

“DiagnosisGroup” was a categorical variable for the diagnosis group,
i.e. normal control, MCI, or AD;

“ScannerModel” was a categorical variable for the MRI scanner model
changes shown in Table 3;

“T1Sequence” was a categorical variable for the 3D T1-weighted
sequence, which was MP-RAGE for all Siemens and Philips scanners
and either MP-RAGE or IR-FSPGR for GE scanners;

wp v wp v

0, P1> “ﬁDxGroup”’ “ﬁDxGroupRate”’ “ﬁScannerChg”: “ﬁSequenceChg” were
the fixed-effects coefficients for the group intercept, group slope,

additive effect of diagnosis group on PBVCs, atrophy rate associated
with each diagnosis group, additive effect of MRI scanner change or
upgrade on PBVCs, and additive effect of T1 sequence change on
PBVCs, respectively;

“boi” and “by;” were the subject-specific random intercept and slope,
respectively;

“g;j”” was the error term.

This model was fit using the MIXED procedure, SAS v9.4.

To assess whether including the corrective terms for the MRI scanner
or the T1-weighted sequence changes leads to better goodness-of-fit, an
equivalent model without the corrective terms was also fit and AICs for
each model were compared.
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Fig. 2. Example pair of original input images from a single MCI subject (intra-vendor scanner upgrade).
Top row: 12 months follow-up, Siemens Symphony, MP-RAGE. PBVC: —1.4% from the baseline.
Bottom row: 18 months follow-up, Siemens Symphony TIM, MP-RAGE. PBVC: —2.7% from the baseline.

3. Results

The N = 773 subjects were divided into two subgroups: subjects who
did not have a scanner upgrade or change during the follow-up (“Chg-*,
N = 502) versus those who did (“Chg+”, N = 271). Overall, the modeled
rates of WB PBVC between these two groups were not significantly
different, Chg+, —1.15%/y (Standard Error: 0.05) vs. Chg-, —1.16%/y
(0.04), p = 0.84, F-test. The rate for the Chg + group estimated without
regard to scanner model or sequence was —1.24%/y (0.05).

3.1. Chg- subjects

Model-estimated WB PBVC rates by diagnosis group for the Chg-
subjects are shown in Supplementary Table S1. There were no effects
of scanner model change or T1 sequence change in this subgroup. The
average rates were AD: —1.69%/y (SE: 0.097), MCI: —1.25%/y (0.077),
and normal controls: —0.67%/y (0.060). Inline Supplementary Figure S1
plots the average rates for each diagnosis group overlaid on top of the
actual PBVC measurement values for each subject.

3.2. Chg + subjects

Effects of the MRI scanner or T1-weighted sequence changes on PBVC
measurements were estimated for seven combinations (subject N = 237).
The remaining six combinations were excluded due to insufficient
numbers of subjects or data points for model convergence; notably, the
GE Genesis Signa to Siemens Avanto change occurred right after the

baseline time point for everyone. For all the included cases, the model
with the corrective terms attained a lower AIC compared to the one
without the corrective terms. The same results were obtained with the —2
Res Log Likelihood, AICC, and BIC statistics. Figs. 4 and 5 illustrate the
additive effects of scanner upgrade or change on group-average time
courses (additional figures are available as Inline Supplementary
Figures S2 to S6). Examples of the detailed model outcomes can be found
in Tables 4 and 5 (additional tables are available as Supplementary
Tables S2 to S6).

3.2.1. Effects of inter-vendor or intra-vendor scanner changes on PBVC

Philips Intera to Siemens Avanto (Fig. 4, Table 4): This inter-vendor
scanner change led to an average decrease of —1.81% (0.30) in PBVC,
p < 0.0001.

GE Genesis Signa to Philips Intera (Inline Supplementary
Figure S2, Supplementary Table S2): This inter-vendor scanner change
led to an average increase of 0.99% (SE: 0.47) in PBVC, p = 0.042.

GE Signa Excite to GE Signa HDx (Inline Supplementary Figure S3,
Supplementary Table S3): This intra-vendor upgrade led to an average
increase of 0.33% (0.095) in PBVC, p = 0.0005.

GE Signa Excite to GE Signa HDxt (Inline Supplementary Figure S4,
Supplementary Table S4): This intra-vendor upgrade led to an insignifi-
cant decrease of —0.023% (0.23) in PBVC, p = 0.92.

GE Signa Excite to GE Signa HDx to GE Signa HDxt (Fig. 5,
Table 5): The intra-vendor upgrade from Signa Excite to Signa HDx led to
an average increase of 0.25% (0.095) in PBVC, p =0.0103. There was a
trend of PBVC increase (0.27%, (0.16), p=0.0978) when calculating
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Fig. 3. Example pair of original input images from a single Normal subject (T1-weighted sequence change).

Top row: 48 months follow-up, GE Signa HDxt, MP-RAGE. PBVC: —1.2% from the baseline.

Bottom row: 60 months follow-up, GE Signa HDxt, IR-FSPGR. PBVC: —4.0% from the baseline.

105

100 -

90 +

85 -

Percentage brain volume change from haseline

80

T T
2005 2006 2007 2008 2009 2010 2011 2012 2013

Actual scan date

Intera Avanto

changes from Signa Excite to Signa HDxt.
GE Signa HDx to GE Signa HDxt (Inline Supplementary Figure S5,

T
2014

2015

Fig. 4. Philips Intera to Siemens Avanto.

Model-fitted lines, plotted against actual scan dates for better
visualization of the scanner change effects.

Colored large circles = Each color denotes the specific MRI
scanner used at that timepoint.

Colored thick lines = Average model for all subjects, grouped
by MRI scanner used during follow-up. Each color represents
each MRI scanner. The line discontinuity represents the
scanner upgrade/change effect.

Colored small dots and thin lines = Actual percentage brain
volume change measurement values with respect to baseline
for each subject, with the thin lines representing the fitted
model for each subject. Each color represents each subject.
The thin-line discontinuities (‘yump downs’) at later scan dates
on Fig. 5 and Inline Supplementary Figures S3, S4, and S5
(involving Signa HDx or HDxt) represent the effects of T1-
weighted sequence change, in addition to the scanner
changes.

Supplementary Table S5): This intra-vendor upgrade led to an insignifi-
cant decrease of —0.24% (0.25) in PBVC, p = 0.34.
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Fig. 5. GE Signa Excite to GE Signa HDx to GE Signa HDxt.

105 - Model-fitted lines, plotted against actual scan dates for better
= visualization of the scanner change effects.
£ Colored large circles = Each color denotes the specific MRI
g i00 scanner used at that timepoint.
c Colored thick lines = Average model for all subjects, grouped
£ by MRI scanner used during follow-up. Each color represents
§= each MRI scanner. The line discontinuity represents the
_f:: 95 scanner upgrade/change effect.
& Colored small dots and thin lines = Actual percentage brain
2 volume change measurement values with respect to baseline
zZ . ° for each subject, with the thin lines representing the fitted
g - - ° model for each subject. Each color represents each subject.
o @ e = The thin-line discontinuities (‘jump downs’) at later scan dates
£ 85 on Fig. 5 and Inline Supplementary Figures S3, S4, and S5
% (involving Signa HDx or HDxt) represent the effects of T1-
o weighted sequence change, in addition to the scanner
80 changes.
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Actual scan date
SIGNA EXCITE SIGNA HDx
SIGNA HDxt
Table 4
Effect of inter-vendor scanner change from Philips Intera to Siemens Avanto (Chg-+).
Effect MRI scanner model T1-weighted Diagnosis Estimate [95% Standard p-value Note
sequence group CI] error
Intercept 100.09% 0.19 <.0001 Model AIC: 252.2
Reference T1- MP-RAGE only Model without the corrective terms
weighted for scanner and sequence changes:
sequence AIC: 281.3
MRI scanner change  Philips Intera to —1.81% [-2.41, 0.30 <.0001 Normal: —1.01%/y
Siemens Avanto —1.22] MCIL: —1.41%/y
Reference MRI Philips Intera AD: —2.91%/y
scanner
Diagnosis Group Normal . . .
Effect MCI —0.04% 0.28 0.8974 from
Normal
AD —0.36% 0.47 0.4370 from
Normal
Estimated percentage brain volume change rates by diagnosis Normal —0.66%/y 0.098 0.0046 from
group zero
MCI —1.06%/y 0.13 0.1222 from
Normal
AD —2.04%/y 0.35 0.0002 from
Normal

Siemens Symphony to Siemens Symphony Total Imaging Matrix
(TIM) (Inline Supplementary Figure S6, Supplementary Table S6): This
major intra-vendor upgrade led to an average decrease of —0.39% (0.16)
in PBVC, p=0.0188.

3.2.2. Effects of T1-weighted sequence changes on PBVC

The four intra-vendor upgrade combinations, involving GE Signa HDx
or HDxt platforms, were additionally affected by the T1-weighted
sequence change that occurred after the corresponding upgrades.

GE Signa Excite to GE Signa HDx (Inline Supplementary Figure S3,
Supplementary Table S3): The T1-weighted sequence change from MP-
RAGE to IR-FSPGR (occurred on the Signa HDx platform) led to an
average decrease of —1.56% (SE: 0.36) in PBVC, p < 0.0001.

GE Signa Excite to GE Signa HDxt (Inline Supplementary Figure S4,
Supplementary Table S4): The T1-weighted sequence change from MP-
RAGE to IR-FSPGR (occurred on the Signa HDxt platform) led to an
average decrease of —2.47% (0.33) in PBVC, p < 0.0001.

GE Signa Excite to GE Signa HDx to GE Signa HDxt (Fig. 5,
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Table 5): The T1-weighted sequence change from MP-RAGE to IR-FSPGR
(occurred on the Signa HDxt platform) led to an average decrease of
—1.41% (0.15) in PBVC, p < 0.0001.

GE Signa HDx to GE Signa HDxt (Inline Supplementary Figure S5,
Supplementary Table S5): The T1-weighted sequence change from MP-
RAGE to IR-FSPGR (occurred on the Signa HDxt platform) led to an
average decrease of —2.11% (0.32) in PBVC, p < 0.0001.

The average effect T1-weighted sequence change from MP-RAGE to
IR-FSPGR was —1.63% (0.12) in PBVC, p < 0.0001 (Fig. 6). The model
with the corrective terms for scanner and sequence changes provided a
lower AIC (3940.0) compared to the model without the corrective terms
(AIC: 4278.3). Also, the average PBVC rates in AD, MCI, and normal
controls differed between these two models by 1%, 7%, and 17%,
respectively.

The seven combinations analyzed above comprised N 237
Chg + subjects. Model-based group-average PBVC rates by diagnosis
group for these subjects, adjusted for scanner and sequence changes,
were AD: —1.97%/y (0.13), MCI: —1.20%/y (0.090), and normal
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Table 5
Effects of two intra-vendor scanner upgrades from GE Signa Excite to GE Signa HDx to GE Signa HDxt (Chg+).
Effect MRI scanner model T1-weighted Diagnosis Estimate [95% Standard p-value Note
sequence group CI] error
Intercept 99.95% 0.098 <.0001 Model AIC: 1228.7
T1-weighted IR-FSPGR —1.41% [-1.69, 0.15 <.0001 Model without the corrective terms
sequence change —1.12] for scanner and sequence changes:
Reference T1- MP-RAGE AIC: 1354.9
weighted Normal: —0.90%/y
sequence MCL: —1.20%/y
Second MRI scanner  GE Signa Excite to 0.27% [-0.05, 0.16 0.0978
upgrade GE Signa HDxt 0.60]
First MRI scanner GE Signa Excite to 0.25% [0.06, 0.095 0.0103
upgrade GE Signa HDx 0.43]
Reference MRI GE Signa Excite
scanner
Diagnosis Group Normal . .
Effect MCI 0.13% 0.13 0.3165 from
Normal
Estimated percentage brain volume change rates by diagnosis Normal —0.76%/y 0.089 <.0001 from
group zero
MCI —1.09%/y 0.11 0.0040 from
Normal
Fig. 6. Illustration of the effect of T1-weighted sequence
105 - change from MP-RAGE to IR-FSPGR.
Model-fitted lines, plotted against actual scan dates for better
@ visualization of the sequence change effects.
3 Colored large circles = Each color denotes the specific T1-
_‘E 100 weighted sequence used at that timepoint.
E Colored thick lines = Average model for all subjects, grouped
= by T1-weighted sequence. Each color represents each
g 95 - sequence. The line discontinuity represents the sequence
£ change effect.
£ Colored small dots and thin lines = Actual percentage brain
g - volume change measurement values with respect to baseline
£ for each subject, with the thin lines representing the fitted
f . model for each subject. Each color represents each subject.
2 C
5 88
2
a
o
80
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Actual scan date
MP-RAGE IR-FSPGR

controls: —0.68%/y (0.073). Detailed model outcomes are shown in
Supplementary Table S7.

4. Discussion

We surveyed 819 normal control, MCI, and AD subjects enrolled in
the ADNI-1 1.5T study and identified those who had an MRI scanner
upgrade or change during follow-up. Longitudinal PBVCs, with respect to
the baseline, were measured from serial MRIs that reached up to 8 years
of follow-up. An LME model was applied to model the time courses of WB
PBVC while estimating the effects of inter-vendor scanner change, intra-
vendor scanner upgrade, and T1-weighted sequence change from MP-
RAGE to IR-FSPGR (subset of GE scanners only). The change of
sequence from MP-RAGE to IR-FSPGR was associated with an average of
—1.63% change in PBVC. Artifactual changes in PBVC were found across
different scanner hardware upgrade or change combinations. Inclusion of
the corrective terms for scanner and sequence changes always led to a
better model fit (i.e. lower AIC).
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We first modeled the time courses of WB PBVC in the Chg-subgroup to
explore rates unaffected by changes in the scanning hardware or T1-
weighted sequence. The average rate of PBVC in AD patients was 1.35x
higher than those of MCI patients and 2.52x higher than those of normal
controls (Supplementary Table S1). This is in line with a previous study
by Leung and colleagues, in which they reported LME model-estimated
WB volume change rates over 3-years follow-up in the ADNI subjects
(Leung et al., 2013). Their model did not include terms for scanner or
sequence, but these factors did not affect our Chg-group. Using a version
of boundary-shift integral (KN-BSI), they found that the average rate in
AD was 1.40x higher than those of MCI patients and 2.24x higher than
those of normal controls. The actual rates differed due to the fact that
SIENA tends to systematically give about 20% larger values compared to
BSI (Smith et al., 2007).

The Chg + subgroup comprised N = 237 subjects in which each was
followed-up with one of the seven 1.5 T MRI scanner model combina-
tions. These seven combinations could be broadly classified into three
categories: inter-vendor scanner change (GE to Philips; Philips to
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Siemens), intra-vendor scanner upgrade (GE to GE; Siemens to Siemens),
and T1-weighted sequence change (GE to GE). Presuming greater degrees
of changes in hardware configuration lead to a larger effect on image
characteristics, we hypothesized that inter-vendor scanner changes
would induce greater bias on PBVC measurements compared to intra-
vendor scanner upgrades. Furthermore, we hypothesized that the
change in T1-weighted sequence from MP-RAGE to IR-FSPGR would
have had a direct impact on image contrast and thus the PBVC mea-
surements, even though the change occurred while on consistent MRI
hardware platforms (GE Signa HDx or HDxt). These indeed was the case
in our study.

We analyzed two cases of inter-vendor scanner change combinations
(Table 3): GE Genesis Signa to Philips Intera, and Philips Intera to
Siemens Avanto. Both cases represented a complete change in the
hardware, including the main magnet and the coil. The average scanner
change effects of +0.99% (Signa to Intera, p = 0.042) and —1.81%
(Intera to Avanto, p <0.0001) were significant and were roughly
equivalent to a year's worth of volume loss in MCI and AD, respectively.
As demonstrated in Fig. 1, contrast differences between images of the
same subjects scanned on these different scanners from different vendors
were subtle but present. When inter-vendor scanner changes occur, the
bias due to the scanner change may exceed the magnitude of the main
effect of interest, depending on the study.

There were five cases of intra-vendor scanner upgrade combinations
(Table 3): GE Signa Excite to HDx, GE Signa Excite to HDxt, GE Signa HDx
to HDxt, GE Signa Excite to HDx to HDxt, and Siemens Symphony to
Symphony TIM. The upgrade from Excite to HDx included both hardware
(e.g. receive chain architecture) and software components, whereas that
from HDx to HDxt was mainly software-related. Upgrading from Excite to
HDx exerted a significant effect on PBVC (+0.33%, p = 0.0005), whereas
going from Excite to HDxt did not (—0.023%, p =0.92). The average
effect of a minor upgrade from HDx to HDxt was not significant (—0.24%,
p = 0.34). A similar pattern was observed in the group of subjects who
had two upgrades from Excite to HDx to HDxt; upgrading from Excite to
HDx led to a significant effect (+0.25%, p = 0.0103) whereas going from
Excite to HDxt did not (+0.27%, p = 0.0978). Overall, we found no ev-
idence that the software-related upgrade from HDx to HDxt led to a
significant systematic bias on PBVC.

The Siemens TIM upgrade was a major hardware change that affected
the gradient system, radiofrequency coil, and software. This upgrade led
to a significant effect (—0.39%, p = 0.0188) on PBVC, comparable to half
ayear's worth of normal aging in this group, and about 20% of the annual
change in this population of AD subjects. Direct hardware changes led to
effects with both positive and negative directions.

Intra-vendor upgrades are the most common scenarios that occur in
longitudinal studies, and our results suggest that, although the effects
may differ from one upgrade to another, they may be ignorable if the
rates of brain volume loss of interest are relatively large, such as in AD.
Understanding the exact circumstances in which these effects are best
ignored is not trivial, as it depends not only on the magnitude of the effect
of interest, but also on study design factors such as the number of subjects
affected by the change in comparison to the total number of subjects in
the study.

The transition from ADNI-1 to ADNI-2/GO protocols included a
change in the 3D T1-weighted sequence from MP-RAGE to IR-FSPGR in
N =63 subjects scanned on select 1.5T GE HDx and HDxt platforms
(N =4 HDx and N = 59 HDxt). Briefly, the GE T1-weighted sequence that
most closely resembled the ADNI MP-RAGE sequence was the GE product
IR-FSPGR sequence, which was not available until July 2006 (https://
adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/
mri/ADNI_MRI_Methods_Non-ADNI Studies.pdf). Until the implementa-
tion of this sequence, the GE sites needed to use the earlier “works-in-
progress” version of the ADNI MP-RAGE that focused on maximizing
inter-vendor protocol standardization, but at the expense of replicability
of the exact ADNI methods on other GE scanners. For the ADNI-2/GO
phases, a complete switch was made to the GE product IR-FSPGR
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sequence (Jack et al., 2010). This would have resulted in an alteration
of the SNR and CNR (Lin et al., 2006). Fig. 3 shows example images from
a single subject who had scans available from both sequences. Indeed, the
T1-sequence change effect was significant in all cases with the average
effect of —1.63% on PBVC, p < 0.0001, estimated from the model that
included all Chg + subjects (Fig. 6). This type of sequence change was
specific to the ADNI study planning process and is unlikely to occur in a
typical prospective longitudinal study. However, such changes may affect
retrospective studies or studies in which standardized acquisitions are
not performed. Our results suggest that the effect of sequence changes,
even within the same hardware platform, may even exceed that observed
in inter-vendor scanner changes and produce significant errors in brain
volume measurements. Yet, it should be noted that our findings are
specific to the MP-RAGE to IR-FSPGR sequence change on GE platforms,
for which data were available. In general, the impact of a sequence
change on PBVC would depend on the specific differences in the se-
quences and would need to be evaluated for each combination observed
in practice.

It is possible that the step changes in PBVC resulted from a change in
the brain-CSF boundary delineation after the scanner or sequence
change, since the measurement of brain volume changes over time
generally depends on the detection of edge motion between registered
scans. For example, SIENA uses the derivative of the gradient across the
brain-CSF boundary to estimate the brain/non-brain edge motion be-
tween two timepoints and converts the mean edge displacement into the
PBVC value (Smith et al., 2002). An example scenario would be an
improved boundary delineation (e.g. due to increased contrast or a
reduction in the brain-CSF partial volume effects) which may result in an
apparently reduced WB volume; in this case, the pre-upgrade volume
would have been an overestimation due to the partial CSF volume being
included in the brain volume.

Our observation has important implications for longitudinal studies
of brain volume change. In all cases, models with corrective terms for
scanner and sequence changes yielded a lower AIC compared to those
without, despite the two additional parameters being included in the
model. This suggests that the atrophy rates estimated using the model
with the corrective terms better represent the data, and that the rates
from models without the corrective terms may be over- or under-
estimated, depending on the direction of the effect of the change. For
example, the average model-estimated rates in the subjects who had the
intra-vendor upgrade from Symphony to Symphony TIM were 10%, 6%,
and 11% different for AD, MCI and normal respectively, compared to the
rates estimated ignoring the changes. In the subjects who switched from
Philips Intera to Siemens Avanto, these differences were 35%, 28%, and
42% for AD, MCI and normal respectively. It should be noted that the
effect of scanning platform change is an aggregation of effects from
various sources that contribute to image inconsistency, such as incon-
sistent image contrast, gradient nonlinearity, geometric distortion, in-
tensity nonuniformity, and subject positioning. In principle, they may be
corrected using site-specific living phantoms to estimate the scanner
change effect and calibrate the measurements. However, this is generally
not feasible and is infrequently done in practice. Whenever any scanner
upgrade or changes occur, the researcher needs to identify the potential
source(s) of image inconsistency and incorporate image processing
schemes that may help alleviate the inconsistency. Yet, it should be
recognized that the harmonized acquisition protocol and image pro-
cessing steps alone may not be sufficient to remove the image variability
originating from changes in scanning platforms. For example, a recent
work from the North American Imaging in Multiple Sclerosis (NAIMS)
Cooperative, which implemented a standardized protocol on 3T Siemens
scanners, has reported significant scanner model-related variations in T1-
hypointense and T2-hyperintense lesions as well as brain volume mea-
sures (Shinohara et al., 2017). Other works from the Establishing Mod-
erators and Biosignatures of Antidepressant Response in Clinical Care
(EMBARC) dataset has reported significant site/scanner effects on
cortical thickness as well as functional connectivity measures (Fortin
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et al., 2018; Yu et al.,, 2018). These results suggest that unwanted
scanner-related non-biological variability is pervasive in many areas of
brain imaging research. Additional steps, such as incorporating correc-
tive terms into the statistical analysis model, may be necessary to attain a
more reliable outcome. However, the modeling requires that there be
sufficient numbers of subjects affected by any modeled change to be able
to estimate the effect. This can be a challenge in some multi-center drug
trials with many sites and not many subjects per site.

Study limitations and future directions: There were several limi-
tations to our study. First, the ADNI study provided a valuable large-
scale, multi-site dataset acquired using a standardized protocol and
quality control. We surveyed the data ‘as-is” and could analyze seven
different scanner upgrade/change combinations. This approach to sub-
ject selection inherently resulted in an unbalanced design. This issue was
partially alleviated by the use of the LME model, which can accommo-
date unbalanced data (Fitzmaurice and Ravichandran, 2008). Second,
the average age at baseline was around 75 for our subjects, and this is
when the rate of normal aging-related WB atrophy begins to accelerate
(Scahill et al., 2003). We kept the model as parsimonious as possible and
did not take the potentially non-linear pattern of WB atrophy into ac-
count. Although this effect may not be apparent over the short-term
(Leung et al., 2013), it could have affected subjects who had 8 years of
follow-up. Third, it is unknown whether the specific estimates of the
effects for different scanner changes obtained from this study are
generalizable, as various designs exist with regards to image acquisition,
processing, and analysis pipeline. Yet, our study pipeline can be fairly
easily replicated. The ADNI acquisition protocol is widely available and is
increasingly being used in clinical trials, and our pre-processing steps and
the SIENA method also have been commonly used. Whether our specific
estimates apply to different image processing pipelines or atrophy mea-
surement techniques (e.g. BSI, Jacobian Integration) needs to be further
explored. Fourth, our study analyzed only 1.5 T scans, but 3.0 T systems
are rapidly being adopted. In fact, newly enrolled subjects in the
ADNI-2/GO have been entirely scanned at 3.0 T (Jack et al., 2010). Po-
tential effects of 3.0 T scanner change/upgrade need to be investigated.
Finally, there is a growing interest in measuring grey- and white-matter
volumes separately, as grey-matter atrophy may be better correlated with
disability progression and cognitive impairment than WB atrophy (Fisher
et al., 2008). The measurement of grey-matter change itself is technically
challenging, and any scanner upgrade or change can add further
complexity to the analysis. Kruggel and colleagues demonstrated signif-
icant within-subject variability of grey- and white-matter compartmental
volumes (and thus, WB volume also) on different 1.5 T and 3.0 T scanners
used in the ADNI (Kruggel et al., 2010). Moreover, Nakamura and col-
leagues revealed that the presence of white-matter lesions can signifi-
cantly bias grey- and white-matter segmentation (Nakamura and Fisher,
2009). Further research on this important topic is warranted.

In conclusion, we demonstrated that different scanner hardware up-
grades can exert different bias effects on WB PBVC. Inter-vendor scanner
changes generally led to greater effects compared to intra-vendor scanner
upgrades. Change in the 3D T1-weighted sequence from MP-RAGE to IR-
FSPGR, within the same scanning platform, also led to a significant effect,
comparable to that from inter-vendor scanner changes. Modeling brain
volume loss with an LME model that includes corrective terms for scan-
ner and sequence changes yields better model fits and more reliable es-
timates of WB atrophy rates.
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