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Abstract.
Background: Predicting clinical course of cognitive decline can boost clinical trials’ power and improve our clinical decision-
making. Machine learning (ML) algorithms are specifically designed for the purpose of prediction; however. identifying
optimal features or algorithms is still a challenge.
Objective: To investigate the accuracy of different ML methods and different features to classify cognitively normal (CN)
individuals from Alzheimer’s disease (AD) and to predict longitudinal outcome in participants with mild cognitive impairment
(MCI).
Methods: A total of 1,329 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included: 424
CN, 656 MCI, and 249 AD individuals. Four feature-sets at baseline (hippocampal volume and volume of 47 cortical and
subcortical regions with and without demographics and APOE4) and six machine learning methods (decision trees, support
vector machines, K-nearest neighbor, ensemble linear discriminant, boosted trees, and random forests) were used to classify
participants with normal cognition from participants with AD. Subsequently the model with best classification performance
was used for predicting clinical outcome of MCI participants.
Results: Ensemble linear discriminant models using demographics and all volumetric magnetic resonance imaging measures
as feature-set showed the best performance in classification of CN versus AD participants (accuracy = 92.8%, sensitiv-
ity = 95.8%, and specificity = 88.3%). Prediction accuracy of future conversion from MCI to AD for this ensemble linear
discriminant at 6, 12, 24, 36, and 48 months was 63.8% (sensitivity = 74.4, specificity = 63.1), 68.9% (sensitivity = 75.9,
specificity = 67.8), 74.9% (sensitivity = 71.5, specificity = 76.3), 75.3%, (sensitivity = 65.2, specificity = 79.7), and 77.0%
(sensitivity = 59.6, specificity = 86.1), respectively.
Conclusions: Machine learning models trained for classification of CN versus AD can improve our prediction ability of MCI
conversion to AD.

Keywords: Alzheimer’s disease, classification, early diagnosis, machine learning, magnetic resonance imaging, mild cognitive
impairment, predictive analytics
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INTRODUCTION

The burden of Alzheimer’s disease (AD) is esti-
mated to more than double current levels by 2060,
when 13.9 million Americans are projected to have
the disease [1]. Despite the high burden of this dis-
ease, preventive and therapeutic interventions for AD
have largely failed. Failure of these trials are thought
to be partially due to biological heterogeneity of
AD and due to the frequent occurrence of mixed
dementia pathologies [2, 3]. Many investigators have
attempted to characterize this heterogeneity using
different predictive methods with varying degrees
of success [4]. In recent years neuroimaging tech-
niques such as positron emission tomography (PET)
and magnetic resonance imaging (MRI) have been
proposed as a proxy for brain pathology and are
recommended as effective diagnostic and prognostic
tools [5]. However, a significant proportion of popula-
tion are cognitively normal and biomarker positive or
vice versa, making the utility of using these biomark-
ers as in univariate models for predicting clinical
outcomes questionable [6].

A growing number of studies have been using
machine learning (ML) and multivariate analysis
methods to classify individuals at risk of progression
to AD. A combination of demographics and imag-
ing markers are typically entered into these models
[7]. These studies largely suggest the advantage of
using multivariate analysis over univariate techniques
as they account for the relationship between variables
and are less prone to classification errors. Some of the
prior studies that have used ML methods for predic-
tive analysis are limited by reporting performance of
the models at short and single follow-up times (e.g.,
1 or 2 years) and using a relatively small sample [8,
9]. Performance of ML methods in larger samples
with longer duration of follow-up is not well studied.
When sample size is smaller, the ratio of measures
(features) to participant will be higher and predictive
models are more prone to overfitting. Therefore, to
develop generalizable prediction models we need to
evaluate validity of models in larger samples.

In this study, we used demographics and struc-
tural MRI measures for classification of cognitively
normal (CN) versus AD participants (training set)
from the Alzheimer Disease Neuroimaging Initiative
(ADNI) and applied the trained model to participants
with mild cognitive impairment (MCI) from ADNI
(independent test set) to predict AD conversion.
Our specific aims were 1) to compare the perfor-
mance of different linear and non-linear classifiers

for the classification of CN versus AD; 2) to com-
pare the effective gain in classification accuracy by
using multiple brain structures as opposed to a single
brain region (hippocampus); 3) evaluate the additive
effect of age, sex, education, and APOE4 genotype
on performance of classifiers; and 4) evaluate the
performance of the best classifier in prediction of con-
version to AD in the test sample at different follow-up
times up to 4 years.

METHODS

Study design and participants

The data used for this analysis were downloaded
from the ADNI database (http://www.adni.loni.
usc.edu) in September 2018. The ADNI is an ongo-
ing cohort, which was launched in 2003 as a
public–private partnership. The individuals included
in the current study were initially recruited as part of
ADNI-1, ADNI-GO, and ADNI-2 between Septem-
ber 2005 and December 2013. This study was
approved by the Institutional Review Boards of all
participating institutions. Informed written consent
was obtained from all participants at each site.

A total of 1,329 participants from ADNI-1, ADNI-
GO, and ADNI-2 were eligible for this study. Eligible
individuals completed baseline MRI and had at least
one wave of follow up. Participants whose scans
failed to meet quality control or had unsuccessful
automated image analysis were excluded from this
study. At the time of enrollment, each individual
was assigned to one of the three diagnostic groups
of cognitively normal (CN), MCI, or mild AD. The
CN, MCI, and mild AD groups included in current
study comprised of 424, 656, and 249 individuals,
respectively.

All ADNI participants with the diagnosis of
MCI, were diagnosed as having amnestic MCI; this
diagnostic classification required Mini-Mental State
Examination (MMSE) scores between 24 and 30
(inclusive), a memory complaint, objective mem-
ory loss measured by education-adjusted scores
on the Wechsler Memory Scale Logical Mem-
ory II, a Clinical Dementia Rating (CDR) of 0.5,
absence of significant impairment in other cog-
nitive domains, essentially preserved activities of
daily living, and absence of dementia. The par-
ticipants with AD had to satisfy the National
Institute of Neurological and Communicative Dis-
orders and Stroke–Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) criteria

http://www.adni.loni.usc.edu
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for probable AD, and have MMSE scores between
20 and 26, and CDR of 0.5 or 1.

Each participant received a baseline clinical eval-
uation and was revaluated during follow-up at 6
months, 1 year, 2 years, 3 years, and 4 years. At each
clinical visit, participants were assigned to a diagnos-
tic group (CN, MCI, or AD). Based on diagnosis at
each follow up, participants with an initial diagnosis
of MCI were assigned to one of the three subgroups:

I. Progressive MCI subgroup (MCI-p): Indi-
viduals who progressed to AD during the
follow-up.

II. Stable MCI subgroup (MCI-s): Individuals
who did not have a change of diagnosis and
remained stable during the follow up time.

III. MCI reversion subgroup (MCI-r): Individuals
who had a reversion to CN during the follow
up time.

To facilitate interpretation of the performance of
the classifier, MCI-r and MCI-s groups were merged
into one group of non-progressive MCI (MCI-np).
To train classifiers with measurements that belong to
CN participants, they were assigned to two groups:
1) stable CN (CN-s; remained CN after 2 years of
follow-up; and 2) progressive CN (CN-p who pro-
gressed to MCI or AD after 2 years of follow up).
None of the individuals with AD diagnosis at baseline

had reversion to MCI or normal during follow up
(Fig. 1).

MRI acquisition and preprocessing

MRIs were obtained across different sites of
ADNI study with a unified protocol (For more infor-
mation, please see http://www.adni.loni.usc.edu).
MRI data were automatically processed using
the FreeSurfer software package (available at
http://surfer.nmr.mgh.harvard.edu/) by the Schuff
and Tosun laboratory at the University of California-
San Francisco as part of the ADNI shared data-set.
FreeSurfer methods for identifying and calculation
of regional brain volume are previously described in
detail [10].

Data analysis

Feature selection
Demographics including age, sex, and education,

APOE4 status, and volumetric MRI measures were
used as features in the predictive models. MRI mea-
sures of interest were volumetric measures regions of
interests (ROIv) derived from FreeSurfer software. A
total of 47 cortical and subcortical ROIs, parcellated
by FreeSurfer, were included. ROIv were normal-
ized for total intracranial volume (TICV) and the
ratio of ROIv to TICV [i.e., (ROIv/TICV) x mean

Fig. 1. Study design diagram. *based on diagnosis at last follow-up visit.

http://www.adni.loni.usc.edu
http://surfer.nmr.mgh.harvard.edu/
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whole population ROIv] was used in the analyses
and reported throughout manuscript unless otherwise
specified.

We chose four different feature-sets and compared
the accuracy of models using each set: 1) Hippocam-
pal volume; 2) Hippocampal volume plus age, sex,
education, APOE4; 3) All MRI volumetrics; 4) All
MRI volumetrics plus age, sex, education, APOE4.
Hippocampal volume has been reported as the single
most useful structural measure in previous prediction
models in preclinical stages [8]. Therefore, we specif-
ically chose hippocampal volume as the only ROI in
two of the feature-sets.

Classification and pattern recognition models
In the present study, we used six different linear

and nonlinear supervised machine learning methods
for classification and pattern recognition:

I. Decision trees (DT). DTs are powerful classi-
fiers that sequentially dichotomize the feature
space into regions associated with different
classes. As such, they are capable of learn-
ing arbitrarily complex Boolean functions that
map the features/predictors to class labels [11].
While they are widely used due to their ease
of training based on labeled data, and robust-
ness to missing features, they are known to be
unstable due to their hierarchical structure: an
incorrect decision at a high node in the tree
would propagate down the nodes and results
in misclassification (for details, see [12]). We
used a fine DT (f-DT) model in the current
study.

II. Support Vector Machines (SVMs). SVMs aim
at inferring regularities from a set of labeled
training examples by modeling the mapping
from features to labels as a linear combination
of kernels. When the kernel is a linear func-
tion of the features, the classifier is referred
to as a linear SVM (L-SVM). While there
are countless choices of decision boundaries
that can separate two classes, SVM finds a
decision function with the maximal the mar-
gin between the training examples and the
resulting decision surface, namely the opti-
mal margin hyperplace (OMH). The support
vectors refer to examples in the data set that
line on the margin, and are thus critical to the
separation of the two classes. In brief, given a
training set of size K: (xk, yk)k = 1...K, where
xk in Rd are observations, and yk in (–1, 1)

are corresponding labels, linear SVMs find a
hyperplane separating the two classes with the
optimal margin (for details, see [13, 14]). We
used an L-SVM in this study.

III. K-nearest neighbor classification (KNN).
KNNs are among the simplest, yet effective
machine learning methods that use the idea of
polling among the labels of the training exam-
ples closest to a new sample, and assigning the
majority vote as its predicted label. To this end,
for a positive integer K, the Euclidean distance
between the new sample and the elements of
the training set are computer and K training
examples with the smallest distance are cho-
sen to poll from (for details, see [15]). In brief,
the Euclidean distance is specified by the fol-
lowing formula, where p is the new sample to
be labeled and q is any of the examples in the
training set, each having n features. The term
pi refers to the value of the ith feature of exam-
ple p, while qi refers to the value of the ith

feature of example q, for i = 1,2, . . . , n:

dist(p, q) =
√

(p1−q1)2+(p2−q2)2 + · · · + (pn−qn)2

IV. Ensemble Linear Discriminant (ELD). This
technique is among the family of classifica-
tion methods known as ensemble learning, in
which the output of an ensemble of simple
and low-accuracy classifiers trained on subsets
of features are combined (e.g., by weighted
average of the individual decisions), so that
the resulting ensemble decision rule has a
higher accuracy than that obtained by each
of the individual classifiers [16, 17]. In this
work, we combined linear discriminant func-
tions (i.e., hyperplanes that dichotomize the
samples based on subsets of features) to con-
struct the ensemble classifier.

V. Boosted Decision Trees (BDT). Similar to
other ensemble methods, boosting is a method
of combining many weak learners (in this case
DTs) to a strong learner. At each step of the
sequence of combining weak learners, partic-
ipants that were incorrectly classified by the
previous classifier are weighted more heavily
than participants that were correctly classi-
fied. The predictions from this sequence of
weak classifiers are then combined through a
weighted majority vote to produce the final
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prediction. Details of the theoretical foun-
dation of boosting and its relationship with
established statistical methods is described
previously [18, 19].

VI. Random Forests (RF). RFs are a combination
of DT predictors such that each tree depends
on the values of a random vector sampled
independently and with the same distribution
for all trees in the forest. In other words, a
RF is a classifier consisting of a collection of
tree-structured classifiers {h(x, θk), k = 1,...}
where the{θk} are independent identically dis-
tributed random vectors and each tree casts a
unit vote for the most popular class at input x.
Details and foundation of RFs techniques used
in this paper are described elsewhere [20].

Analysis and computation of machine learning
methods were conducted using MATLAB ©(version
2017b) using standard libraries of the classification
learner toolbox.

Training models
Data from the two groups of CN-s and AD par-

ticipants (training-set) were used for training of the
models. Models were trained to recognize CN-s ver-
sus AD using each of the four feature-sets mentioned
above. Considering that we used four classification
methods, a total of 16 models were created. A 10-fold
cross-validation procedure was used in all models
for testing validity of the models. Cross-validation
is an established statistical method for validating a
predictive model, which involves training several par-
allel models, each based on a subset of the training
data. Then, the model performance is evaluated based
on the average accuracy in predicting the labels of
the omitted portion of the training data [21]. Cross-
validation can detect if models are overfitted by
determining how well the model generalizes to other
subsets of datasets by partitioning the data.

The performance of each model was calculated
based on the percentage of correct classification
(accuracy), sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and
area under the ROC curve (AUC).

Comparison of classification performance
We used the McNemar test to select the most accu-

rate model [22]. Based on the results of this test the
best model was selected for the next step (prediction
models).

Prediction of future outcome in MCI participants
Following training of the models, we used the

model with best classification performance to pre-
dict the clinical outcome of all MCI participants
(independent test set). Using baseline data, models
assigned MCI participants to CN-like or AD-like
groups. The accuracy of the predicted outcome (CN-
like or AD-like) was evaluated using the available
clinical outcomes from follow-up data. Considering
change in proportion of MCI subgroups over time
(due to drop outs, death, etc.), the accuracy is reported
separately for each wave of follow-up at 6, 12, 24,
36, and 48 months. Furthermore, we computed sen-
sitivity, specificity, PPV, and NPV of the model for
predicting conversion to AD at each follow-up time-
point.

Assessment of time-to-conversion from MCI to
AD

Cox-proportional hazards regression models were
used to determine the hazard ratio of incident AD
in MCI participants predicted as AD-like versus
those predicted to be CN-like. The time variable was
amount of time, in years, from baseline to the visit in
which AD was diagnosed, or to the most recent visit
for censored cases (6-month intervals). Kaplan Meier
survival curve for Dementia is presented based on this
prediction. Statistical analyses were carried out using
SPSS version 25.0.

RESULTS

Demographics and baseline characteristics

Table 1 summarizes participants’ demographics
and clinical characteristics. Among MCI participants
with 1-year of follow up data available, 87 persons
(13.8%) progressed to dementia at 1-year follow up.
The number who progressed increased to 109 per-
sons (34.3% of n = 318) for participants with available
follow-up data at 4 years.

Effect of feature-set on performance of classifiers

As shown in Table 2, feature sets that included
demographics and APOE4 status (set 2 and set 4)
generally performed better than feature sets with-
out these measures. The choice of feature-set also
had distinct effect on performance of different ML
method: while decision trees and ensemble linear dis-
criminant models had higher accuracy when multiple
MRI volumetrics were included in the feature set,
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Table 1
Demographics and clinical characteristics of study participants according to group

Variables Diagnostic group
CN (n = 424) MCI-r b (n = 49) MCI-s b (n = 372) MCI-p b (n = 235) AD (n = 249)

Age 74.3 ± 5.5 68.9 ± 7.6 72.8 ± 7.4 73.0 ± 7.1 74.7 ± 7.7
Sex, male % 50.4 53.1 59.1 57.9 55.3
Education, y 16.3 ± 2.7 17.0 ± 2.3 15.8 ± 3.0 15.7 ± 2.8 15.2 ± 2.8
APOE4 carrier, % a 27 40.8 43.5 69.4 71
Cognitive scores

CDR-sum of boxes 0.03 ± 0.1 1.2 ± 0.8 1.5 ± 0.8 2.0 ± 0.9 4.3 ± 1.6
MMSE 29.1 ± 1.1 28.7 ± 1.4 27.9 ± 1.7 26.9 ± 1.8 23.2 ± 1.9
ADAS-cog 5.9 ± 2.9 6.4 ± 2.7 9.1 ± 3.8 13.11 ± 4.4 19.4 ± 6.7
RAVLT delayed recall 5.9 ± 2.3 3.8 ± 2.4 4.5 ± 2.5 5.0 ± 2.2 1.7 ± 1.7

Plus–minus values are means ± SD. aProportion of individuals carrying at least one E4 allele. bBased on diagnosis at last available follow-up
visit. CDR, Clinical Dementia Rating scale; MMSE, Mini-Mental State Exam; ADAS, Alzheimer’s Disease Assessment Scale; RAVLT, Rey
Auditory Verbal Learning Test.

Table 2
Performance of classifiers in differentiating cognitively normal from Alzheimer’s disease participants

Model/feature set Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC

Fine Decision Trees
HipV 78.3 80.7 74.7 82.1 72.9 0.82
HipV, Demographics, APOE4 81.7 85.1 76.9 83.5 79.1 0.82
MRIv 82.5 86.0 77.5 84.6 79.4 0.81
MRIv, Demographics, APOE4 83.0 85.5 79.4 85.7 79.1 0.82
Linear SVM
HipV 83.4 88.5 75.9 84.0 82.1 0.90
HipV, Demographics, APOE4 85.2 88.5 80.3 86.6 83.0 0.92
MRIv 76.3 95.8 48.1 72.3 88.9 0.94
MRIv, Demographics, APOE4 76.8 96.5 49.0 73.0 89.7 0.95
Fine KNN
HipV 77.8 78.7 76.3 82.7 71.4 0.78
HipV, Demographics, APOE4 79.9 83.5 74.7 82.6 75.9 0.79
MRIv 71.8 94.4 39.3 69.1 83.0 0.80
MRIv, Demographics, APOE4 73.3 95.8 40.9 70.0 87.2 0.83
Ensemble linear discriminant
HipV 83.2 87.1 77.5 84.7 80.7 0.90
HipV, Demographics, APOE4 85.6 90.9 77.7 85.2 85.1 0.90
MRIv 90.8 94.4 85.5 90.3 91.4 0.95
MRIv, Demographics, APOE4 92.8 95.8 88.3 92.2 93.6 0.96
Boosted Trees
HipV 79.4 86.8 68.9 79.9 78.4 0.88
HipV, Demographics, APOE4 83.9 86.9 79.5 85.9 80.8 0.92
MRIv 88.3 91.1 84.3 89.3 86.8 0.93
MRIv, Demographics, APOE4 88.5 91.6 83.9 89.1 87.5 0.93
Ensemble Random Forest
HipV 75.5 81.3 67.1 78.0 71.4 0.88
HipV, Demographics, APOE4 82.9 86.3 77.9 84.9 79.8 0.92
MRIv 88.0 90.5 84.3 59.2 86.1 0.93
MRIv, Demographics, APOE4 88.5 90.8 85.1 89.8 86.5 0.94

HV, hippocampal volume; SVM, support vector machine; KNN, k-nearest neighbors; PPV, positive predictive value; NPV, negative predictive
value; AUC, area under curve; HipV, hippocampal volume; MRIv, all MRI volumetrics.

SVM and KNN models performed worse when all
volumetric measures were included in the models.
Performance of different ML methods in
classification of CN versus AD

Performance of each ML method using four dif-
ferent sets of features is summarized in Table 2.

Ensemble linear discriminant models trained with all
volumetric measures and demographics showed the
highest overall accuracy, specificity, PPV, and NPV
and very high sensitivity in comparison with other
classifiers. McNemar test also confirmed that ensem-
ble linear discriminant models have the best overall
performance (p < 0.001 in all model comparisons).
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Table 3
Accuracy of ensemble linear discriminant models in predicting
the outcome of MCI subgroups at different follow-up time-points

based on baseline indicators

Model (SD) N (% of AD-like, N CN-like, N
total) (% of AD like) (% of CN-like)

At 6 months
Total 656 256 400
MCI-p 39 (6.0) 29(11.3) 10 (2.5)
MCI-np 615 (94.0) 227 (88.7) 388 (97.5)
At 12 months
Total 631 241 390
MCI-p 87 (13.8) 66 (27.4) 21 (5.4)
MCI-np 544 (86.2) 175 (72.6) 369 (94.6)
At 24 months
Total 543 201 342
MCI-p 151 (27.8) 108 (53.7) 43 (12.6)
MCI-np 392 (72.2) 93 (46.3) 299 (87.4)
At 36 months
Total 461 157 304
MCI-p 141 (30.6) 92 (58.6) 49 (16.1)
MCI-np 320 (69.4) 65 (41.4) 255 (83.9)
At 48 months
Total 318 94 224
MCI-p 109 (34.3) 65 (69.1) 44 (19.6)
MCI-np 209 (65.7) 29 (30.9) 180 (80.5)

MCI-p, individuals who progressed to AD, MCI-np, individuals
who did not progress to AD.

Based on this result, ensemble linear discriminant
model trained with feature-set 4 (All volumetrics plus
demographics and APOE4 status) were selected and
used for predicting the outcome of the test dataset
(MCI group).

Prediction accuracy for clinical outcome in MCI
subgroup

In the next step, the ensemble linear discriminant
model with the full baseline feature set (all volumetric
measures, demographics, and APOE4 status), which
had the best performance in the training dataset was
used to assign MCI participants to either CN-like
or AD-like subgroups. Prediction accuracy of future
conversion from MCI to AD for this model at 6, 12,
24, 36, and 48 months was 63.8%, 68.9%, 74.9%,
75.3%, and 77.0%, respectively. Table 3 summarizes
the accuracy of this assignment for in prediction of
clinical outcome at different follow-up times (6, 12,
24, 36, and 48 months) for each MCI subgroup.

Among MCI participants assigned to AD-like
group, 11.3% at 6 months, 27.4% at 12 months,
53.7% at 24 months, 58.6% at 36 months, and 69.1%
at 48 months converted to AD. Among MCI partici-
pants assigned to CN-like group, 97.5% at 6 months,
94.6% at 12 months, 87.4% at 24 months, 83.9% at
36 months, and 80.4% at 48 months converted to AD.

Table 4
Model sensitivity and specificity for prediction of conversion to
AD among MCI participants who progressed to AD at different

follow-up time-points based on baseline indicators

Follow-up time Sensitivity Specificity

At 6m 74.4 63.1
At 12m 75.9 67.8
At 24m 71.5 76.3
At 36m 65.2 79.7
At 48m 59.6 86.1

In other words, PPV of the model rose from 11.3%
at 6 months to 69.1% at 48 months, and NPV of the
model decreased from 97.5% at 6 months to 80.3% at
48 months. The sensitivity and specificity of model
for prediction of conversion to AD at each follow-up
time point is summarized in Table 4.

Assessment of time-to-conversion from MCI to
AD

A Cox-proportional hazards model indicated that
participants who were determined to be AD-like by
the ensemble linear discriminant model based on the
full feature set at baseline had a significantly higher
proportion of conversion to AD during longitudinal
follow up (HR = 5.36, 95%CI 4.13–6.98, p < 0.001;
Fig. 2).

DISCUSSION

Our results indicate that although performance of
machine learning classifiers is generally high in terms
of accuracy, sensitivity, or specificity, some meth-
ods (specially ensemble methods) can perform better
than the others. This performance is partially depen-
dent on the selected feature-set and characteristics of
data-set. Inclusion of demographics and APOE4 sta-
tus in training feature-sets improves the performance
of all models. Furthermore, our results indicated that
performance of the models in for prediction of out-
come in MCI group (as an independent test set) is
time-dependent: PPV of models rose from 11.3% at
6 months to 69.1% at 48 months, while NPV evolved
from 97.5% to 80.3%. Moreover, after 48 months of
follow-up individuals who were classified as abnor-
mal (AD-like) were 5.36 times more likely to convert
to AD than individuals who were classified as normal
(CN-like).

The performance of classifiers used in the cur-
rent study are in general agreement with previous
studies, which have used MRI features for classifica-
tion in different cohorts including ADNI [8, 23–25]
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Fig. 2. (Color Legend) Kaplan-Meir Survival Curves for MCI participants assigned to AD-like (red) or CN-like (blue) groups using ensemble
linear discriminant models based on baseline measurements. MCI-p, individuals who progressed to AD; MCI-np, individuals who did not
progress to AD.

and reported accuracies ranging from 80% to 92%.
The differences between accuracy of these models is
likely multi-factorial and due to differences in size
of sample, training feature set, and the model itself.
Our results indicate that the feature set selected for
training affects performance of models significantly.
We showed including multiple volumetric measures
in the feature-set does not always lead to an increase
in the performance of the classifier and such increase
in performance is dependent on the type of classifier.
Similar to previous studies [8], our results indicated
that inclusion of demographics and APOE4 status
as part of the training feature-set improves clas-
sification performance regardless of classification
method.

We found that the classifier based on the ensem-
ble linear discriminant method with the full feature
set at baseline was able to predict progression from
amnestic MCI to AD or lack thereof over up to
48 months of follow-up with an accuracy of 77%.
Results from other studies show substantial differ-
ences in the ability of structural imaging to predict
conversion from amnestic MCI to AD. Korf et al.
[26] showed that atrophy in the medial temporal

lobe could predict conversion to AD with a global
accuracy of 69%. Devanand et al. [27] found that
a combination of cognitive scores and hippocam-
pal and entorhinal cortex volumes could predict
conversion to AD with an accuracy of 87.7%; how-
ever, age alone correctly classified 71.9% of the
participants. Querbes et al. [28] reported an accu-
racy of 76% in prediction of conversion to AD
using a normalized thickness index comprised of
cortical thickness of 22 different regions. Of note,
the duration of follow-up was different for each
these studies ranging from 2 years to 5 years,
which makes a direct comparison between studies
difficult.

Different applications for predictive models such
as the ones presented in this study have been
proposed. One major clinical application of these
predictive models is for boosting power for clinical
trials by reducing sample size estimates required to
observe the effect of intervention. In a clinical trial
with the aim of slowing the rate of cognitive decline,
the trials could be enriched by inclusion of subpopu-
lation of participants who are more likely to decline.
Models that show higher PPV in comparison with
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observed prevalence in the population are particu-
larly useful. For example, our models showed PPV
of 53.7% at 24 months of follow-up (25.9% more
than the base prevalence 27.8% progression at 24
months), and PPV of 69.1% at 48 months (34.8%
higher than the base prevalence of 34.3% progression
at 48 months). Another application of these classi-
fiers is to choose the next step in management in care
of patients. Considering that some diagnostic tests
(e.g., CSF studies) are invasive or expensive (PET
imaging), selecting the appropriate subpopulation of
patients who have higher chance of benefitting from
such tests, can decrease undesired side-effects and
costs in the whole population.

A limitation of this study is that ADNI is
not a population-based study and there are strict
inclusion and exclusion criteria for selection of par-
ticipants, which can affect generalizability of our
findings. Therefore, validating our findings in other
population-based studies and in data from clinical tri-
als is an essential next step. To increase the number of
eligible participants for this study, we focused only on
structural MRIs and demographics as features for the
models. However, using multimodal measures (e.g.,
biomarkers from PET imaging and CSF) as predic-
tive features can increase performance of classifiers
[29, 30]. Despite the potential increase in predic-
tive accuracy of models with additional measures,
the cost-effectiveness of processing data to collect
such measures and ‘real-world’ clinical applicabil-
ity are the other aspects which are not well studied.
Finally, we selected the features for ML models based
on prior hypotheses and did not use feature-selection
methods.

To conclude, our results indicate factors such as
choice of features, choice of ML algorithm, and
time-frame of prediction each have significant effect
on performance of models predicting cognitive out-
comes. Therefore, each of these factors should be
comprehensively evaluated before claiming we have
developed valid, reliable, and high-performance pre-
dictive models. Multivariate and machine learning
techniques have huge potential for use as tools of
clinical decision making; however, they need to
be carefully tested and validated against conven-
tional diagnosis in different clinical settings and on
population-based cohorts.
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