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Abstract

Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging 

genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric 

and neurodegenerative disorders. However, existing statistical methods largely ignore the 

functional features (e.g., functional smoothness and correlation). The aim of this paper is to 

develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry 

out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a 

multivariate varying coefficient model, a global sure independence screening procedure, and a test 

procedure. Compared with the standard multivariate regression model, the multivariate varying 

coefficient model explicitly models the functional features of functional phenotypes through the 

integration of smooth coefficient functions and functional principal component analysis. 

Statistically, compared with existing methods for genome-wide association studies (GWAS), 

FGWAS can substantially boost the detection power for discovering important genetic variants and 

the gene-environmental interactions influencing brain structure and function. Simulation studies 
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show that FGWAS outperforms existing GWAS methods for searching sparse signals in an 

extremely large search space, while controlling for the family-wise error rate. We have 

successfully applied FGWAS to large-scale analysis of data from the Alzheimers Disease 

Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal 

surfaces, and 501,584 SNPs.
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Computational complexity; Functional genome wide association analysis; Multivariate varying 
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1. Introduction

For most neuropsychiatric and neurodegenerative disorders, existing genome-wide 

association studies (GWAS) based on disease phenotypes have been able to identify a few 

common genetic variants of large effect (e.g., APOE), but have had difficulty unraveling the 

genetic basis of such variants because each genetic variant may have only a small 

contribution to disease risk and may be very heterogeneous (Cannon and Keller, 2006; 

Scharinger et al., 2010; Domschke and Dannlowski, 2010; Bigos and Weinberger, 2010; 

Pezawas and Meyer-Lindenberg, 2010; Durston, 2010; Casey et al., 2010; Paus, 2010; 

Meyer-Lindenberg, 2009; Glahn et al., 2007; Zhao and Castellanos, 2016; Knickmeyer et 

al., 2014). Moreover, these neurological disorders often are regarded as the end result of 

abnormal trajectories of brain development, which may be caused by the additive and 

interactive effects of perhaps hundreds of risk genes and multiple environmental risk factors, 

each with small individual effects. A promising approach to overcome such difficulties is to 

discover genetic factors associated with brain changes that may lead to key insights in 

neurological disorders and our understanding of the origins of these conditions (Hibar et al., 

2011; Chen et al., 2012; Ge et al., 2012; Thompson et al., 2013; Medland et al., 2014; Ge et 

al., 2015a,b; Hibar et al., 2015; Lin et al., 2014a; Huang et al., 2015; Tao et al., 2017). Such 

efforts may inspire new approaches to urgently needed preventions, diagnoses, and 

treatments.

Functional responses that frequently arise in neuroimaging studies have been widely used to 

characterize brain structure and function (Miller and Qiu, 2009; Smith et al., 2006; Styner et 

al., 2005; Fischl, 2012; Goodlett et al., 2009; Yushkevich et al., 2008). For instance, in 

diffusion tensor imaging, various diffusion properties (e.g., fractional anisotropy) have been 

extracted along major fiber bundles to reveal white matter tract maturation and integrity 

(Smith et al., 2006; Goodlett et al., 2009; Yushkevich et al., 2008). Shape analysis has been 

widely used to characterize features of brain cortical and subcortical structures, including 

cortical complexity, curvature, spectral content, and other indices (Miller and Qiu, 2009; 

Styner et al., 2005; Fischl, 2012). Thus, they have been widely used to better understand 

normal brain development and the neurological bases of neuropsychiatric and 

neurodegenerative diseases. Therefore, these functional responses may be effective 

phenotypes that facilitate the identification of causal genes and the mechanistic 

understanding of pathophysiological processes of neurological disorders (Zhao and 
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Castellanos, 2016). Our primary research interest is to identify novel genetic effects on the 

local changes of various functional responses.

Statistically, we are interested in developing a fast and efficient statistical method to 

correlate functional phenotypes measured at tens of thousands of grid points (NV ∼ 103 – 

106) with tens of millions of known genetic variants (NG ∼ 107), or so-called big data 

squared. Conventional analysis of such imaging–genetic data is based on methods for voxel-

wise genome-wide association analysis studies (VGWAS). Such VGWAS methods primarily 

consist of three major steps: Gaussian smoothing of the functional responses across subjects, 

a total of NGNV (∼ 1010 – 1012) massive univariate analyses, and correction for multiple 

comparisons in an expanded image×gene search space with NGNV elements (Hibar et al., 

2011; Shen et al., 2010; Huang et al., 2015; Medland et al., 2014; Zhang et al., 2014; 

Thompson et al., 2014; Liu and Calhoun, 2014). These methods are not only 

computationally extensive, but also involve major methodological limitations when 

searching for novel genetic markers associated with the local changes of functional 

phenotypes. Specifically, running VGWAS can pose significant computational challenges, 

including limited computer memory, finite CPU speed, and limited CPU nodes. For instance, 

for VGWAS, it is computationally intensive to compute all NVNG (∼ 1010 – 1013) test 

statistics for all M (∼ 103 – 104) bootstrapping replicates and to store and manage all 

NGNVM (∼ 1013 – 1017) test statistic images in a limited computer hard drive. Moreover, 

due to massive model fitting, the statistical power is usually very low after adjusting for 

multiple comparisons, while the spatial correlation and smoothness features in functional 

phenotypes are not considered, leading to difficult interpretation of the results.

We propose two important strategies to address several fundamental bottlenecks of 

constructing brain–genetic association maps for functional responses in large-scale imaging 

genetic studies. First, instead of repeatedly fitting a univariate model to each voxel and each 

genetic marker, we treat all image measures as a single functional response measured at all 

NV grid points and focus on testing the coefficient function of interest, which is intrinsically 

low rank. We develop some functional data analysis (FDA) methods to explicitly account for 

the three key features of the functional phenotypes: spatial smoothness, spatial correlation, 

and the low-dimensional representation of functional data. The key advantage of using FDA 

is to reduce the dimension of the functional responses from NV to an intrinsically low 

dimension, denoted as NV0, which is much smaller than NV. Second, we develop a new 

global sure independence screening (GSIS) procedure to eliminate most of the “noisy” 

genetic variants and a divide-and-conquer algorithm to efficiently perform multiple 

comparisons. The divide-and-conquer algorithm is critically important for performing 

FGWAS when NG is extremely large, such as for whole-genome sequencing.

The aim of this paper is to develop a FGWAS pipeline with several formal FDA tools as a 

novel extension of VGWAS for functional responses. A schematic overview of FGWAS is 

given in Fig. 1. Although FDA methods have been widely studied in the literature, most 

focus on one-dimensional curves. See Ramsay and Silverman (2005); Wang et al. (2016); 

Morris (2015) and references therein for a comprehensive review of FDA. Although there 

are a few methods for the association mapping of longitudinal phenotypes (Nicolae, 2016; 

Wu and Lin, 2006; Reimherr and Nicolae, 2014), little has been done on the association 
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mapping of functional phenotypes of two or higher dimensions. Compared with existing 

methods in the literature, five major methodological contributions of this paper are as 

follows.

• We use a multivariate varying coefficient model (MVCM) as a special function-

on-scalar regression model to fit the functional phenotypes with a large number 

of genetic variants (Zhu et al., 2011; Di et al., 2009; Zipunnikov et al., 2011; Zhu 

et al., 2014; Guo, 2002; Lin et al., 2014b), while explicitly accounting for their 

three key functional features as discussed above. The use of the MVCM can 

project NV imaging measures into the NV0–dimensional space, leading to 

computational and efficiency gains on the order of O(NV/NV0).

• Under MVCM, we use a local Wald-type test statistic to detect novel genetic 

variants that influence brain structure and function. Moreover, such a test statistic 

outperforms the test statistics used in other association mapping methods in 

terms of statistical power (Nicolae, 2016; Wu and Lin, 2006; Reimherr and 

Nicolae, 2014; Huang et al., 2015).

• We introduce a GSIS procedure based on global test statistics to test the 

hypotheses of interest associated with functional phenotypes. The GSIS not only 

selects NG0 “important” genetic variants, but also offers the sure independence 

screening property (Fan and Lv, 2008) with a vanishing false selection rate. The 

use of GSIS can reduce the size of genetic variants from NG to NG0, leading to a 

computational gain on the order of O(NG/NG0).

• We develop a divide-and-conquer algorithm coupled with parallel computing to 

efficiently perform multiple comparisons in order to detect subregion-locus pairs, 

while controlling for their family-wise error (FWE) rate. Compared with 

VGWAS, FGWAS achieves an extensive computational gain in terms of both 

memory and speed.

• The package for FGWAS, along with its documentation, is freely accessible from 

the website “https://www.nitrc.org/projects/FVGWAS/”. To make it user-

friendly, we developed a graphical user interface to package the code, which is 

also freely downloadable from the same website. Our FGWAS package can 

handle three types of functional phenotypes: curves, surfaces, and volumes in 

ℝ3. To facilitate its application to real data, we use three computing languages, 

Rcpp, Matlab, and Python, to develop the corresponding versions.

2. Method

Suppose that we observe functional responses, clinical covariates and genetic markers for n 
unrelated subjects. Without loss of generality, we focus on a compact set, denoted as 

𝒟 ⊂ ℝ3, (e.g., cortical and subcortical regions), which is general enough to cover curves, 

surfaces, and volumes in ℝ3. Let d be a grid point in 𝒟. It is assumed that there are NV 

common grid points d1, …, dNV
 across all subjects. Let g be a locus in the set of NG genetic 

markers, denoted as 𝒢 = g1, …, gNG
. Specifically, for the i-th subject, we observe a J × 1 
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vector of imaging measurements at d, denoted as yi(d) = (yi1(d), …, yiJ(d))T, a pc × 1 vector 

of covariates (e.g., age and gender), denoted as xi with its first component being 1, and a pg 

×1 vector associated with the genetic marker at the locus g and/or xi, denoted as 

zi(g) = (zi, 1(g), …, zi, pg
(g))T.

2.1. FGWAS

We developed the FGWAS pipeline to efficiently carry out the association mapping of 

functional phenotypes. A schematic overview of FGWAS is given in Fig. 1. Our FGWAS 

consists of three major components:

• (I) a multivariate varying coefficient model (MVCM);

• (II) a global sure independence screening procedure;

• (III) a test procedure based on the global and local test statistics.

We elaborate on these components below.

2·2. FGWAS (I): Multivariate Varying Coefficient Model

For the genetic marker at locus g, the MVCM is defined as

yi j(d) = xi
T β j

(c)(d) + zi(g)T β j
(g)(d) + ηi j

(g)(d) + εi j(d), (1)

where β j
(c)(d) is a pc × 1 vector of non-genetic fixed effects, β j

(g)(d) is a pg × 1 vector of fixed 

genetic effects, ηi
(g)(d) = (ηi1

(g)(d), …, ηiJ
(g)(d))T characterizes both subject-specific and location-

specific variability, and εi(d) = (εi1(d), …, εiJ(d))T are measurement errors. It is also 

assumed that ηi
(g) and εi(d) are mutually independent and identical copies of SP(0, ∑η

(g)) and 

SP(0, Σε), respectively, where SP(μ, Σ) denotes a stochastic process vector with mean 

function μ(d) and covariance function Σ(d, d′). Moreover, Σε(d, d′) takes the form of 

Ωε(d)1(d = d′), where Ωε(d) is a nonnegative function of d and 1(·) is an indicator function 

of an event.

Compared with the standard linear regression model, MVCM explicitly accounts for spatial 

smoothness, spatial correlation, and the low-dimensional representation of functional 

responses (Zhu et al., 2011; Zipunnikov et al., 2011; Zhu et al., 2014; Guo, 2002). The 

functional responses in neuroimaging studies can usually be regarded as a noisy version of a 

smooth function of d ∈ 𝒟. For spatial smoothness, it is reasonable to assume that β j
(c)( ⋅ ) and 

β j
(g)( ⋅ ) in MVCM may inherit the smooth feature from functional phenotypes and can be 

represented as a linear combination of a small number of basis functions, such as B-spline. 

For spatial correlation, it is assumed that ηi j
(g)( ⋅ )’s are smooth functions and allow for the 

Karhunen-Loeve expansion as follows:
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ηi j
(g)(d) = ∑

l = 1

∞
ξi, jlψ jl(d) (2)

where ψjl(·)’s are eigenfunctions of ∑ j j
(g) ( ⋅ , ⋅ ) such that 

∑ j j
(g) (d, d′) = ∑l = 1

∞ λ jlψ jl(d)ψ jl(d′) with ∑l = 1
∞ λ jl < ∞ captures the spatial correlation of 

ηi j
(g)(d). Moreover, ξi,jl is the (j, l)–th functional principal component score of the i–th subject 

such that E(ξi,jl) = 0 and Var(ξi,jl) = λjl. Thus, we can accurately approximate ηi j
(g)(d) by a 

small number of eigenfunctions such that ηi j
(g)(d) ≈ ∑l = 1

L ξi, jlψ jl(d), where L is a positive 

integer. Finally, we can obtain a low-dimensional representation of yij(d) as follows:

yi j(d) ≈ xi
T β j

(c)(d) + zi(g)T β j
(g)(d) + ∑

l = 1

L
ξi, jlψ jl(d) . (3)

For each genetic marker, representation (3) ensures that the intrinsic dimension of yij(·) is 

much lower than NV. Moreover, since it is expected that β j
(g)(d) = 0 holds for most loci, the 

true search space should be much smaller than NV × NG.

Under model (1), we start with a hypothesis testing problem on β j
(g)(d), j = 1, …, J,

H0: β(g)(d) = 0 v . s . H1: β(g)(d) ≠ 0 for each (g, d), (4)

where β(g)(d) = vec([β1
(g)(d), …, βJ

(g)(d)]), and vec(·) is the vectorization of a matrix.

As an example, in our analysis of data from the Alzheimers Disease Neuroimaging Initiative 

(ADNI), we are interested in detecting novel genetic markers that influence the radial 

distance and determinant of the Jacobian matrix of both the left and right hippocampal 

surfaces. We consider MVCM (1) on the hippocampal surfaces with (yi1(d), yi2(d))T = 

(radial distance, determinant)T, xi =(intercept, gender, age, apolipoprotein E (APOE) gene 

ε4, the top 5 principal component scores of all single-nucleotide polymorphisms [SNPs])T, 

and zi(g) =(SNP value).

We introduce a local Wald-type test statistic Tn(g, d) as follows:

Tn(g, d) = r(g)(d)T ∑̂η
(g)

(d, d)
−1

⊗ ZX
T (g)ZX(g) −1 r(g)(d), (5)
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where r(g)(d) = β(g)(d) − Bias(β(g)(d)), ZX(g) = (I–X(XTX)−1XT)Z(g)T, X = (x1, …, xn)T, Z(g) 

= (z1(g), …, zn(g)), and ⊗ denotes the Kronecker product. The β(g)(d) and ∑̂η
(g)

 are estimates 

of the corresponding parameters, Bias(β(g)(d)) is the bias term of β(g)(d). Moreover, under the 

null hypothesis H0, the limiting distribution of Tn(g, d) can be approximated by a weighted 

χ2 distribution (Zhang and Chen, 2007).

To estimate all unknown parameters in model (1), we employ a weighted least squares 

(WLS) method based on the multivariate local polynomial kernel smoothing technique (Fan 

and Gijbels, 1996; Zhang and Chen, 2007). Let K(·) be a kernel function, a⊗2 = aaT, and H 
be a bandwidth matrix with a simple diagonal form. We also denote that KH,m(d) = |H|−1K(H
−1(dm – d)) and wH(dm – d) = (1, (dm – d)T H−1)T. For each j and a fixed bandwidth matrix 

Hβ, the WLS estimator of β j
(g)(d) is given by

β j
(g)(d) = ZX

T (g)ZX(g) −1ZX
T (g) ∑

m = 1

NV
am(Hβ, d)y ⋅ ,   j (dm), (6)

where am(Hβ, d) = eT ∑m = 1
NV KHβ, m(d) wHβ

(dm − d)
⊗ 2 −1

KHβ, m(d)wHβ
(dm − d), e = (1, 0, 

0, 0)T, and y·,j(d) = (y1,j(d), …, yn,j(d))T. Based on (6), for a fixed bandwidth matrix Hη, the 

WLS estimate of ηi, j
(g)(d) is given by

ηi, j
(g)(d) = ∑

m = 1

NV
am(Hη, d) yi j(dm) − xi

T β j
(c)(dm) − zi(g)T β j

(g)(dm) (7)

Finally, we can estimate ∑η
(g) (d, d′) by using the sample covariance function of ηi

(g)(d), 

denoted as ∑̂η
(g)

(d, d′).

To select the optimal bandwidth in β j
(g)(d) (or ηi, j

(g)(d)), we use the generalized cross-

validation score method (Zhang and Chen, 2007; Zhu et al., 2012). We standardize all 

covariates to have mean zero and standard deviation one; thus, we may choose a common 

bandwidth for all covariates. Moreover, following the arguments of Fan and Zhang (1999), a 

small bandwidth leads to a small value of Bias(β(g)(d)), which can be dropped from the test 

statistics hereafter.

Four big-data challenges stem from the calculations of Tn(g, d).

• (B1) Calculating ∑̂η
(g)

(d, d) across all loci and grid points (O(NVNG)) is 

computationally intensive.
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• (B2) Bandwidth selection in Tn(g, d) across all loci (O(NG)) can also be 

computationally intensive.

• (B3) Substantial computer resources are required to store all NV × NG test 

statistics Tn(g, d).

• (B4) Determining how to speed up the calculation of Tn(g, d).

To solve the computational bottlenecks in (B1)–(B4), we propose the following solutions:

• (S1) Calculate ∑̂η
(g)

(d, d) under the null hypothesis H0 for all loci.

• (S2) Divide all loci into multiple groups based on their minor allele frequencies 

(MAFs), and select a common optimal bandwidth for each group.

• (S3) Develop a GSIS procedure to eliminate many ‘noisy’ loci based on a global 

Wald-type statistic.

• (S4) Set up a parallel computing strategy so that processing large-scale genetic 

data can be technically feasible with limited computer resources.

The key idea of (S1) is to calculate ∑̂η
(g)

(d, d) under the null hypothesis in (4), since it is 

expected that the null hypothesis H0 holds for most loci. Similar to the estimation procedure 

in (7), the estimate of ∑η
(g)(d) under H0 is given by

∑̂η
(g)

(d, d) = n−1 ∑
i = 1

n
ηi(d) − η(d) ⊗ 2, (8)

where ηi(d) = ∑m = 1
NV am(Hη, d) yi

T(dm) − xi
T β(c)(dm)

T
 and η(d) = n−1∑i = 1

n ηi(d). Since 

∑̂η
(g)

(d, d) is invariant across all loci, we only need to calculate ∑̂η
(g)

(d, d) at each vertex d and 

denote it as ∑̂η(d ) from here on. Moreover, since ∑̂η(d ) in (8) is only related to the non-

genetic covariates, the optimal bandwidth matrix Hη is calculated once at most for all loci. 

Thus, the total complexity of computing all ∑̂η(d )  is at least min(NV, NG) times faster 

than calculating ∑̂η
(g)

(d, d) .

The key idea of (S2) is to select the common optimal bandwidth matrix Hβ in β(g)(d)
according to the MAFs. Specifically, we divide all the genetic markers into 6 groups 

according to their MAFs, including MAF ∈ (0.075, 0.15], MAF ∈ (0.15, 0.25], MAF ∈ 
(0.25, 0.35], MAF ∈ (0.35, 0.45], and MAF ∈ (0.45, 0.50]. For each MAF group, we 

randomly select kH SNPs (e.g., kH = 10), and calculate the optimal bandwidth in β(g)(d)
when each genetic marker is included in model (1). Consequently, the optimal bandwidth in 

each group is determined as the average of all the kH bandwidths. Moreover, the number of 

MAF groups can be larger than 6. We elaborate on (S3) and (S4) in the next subsection.
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2.3. FGWAS (II): A Global Sure Independence Screening Procedure

The key idea of the GSIS procedure in (S3) is to detect potentially causal genetic markers by 

using a dimension reduction method and an approximation method (Huang et al., 2015). 

Specifically, since only a small number of causal genetic markers are expected to contribute 

to the imaging phenotypic measures, we consider a global Wald-type statistic to eliminate 

many loci with weak or even no genetic effects. Let w(d) be a prior distribution of d in 𝒟. 

The global Wald-type statistic at locus g, denoted as T (g), is an integral of Tn(g, d)w(d) with 

respect to d ∈ 𝒟; that is, T(g) = ∫
d ∈ 𝒟

Tn(g, d)w(d)dL(d), where L(d) is the Lebesgue 

measure. Selecting different w(d) allows us to introduce the prior information of specific 

regions of interest (ROIs). If there is no such prior information, then a uniform prior can be 

used. In this case, except for a constant scalar, T (g) can be approximated by

Tn(g) = 1
NV

tr [ ∑
m = 1

NV
Yw(dm) ∑̂η(dm)

−1
Yw

T(dm)] ⊗ Qz x
−1(g)vec(ZX

T (g)) ⊗ 2 , (9)

where Yw(d) = ∑m = 1
NV am(Hβ, d)[y1, ⋅(dm), …, yn, ⋅(dm)]T, and Qz x(g) = ZX

T (g)ZX(g). At a 

specific locus g, if the area of the true genetic effect region, denoted by 𝒟∗(g), is relatively 

large and its corresponding measurements are moderate, then the value of Tn(g) should be 

relatively large. Thus, if the value of Tn(g) is large, then the locus g is more likely to be a 

causal locus.

Our GSIS procedure consists of the following steps:

• Step (II.1). Calculate XT X and PX with the computational complexity of O(npc
2).

•
Step (II.2). Calculate ∑m = 1

NV Yw(dm) ∑̂η(dm)
−1

Yw(dm)T with the computational 

complexity of O(NV
2 n2).

• Step (II.3). For the locus g, calculate Tn(g) with the computational complexity of 

O((pc + pg)2n2).

• Step (II.4). Repeat Step (II.3) for all loci and calculate the p–value of Tn(g) using 

an approximation method (Zhang and Chen, 2007; Zhu et al., 2012; Huang et al., 

2015). Specifically, Tn(g) can be approximated by a χ2–type random variable 

α1χ2(α2) + α3, where α1, α2, and α3 are respectively given by

α1 =
κ3(T)

4κ2(T) , α2 =
8κ2

3(T)
κ3

2(T)
, and α3 = κ1(T) −

2κ2
2(T)

κ3(T) , (10)

Huang et al. Page 9

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where κk(T), k = 1, 2, 3, are respectively the first three sample cumulants of 

Tn(g). Finally, the p–value of Tn(g) can be approximated by using P (χ2(α2) ≥ 
[Tn(g) – α3]/α1).

• Step (II.5). Sort the −log10(p)–values of all Tn(g)s and select the top N0 loci 

(e.g., N0 = 1, 000), denoted by 𝒢0
∗ = g1

∗, …, gN0
∗ . From here on, we call 𝒢0

∗ a 

candidate significant locus set. Usually, we choose a relatively large N0 so as to 

guarantee that all true positive loci are contained in 𝒢0
∗ with high probability.

The computational complexity of GSIS is primarily associated with the number of loci, NG. 

If NG is of a super large scale (e.g., O(108)), the GSIS procedure can be very time 

consuming or even fail on a single computer core with limited computer memory. To address 

this issue, we propose a divide-and-conquer algorithm along with a parallel computing 

strategy, since the calculation of Tn(g) can be done independently. First, we divide the whole 

genetic data set into KG groups (e.g., each chromosome as a group). Then, we perform Steps 

(II.1)–(II.3) independently for each group of genetic markers. Finally, we combine the 

Tn(g)’s across all groups and approximate their corresponding p–values based on the method 

used in Step (II.4). Subsequently, we determine the candidate significant locus set 𝒢0
∗. More 

details on the parallel computing strategy are provided in the next subsection.

2.4. FGWAS (III): A Test Procedure

The objectives of the test procedure are

• (O.1) to detect the genetic markers that are significantly associated with the 

functional phenotype as a whole; and

• (O.2) to detect the subregion(s) (or compact set(s)) of the functional phenotype 

that are significantly associated with some genetic marker(s).

Note that it is important to detect significant voxel-locus pairs for VGWAS, but such 

detection is less meaningful for the functional responses, which are intrinsically smooth 

functions. Moreover, the existing GWAS methods for imaging phenotypes focus on (O.1), 

whereas we are particularly interested in (O.2).

To achieve (O.1), we calculate a maximum statistic of all Tn(g)’s across all loci as follows:

Tn, 𝒢 = max
g ∈ 𝒢

Tn(g) . (11)

The maximum statistic Tn, 𝒢 plays a crucial role in controlling the FWE rate.

To achieve (O.2), we resort to cluster size inference, which plays an important role in 

assessing the significance of each subregion that consists of interconnected grid points for 

which the p-values are greater than a given threshold, say αI = 0.005 or 0.001 (Smith and 

Nichols, 2009; Ge et al., 2012). For functional phenotypes, we prefer to replace the cluster 

by the subregion from here on. For the locus g, let p(g, d) be the p–value of Tn(g, d) at the 
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grid point d and let A(g, αI) be the largest subregion at a given threshold αI based on the 

map of p(g, d): d ∈ 𝒟 . To detect significant subregion-locus pairs, we consider a maximum 

subregion statistic, i.e.,

A(𝒢, αI) ≐ max
g ∈ 𝒢

A(g, αI), (12)

which, in practice, can be approximated by a local maximum subregion statistic A(𝒢0
∗, αI) in 

terms of both size and distribution (Huang et al., 2015).

We use the wild bootstrap method to approximate the null distribution of Tn, 𝒢 and that of 

A(𝒢0
∗, αI) under the assumption that the null hypothesis H0 in (4) holds for all (g, d) ∈ 𝒢 × 𝒟 . 

We propose an efficient wild bootstrap procedure to simultaneously detect significant loci 

and subregion-locus pairs as follows:

• Step (III.1). Calculate Tn(g*, d) for each pair (g∗, d) ∈ 𝒢0
∗ × 𝒟 as

tr [Yw(dm) ∑̂η(dm)
−1

Yw
T(dm)] ⊗ Qz x

−1(g∗)vec(ZX
T (g∗)) ⊗ 2 . (13)

• Step (III.2). Calculate the uncorrected p–values of Tn(g*, d) across all 

(g∗, d) ∈ 𝒢0
∗ × 𝒟 based on the F distribution.

• Step (III.3). Calculate A(g*, αI) based on the p-values of {Tn(g*, d)} obtained in 

Step (III.2).

• Step (III.4). Apply the wild bootstrap method to the set 𝒢0
∗.

– Step (III.4.1). Fit model (1) under the null hypothesis H0, which yields 

β(c) ∗
_ (d), ηi

∗
_ (d) and εi

∗
_ (d) for all i and d.

– Step (III.4.2). Generate a random sample vi
b and υi

b(dm) from a N(0, 1) 

generator for i = 1, …, n and m = 1, …, NV. B bootstrap samples are 

constructed as

yi
(b)(dm) = xi

T β_
(c) ∗(dm) + vi

bη_i
∗(dm) + υi

b(dm)ε_i
∗(dm), b = 1, …, B

for all i and dm ∈ 𝒟.

– Step (III.4.3). For all g ∈ 𝒢, calculate the global Wald-type statistic 

Tn
(b)(g) based on the bootstrap samples.
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– Step (III.4.4). Sort all Tn
(b)(g)  according to their magnitudes and select 

the top N loci to form 𝒢0
∗.

– Step (III.4.5). Calculate Tn, 𝒢
(b) = maxg ∈ 𝒢 Tn

(b)(g) .

– Step (III.4.6). Calculate A(b)(𝒢0
∗ (b), αI) based on 

Tn
(b)(g, d), (g, d) ∈ 𝒢0

∗ (b) × 𝒟 . For computational efficiency, we 

suggest directly comparing Tn
(b)(g, d) with the 100(1−αI)th percentile of 

the F distribution in order to determine significant subregions at each 

locus g.

• Step (III.5). Calculate the FWE corrected p–values of Tn(g) based on the 

empirical distribution of Tn, 𝒢
(b)

b = 1, …, B
. Since NG is much larger than the 

sample size, choose a significance level, say α = 0.5.

• Step (III.6). For each locus g ∈ 𝒢0
∗, calculate all possible subregions and their 

associated FWE corrected p–values based on the empirical distribution of 

A(b)(𝒢0
∗ (b), αI) b = 1, …, B

.

Similar to the GSIS procedure, the computational issue still exists in the test procedure for 

large NG. We also use the divide-and-conquer algorithm here. Specifically, after generating 

bootstrap samples in Steps (III.4.1)–(III.4.2), we divide the whole genetic data set into KG 

disjoint groups such that 𝒢 = ∪k = 1
KG 𝒢k and 𝒢k ∩ 𝒢k′ = ϕ for k ≠ k′. Then, Steps (III.4.3)–

(III.4.6) are independently performed for bootstrap samples on each group of genetic 

markers. For each group, we can obtain the relevant Tn, 𝒢k
(b) , A(b)(𝒢0, k

∗ (b), αI)
b = 1

B
 for k = 1, 

…, KG. Then the maximum statistics Tn, 𝒢
(b)  and A(𝒢0, k

∗ (b), αI) across all groups are calculated 

as follows:

Tn, 𝒢
(b) = max

1 ≤ k ≤ KG
Tn, 𝒢k

(b) , b = 1, …, B, (14)

A(𝒢0
∗ (b), αI) = max

1 ≤ k ≤ KG
A(b)(𝒢0, k

∗ (b), αI) , b = 1, …, B, (15)

which lead to the empirical distributions of Tn, 𝒢
(b)

b = 1
B

 and A(𝒢0
∗ (b), αI) b = 1

B
 under H0. 

Consequently, the corresponding corrected p–values are derived in Steps (III.5)–(III.6). In 

addition, this parallel computing strategy can be conducted on the bootstrap sampling level, 
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which means calculations on different bootstrap samples in Step (III.4) can be carried out at 

the same time on different cores.

3. Simulation Studies

In this section, we use Monte Carlo simulations to evaluate the finite-sample performance of 

FGWAS. The hypothesis testing problem we focus on is to test the null hypothesis of no 

association for all the functional phenotypes at each locus. All computations for these 

numerical examples were done in Matlab on a Dell C6100 server. The computation for 

FGWAS is efficient even for large-scale imaging genetic data, as shown in the real data 

analysis.

We simulated imaging surface data at NV = 15, 000 vertices on the right hippocampus 

obtained from the publicly accessible ADNI data. More information on the ADNI data used 

in the current study is given in the next section. We only considered the additive genetic 

effect of SNPs on the right hippocampal surface data. The yi,j(d)s were generated from 

model (1) given by

yi, j(d) = xi
T β j

(c)(d) + ∑
g = 1

NG
zi(g)β j

(g)(d) + ηi, j(d) + εi, j(d) (16)

for i = 1, …, n and j = 1, J = 2, where εi(d) N(0, Ω = diag(σ1
2, σ2

2)), zi(g) were simulated 

genetic data as described below, and xi = (1, xi1, …, xi8)T were generated from U(0, 1) for 

continuous variables or from the Bernoulli distribution with a success probability of 0.5 for 

discrete variables. The true values of β j
(c)(d) and ηi,j(d) were set to the estimates β j

(c)(d) and 

ηi, j(d) by fitting model (1) without genetic covariates to the real ADNI data set introduced in 

the next section. The elements in β j
(g)(d) for j = 1 and 2 corresponding to the pre-specified 

pairs of causal SNPs and affected ROIs were set to affect magnitude β j
∗, j = 1, 2  and zero 

otherwise. In addition, the affected ROI associated with the causal SNPs was pre-fixed as a 

circular region with radius r (Fig. 2).

We simulated genetic data zi(g) as follows. We used linkage disequilibrium (LD) blocks 

defined by the default method (Gabriel, 2002) of Haploview (Barrett et al., 2005) and 

PLINK (Purcell et al., 2007) to form SNP sets. To calculate the LD blocks, n subjects were 

simulated by randomly combining haplotypes of HapMap CEU subjects. We used PLINK to 

determine the LD blocks based on these subjects. We randomly selected 2,000 blocks, and 

combined haplotypes of HapMap CEU subjects in each block to form genotype variables for 

these subjects. We randomly selected 10 SNPs in each block; thus, we had NG = 20, 000 

SNPs for each subject. Moreover, we chose the first q SNPs as the causal SNPs. We set the 

sample size (n) and the number of causal SNPs (q) to be 1, 000 and 100, respectively. 

Finally, we used 100 Monte Carlo realizations.
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First, we evaluate the finite sample performance of the proposed GSIS for different settings 

of (N0, β1
∗, β2

∗, Ω). Specifically, we set β1
∗ = 0.01, β2

∗ = aβ1
∗, in which a was chosen from the set 

{0.5, 1, 1.5, 2}, and N0 between 100 and 2,000. Moreover, we set the radius of the ROI as r 
= 6. We considered two different settings of Ω, including (i) Ω = diag(σ1 = σ2 = 0.5); and (ii) 

Ω = diag(σ1 = 0.8, σ2 = 1). We defined the causal SNP rate as the ratio of the number of 

causal SNPs in 𝒢0
∗ over the total number of causal SNPs. Table 1 includes the causal SNP 

rates under different settings. As expected, the causal SNP rate increases as N0 and a 
increase. However, the causal SNP rate is low for small N0, especially when σ1 and σ2 are 

quite large. When N0 is set to be larger than 900, almost all causal SNPs are included in the 

set 𝒢0
∗ for most settings of (β1

∗, β2
∗, Ω). See Table 1 for more details.

Second, we evaluated the finite sample performance of FGWAS in detecting the causal SNP 

and subregion pairs. We set n = 1, 000, q = 100, Ω = 0.5I2, (β1
∗, β2

∗) = (0.01, 0.01), and r = 6. 

Moreover, we used an uncorrected αI = 0.005 p-value threshold to identify subregions 

consisting of contiguous supra-threshold vertices. If the vertices in a thresholded cluster 

overlapped with some vertices in the affected ROI at a causal SNP, then we call these 

vertices “true positive vertices”. If a thresholded subregion did not overlap with any vertices 

of the affected ROI at any causal SNP, we call such a subregion a “false positive” subregion. 

We summarized the results by using the Dice overlap ratio (DOR), the number of false 

positive subregions, and the size in the number of vertices in false positive subregions. DOR 

is the ratio between the number of true positive pixels over the size of the affected ROI 

(Huang et al., 2015). Thus, a higher DOR means a higher probability of detecting the 

affected ROI. As shown in Fig. 3, no false positive subregion is detected. These results 

further demonstrate that the GSIS procedure can effectively detect and localize relatively 

strong genetic effects. Moreover, the average DOR of N0 = 500 is higher than that of N0 = 

100.

Third, we compared the proposed FGWAS method with other two methods, i.e., the standard 

functional GWAS (Reimherr and Nicolae, 2014) and the FVGWAS package (Huang et al., 

2015). In order to make a fair comparison, we applied all three methods to the same 

simulated data sets. Since both standard functional GWAS and FVGWAS are feasible only 

for univariate imaging phenotypic measurements, we simplified model (16) by considering 

only one imaging measurement, i.e.,

yi(d) = xi
T β(c)(d) + ∑

g = 1

NG
zi(g)β(g)(d) + ηi(d) + εi(d), i = 1, …, n . (17)

Three factors are considered in the comparisons: (i) the genetic effect β*(d) in the affected 

region, (ii) the number of candidate significant loci N0, and (iii) the radius r of the affected 

ROI. In order to illustrate how each factor affects the finite sample performance of the three 

methods, we fixed two factors and chose different values for one factor in each setting. Fig. 

4 presents the receiver operating characteristic (ROC) curves for all three methods, 

Huang et al. Page 14

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponding to three different cases. In case 1, the genetic effect is set to β* = 0.005 and β* 

= 0.01, whereas other parameters Ω, n, N0, and r are set to 0.5, 1,000, 1,000, and 6, 

respectively. In case 2, the number of candidate loci is set to N0 = 500 and N0 = 1, 000, 

whereas other parameters Ω, n, β*, and r are set to 0.5, 1,000, 0.01, and 6, respectively. In 

case 3, the radius of the affected ROI is set to r = 3 and r = 9, whereas other parameters Ω, n, 

N0, and β* are set to 0.5, 1,000, 1,000, and 0.01, respectively. It can be found that, for each 

case, as the factor increases, the areas under the ROC curves for all the methods increase as 

well. Moreover, FGWAS outperforms both the standard functional GWAS and FVGWAS in 

all three cases, indicating that compared with standard functional GWAS and FVGWAS, 

FGWAS dramatically boosts the power for detecting various settings of genetic effects and 

affected ROIs.

4. ADNI Hippocampal Surface Data Analysis

4.1. ADNI Data Description

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging, 

National Institute of Biomedical Imaging and Bioengineering, Food and Drug 

Administration, private pharmaceutical companies and non-profit organizations as a $60 

million, 5-year public-private partnership. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). Determination of sensitive and specific markers of very early AD progression is 

intended to aid researchers and clinicians in developing new treatments and monitoring their 

effectiveness, as well as lessening the time and cost of clinical trials. The principal 

investigator of this initiative is Michael W. Weiner, MD, at the VA Medical Center and 

University of California, San Francisco. ADNI is the result of efforts of many 

coinvestigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The goal was to 

recruit 800 subjects, but the initial study (ADNI-1) has been followed by ADNI-GO and 

ADNI-2. To date, these three protocols have recruited over 1,500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow-up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

4.2. Data Processing

We applied FGWAS to the joint analysis of anatomical MRI and genetic data collected 

through ADNI-1. In this data analysis, we included 708 MRI scans from healthy controls 

and individuals with AD or MCI (186 AD, 388 MCI, and 224 healthy controls) from 

ADNI-1. The scans (from 462 men and 336 women, ages 75.42 ± 6.83 years), which were 

performed on a variety of 1.5 Tesla MRI scanners with protocols individualized for each 

scanner, include standard T1-weighted images obtained using volumetric 3-dimensional 

Huang et al. Page 15

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sagittal MPRAGE or equivalent protocols with varying resolutions. The typical protocol 

includes: repetition time = 2400 ms, inversion time = 1000 ms, flip angle = 8°, and field of 

view = 24 cm, with a 256×256×170 acquisition matrix in the x−, y−, and z−dimensions, 

which yields a voxel size of 1.25×1.26×1.2 mm3. We processed the MRI data by using 

standard steps, including anterior commissure and posterior commissure correction, skull-

stripping, cerebellum removing, intensity inhomogeneity correction, segmentation, and 

registration. Subsequently, we carried out automatic regional labeling by labeling the 

template and by transferring the labels following the deformable registration of subject 

images. After labeling 93 ROIs, we were able to compute volumes for each of these ROIs 

for each subject.

We adopted a hippocampal subregional analysis package based on surface fluid registration 

(Shi et al., 2013) that uses isothermal coordinates and fluid registration to generate one-to-

one hippocampal surface registration for computing the surface statistics. Then, we 

computed the various surface statistics on the registered surface, such as multivariate tensor-

based morphometry statistics, which retain the full tensor information of the deformation 

Jacobian matrix, together with the radial distance, which retains information on the 

deformation along the surface normal direction. More details can be found in (Wang et al., 

2011).

We considered the 818 subjects’ genotype variables acquired by using the Human 610-Quad 

BeadChip (Illumina, Inc., San Diego, CA) in the ADNI database, which includes 620,901 

SNPs. To reduce the population stratification effect, we used data from 749 Caucasians 

among all 818 subjects with complete imaging measurements at baseline. Quality control 

procedures included (i) call rate check per subject and per SNP marker, (ii) gender check, 

(iii) sibling pair identification, (iv) the Hardy-Weinberg equilibrium test, (v) marker removal 

by MAF, and (vi) population stratification. The second line preprocessing steps included 

removal of SNPs with (i) more than 5% missing values, (ii) MAF smaller than 5%, and (iii) 

Hardy-Weinberg equilibrium p-value < 10−6. Remaining missing genotype variables were 

imputed as the modal value. After the quality control procedures, 708 subjects and 501,584 

SNPs remained in the final data analysis.

4.3. Data Analysis

The hippocampus is believed to be involved in memory, spatial navigation and memory, and 

behavioral inhibition. In AD, the hippocampus is one of the first regions of the brain to be 

affected, leading to the confusion and loss of memory so commonly seen in the early stages 

of the disease. Recent work has revealed that the hippocampus is structurally and 

functionally asymmetric, and hippocampal asymmetry changes with AD progression, with 

the left hippocampus affected first by dementia, followed by atrophy in the right 

hippocampus after a time lag.

The objective of this data analysis was to examine the genetic effect of each of 501,584 

SNPs on either the left or right hippocampus and whether the genetic pathway of the left 

hippocampus overlaps with that of the right after partialing out the genetic effect of APOE 

ε4. To achieve this objective, we applied FGWAS with either the left or right hippocampal 

surface data as the functional phenotypes. Specifically, we chose the radial distance and 
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determinant of Jacobian matrix as two different surface measurements. Moreover, in model 

(1), we included an intercept, gender, age, APOE ε4, and the top 5 principal component 

scores of all SNPs as covariates. We had 708 subjects, 30,000 vertices on the hippocampal 

surface (15,000 on each side), and 501,584 SNPs. The number of candidate loci was set as 

N0 = 2, 000. Then, the total computational time was 91,423s and 92,091s for the left and 

right hippocampi, respectively.

We have the following findings. Fig. 5 (a)–(d) shows the Manhattan and QQ plots of the 

GWAS results for the left and right hippocampal surfaces, respectively. Moreover, Fig. 6 

(a)–(b) shows the density of the global Wald-type statistic and its χ2 approximation in the 

GSIS procedure, which are very close to each other, indicating the accuracy of the χ2 

approximation. Tables 2 and 3 present the top 50 SNPs associated with the left and right 

hippocampal surfaces. At the 10−5 significance level, 11 SNPs were detected as being 

associated with the left hippocampal surface, while 17 SNPs were found to be associated 

with the right hippocampal surface. Fig. 7 (a)–(b) presents the LocusZoom plot (Pruim et al., 

2010), which shows the regional association results near the top 1 SNP (rs657132 on gene 

HRH4, chr 18) from the GSIS procedure on the left hippocampal surface, and the top 1 SNP 

(rs4681527 on gene C3orf58, chr 3) on the right hippocampal surface. In particular, 

histamine receptor H4 (HRH4) is a protein-coding gene, and disease associated with HRH4 

includes cerebellar degeneration. Moreover, cholinergic receptor M4 (CHRM) is an 

important paralog of HRH4, and the loss of M4 receptors has been found in the 

hippocampus of AD patients (Mulugeta et al., 2003). Further information about all top 2,000 

SNPs on each side of the hippocampal surfaces are available online at http://

odin.mdacc.tmc.edu/bigs2/software.html.

In Step (III), we first calculated the corrected p-values of Tn(g*, d) across all vertices and 

candidate loci in 𝒢0
∗ to further detect significant vertex-locus pairs. In order to obtain the 

empirical distribution of Tn(g*, d) under H0, the wild bootstrap method was adopted. We set 

N0 = 2, 000 and generated B = 500 bootstrapped samples. We considered a parallel 

computing strategy and divided the genetic data into KG = 10 pieces. Fig. 6 (c)–(d) shows 

the density plots of Tn(g*, d) for N0 = 2, 000, corresponding to the left and right 

hippocampal surfaces, respectively, which are close to their χ2 approximations. 

Subsequently, we calculated the corrected p–values of Tn(g*, d). Fig. 8 (a) shows the 

corrected −log10(p) – values corresponding to the top 2 SNPs on the left and right 

hippocampal surfaces, where the color bar is presented as well.

In order to detect significant subregion-locus pairs, we set αI = 0.005 and calculated all 

possible subregions and their associated p-values against the top N0 = 2, 000 SNPs. Fig. 8 

(b) shows the −log10(p)–values for significant subregions that correspond to the top 2 SNPs 

on both hippocampal surfaces, where the color bar is also presented. In particular, for the top 

1 SNP, two subregions are found for the right hippocampal surface and one for the left 

hippocampal surface; whereas for the second top SNP, one subregion is found for each side 

of the hippocampal surfaces. Moreover, most significant subregions are likely to be 

symmetric across the left and right hippocampal surfaces. To specify the exact locations of 

significant subregions on the hippocampal surfaces, we recalled the cytoarchitectonic 
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subregions mapped on blank MR-based models at 3T of the hippocampal formation 

(Duvernoy, 2005; Frisoni et al., 2008), which are presented in Fig. 9. It shows that all the 

significant subregions are found in the CA1 subfield. Specifically, the most significant 

subregion (blue region indicated in Fig. 8 (b)) is found on the lateral and medial aspects of 

the tail (CA1 subfield), and other subregions are found on the dorsolateral aspect of the head 

(CA1 subfield). It is interesting to note that volumes of similar hippocampal subregions were 

found to be affected in AD (Frisoni et al., 2008), indicating that the results obtained from 

FGWAS are in agreement with those of previous work.

We applied the rank-rank scatter plot (Plaisier et al., 2010) in order to investigate the 

connection between the genetic pathway for the left hippocampus and that for the right 

hippocampus. We first selected the top 2,000 genes in the GWAS result on each side of the 

hippocampal surface and combined them, i.e., 3, 562 genes in total. Note that the rank 

information of each gene was calculated based on the largest −log10(p)–value of SNPs 

associated with this gene. According to the rank information, the rank-rank scatter plot is 

presented in Fig. 10. It can be found that the two genetic pathways have weak connection. 

Specifically, only a few top genes have similar rank information on the left and right 

hippocampal surfaces, indicating that hippocampal asymmetry exists. In fact, the 

hippocampus was found to be structurally and functionally asymmetric in both healthy 

adults and AD patients (Shi et al., 2009; Maruszak and Thuret, 2013). Furthermore, different 

gene-environment interaction effects are found on different hippocampal subfields (Rabl et 

al., 2014). Therefore, the hippocampal asymmetry in our studies may be sound. Apart from 

the existence of hippocampal asymmetry, we wanted to examine whether any common 

genetic effect is associated with AD on both the left and right hippocampal surfaces. There 

is one gene, RBFox1, with similar rank information on both sides of the hippocampus (rank: 

134 on the left hippocampal surface and 137 on the right hippocampal surface). Specifically, 

the amyloid precursor protein (APP) was found to be altered by transient RBFox1 

expression in HEK293 and HeLa cells. Moreover, proteolytic processing of APP leads to the 

formation of β-amyloid (Aβ) peptides, which accumulate in the brains of those affected by 

AD (Ghiso and Frangione, 2002). Therefore, RBFox1, which presents a common genetic 

effect on both sides of the hippocampus, may play an important role in the progression of 

AD.

Finally, we calculated the polygenic risk score (PRS) at each vertex for multiple thresholds 

of p-values (i.e., 0.001, 0.01, 0.05, and 0.1). Then, we used a vertex-wise linear regression 

model and the coefficient of determination, R2, to assess the proportion of variation in each 

imaging measurement that is explained by the PRS. The estimated R2 values across all 

vertices for two different types of imaging measurements are reported in Fig. 11-12. As the 

threshold increases, the estimated R2 values across all vertices increase. When the threshold 

is 0.05 or 0.1, the estimated R2 values are all above 0.5. Interestingly, comparing Fig. 11-12 

with Fig. 8 (b) reveals that the estimated R2 values in the significant subregions, which were 

detected in Step (III), are larger than those in other regions and more likely increase as the 

threshold increases.
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5. Conclusion and Discussion

We have developed a FGWAS pipeline for efficiently carrying out genome-wide association 

analysis of surface-based imaging genetic data. Our proposed FGWAS consists of an 

MVCM, a GSIS procedure, and a detection procedure based on wild bootstrapping methods. 

Three key advantages of FGWAS have been discovered: (i) the spatial correlation structure 

of imaging data and variability of multiple phenotypic measurements considered in the 

multivariate varying coefficient model; (ii) much lower computational complexity compared 

to standard functional GWAS (Reimherr and Nicolae, 2014), and (iii) a parallel computing 

strategy that makes FGWAS feasible for super large-scale genetic data. Simulation studies 

have been conducted to evaluate the finite sample performance of FGWAS. We successfully 

applied FGWAS to hippocampal surface data and genetic data from the ADNI. Our FGWAS 

is a valuable statistical toolbox for fast, large-scale imaging genetic analysis.

There are two substantial issues to be addressed in our future research. First, since our 

FGWAS is still a single SNP analysis framework (Huang et al., 2015), the power of FGWAS 

may be undermined by unobserved causal SNPs, correlation among adjacent SNPs, and 

SNP-SNP interactions (Tzeng et al., 2011; Wu et al., 2011). It has been shown that 

alternative approaches for testing the association between a single SNP set and individual 

phenotypes are promising for improving the power of GWAS (Ge et al., 2012; Thompson et 

al., 2013). Therefore, it is of great importance to generalize our FGWAS for mapping the 

association between a SNP set and functional neuroimaging.

Second, in this paper, our FGWAS can only be used to detect the genetic markers that 

influence neuroimaging phenotypes. However, as in GWAS of AD, a question of interest is 

to test the null hypothesis of no association between functional phenotypes and the 

genotypes or genetic interactions (gene-environment), for example, genome-wide interaction 

analysis of relating SNPs to education level (Frost et al., 2016), case control conditions or 

memory scores (Yan et al., 2015). Meanwhile, detecting these interactions within genome-

wide data can be challenging due to the loss in statistical power and computational 

efficiency. Therefore, generalizing our FGWAS for testing genetic interaction effects will be 

another aim in our future work.

Acknowledgments

The collection and sharing of data that we analyzed for this project were funded by the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI 
(Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, 
the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the 
following: Alzheimers Association; Alzheimers Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 
Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; 
NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; 
Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing 
funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the 
National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for 
Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the 
University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the 
University of Southern California.

Huang et al. Page 19

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of ld and haplotype maps. 
Bioinformatics. 2005; 21(2):263–265. [PubMed: 15297300] 

Bigos KL, Weinberger DR. Imaging genetics: days of future past. NeuroImage. 2010; 53:804–809. 
[PubMed: 20080192] 

Cannon TD, Keller MC. Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin 
Psychol. 2006; 40:267–290.

Casey BJ, Soliman F, Bath KG, Glatt CE. Imaging genetics and development: Challenges and 
promises. Human Brain Mapping. 2010; 31:838–851. [PubMed: 20496375] 

Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, 
Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen 
WS, Dale AM. Hierarchical genetic organization of human cortical surface area. Science. 2012; 
335:1634–1636. [PubMed: 22461613] 

Di CZ, Crainiceanu CM, Caffo BS, Punjabi NM. Multilevel functional principal component analysis. 
Annals of Applied Statistics. 2009; 3:458–488. [PubMed: 20221415] 

Domschke K, Dannlowski U. Imaging genetics of anxiety disorders. NeuroImage. 2010; 53:822–831. 
[PubMed: 19944771] 

Durston S. Imaging genetics in adhd. NeuroImage. 2010; 53:832–838. [PubMed: 20206707] 

Duvernoy, HM. The human hippocampus: functional anatomy, vascularization and serial sections with 
MRI. Springer Science & Business Media; 2005. 

Fan, J., Gijbels, I. Local Polynomial Modelling and Its Applications. Chapman and Hall; London: 
1996. 

Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space (with discussion). J 
R Statist Soc B. 2008; 70:849–911.

Fan J, Zhang W. Statistical estimation in varying coefficient models. The Annals of Statistics. 1999; 
27(5):1491–1518.

Fischl B. Freesurfer. Neuroimage. 2012; 62(2):774–781. [PubMed: 22248573] 

Frisoni GB, Sabattoli F, Lee AD, Dutton RA, Toga AW, Thompson PM. In vivo neuropathology of the 
hippocampal formation in ad: a radial mapping mr-based study. Neuroimage. 2006; 32(1):104–
110. [PubMed: 16631382] 

Frisoni GB, Ganzola R, Canu E, Rüb U, Pizzini FB, Alessandrini F, Zoccatelli G, Beltramello A, 
Caltagirone C, Thompson PM. Mapping local hippocampal changes in alzheimer’s disease and 
normal ageing with mri at 3 tesla. Brain. 2008; 131(12):3266–3276. [PubMed: 18988639] 

Frost HR, Shen L, Saykin AJ, Williams SM, Moore JH. Identifying significant gene-environment 
interactions using a combination of screening testing and hierarchical false discovery rate control. 
Genetic Epidemiology. 2016; 40(7):544–557. [PubMed: 27578615] 

Gabriel SB. The structure of haplotype blocks in the human genome. Science. 2002; 296(5576):2225–
2229. [PubMed: 12029063] 

Ge T, Feng J, Hibar DP, Thompson PM, Nichols TE. Increasing power for voxel-wise genome-wide 
association studies: The random field theory, least square kernel machines and fast permutation 
procedures. NeuroImage. 2012; 63:858–873. [PubMed: 22800732] 

Ge T, Nichols TE, Ghosh D, Mormino EC, Smoller JW, Sabuncu MR, Alzheimer’s Disease 
Neuroimaging Initiative. et al. A kernel machine method for detecting effects of interaction 
between multidimensional variable sets: An imaging genetics application. Neuroimage. 2015a; 
109:505–514. [PubMed: 25600633] 

Ge T, Nichols TE, Lee PH, Holmes AJ, Roffman JL, Buckner RL, Sabuncu MR, Smoller JW. 
Massively expedited genome-wide heritability analysis (megha). Proceedings of the National 
Academy of Sciences. 2015b; 112(8):2479–2484.

Ghiso J, Frangione B. Amyloidosis and alzheimer’s disease. Advanced drug delivery reviews. 2002; 
54(12):1539–1551. [PubMed: 12453671] 

Huang et al. Page 20

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Glahn DC, Thompson PM, Blangero J. Neuroimaging endophenotypes: Strategies for finding genes 
influencing brain structure and function. Human Brain Mapping. 2007; 28:488–501. [PubMed: 
17440953] 

Goodlett CB, Fletcher PT, Gilmore JH, Gerig G. Group analysis of dti fiber tract statistics with 
application to neurodevelopment. NeuroImage. 2009; 45:S133–S142. [PubMed: 19059345] 

Guo W. Functional mixed effects models. Biometrics. 2002; 58(1):121–128. [PubMed: 11890306] 

Hibar DP, Stein JL, Kohannim O, Jahanshad N, Saykin AJ, Shen L, Kim S, Pankratz N, Foroud T, 
Huentelman MJ, Potkin SG, Jack CR, Weiner MW, Toga AW, Thompson PM, ADNI. Voxelwise 
gene-wide association study (vgenewas): multivariate gene-based association testing in 731 elderly 
subjects. Neuroimage. 2011; 56:1875–1891. [PubMed: 21497199] 

Hibar P, Stein JL, Renteria M, Arias-Vasquez A, Desrivieres S, Jahanshad N, et al. Common genetic 
variants influence human subcortical brain structures. Nature. 2015; 520:224–229. [PubMed: 
25607358] 

Huang M, Nichols T, Huang C, Yang Y, Lu Z, Knickmeyer RC, Feng Q, Zhu HT. Fvgwas: fast 
voxelwise genome wide association analysis of large-scale imaging genetic data. NeuroImage. 
2015; 118:613–627. [PubMed: 26025292] 

Knickmeyer RC, Wang JP, Zhu HT, Geng X, Woolson S, Hamer RM, Konneker T, Lin WL, Styner M, 
Gilmore JH. Common variants in psychiatric risk genes predict brain structure at birth. Cerebral 
Cortex. 2014; 24:1230–1246. [PubMed: 23283688] 

Lin D, Cao H, Calhoun VD, Wang YP. Sparse models for correlative and integrative analysis of 
imaging and genetic data. Journal of Neuroscience Methods. 2014a; 237:69–78. [PubMed: 
25218561] 

Lin J, Zhu H, Mihye A, Sun W, Ibrahim JG. Functional-mixed effects models for candidate genetic 
mapping in imaging genetic studies. Genetic epidemiology. 2014b; 38(8):680–691. [PubMed: 
25270690] 

Liu JY, Calhoun VD. A review of multivariate analyses in imaging genetics. Frontiers in 
Neuroinformatics. 2014; 8

Maruszak A, Thuret S. Why looking at the whole hippocampus is not enough-a critical role for 
anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal 
changes for alzheimer’s disease diagnosis. Frontiers in cellular neuroscience. 2013; 8(95):1–11.

Medland SE, Jahanshad N, Neale BM, Thompson PM. Whole-genome analyses of whole-brain data: 
working within an expanded search space. Nature Neuroscience. 2014; 17(6):791–800. [PubMed: 
24866045] 

Meyer-Lindenberg A. Neural connectivity as an intermediate phenotype: Brain networks under genetic 
control. Human Brain Mapping. 2009; 30:1938–1946. [PubMed: 19294651] 

Miller MI, Qiu A. The emerging discipline of computational functional anatomy. NeuroImage. 2009; 
45:S16–S39. [PubMed: 19103297] 

Morris JS. Functional regression. Annual Review of Statistics and Its Application. 2015; 2:321–359.

Mulugeta E, Karlsson E, Islam A, Kalaria R, Mangat H, Winblad B, Adem A. Loss of muscarinic m4 
receptors in hippocampus of alzheimer patients. Brain Research. 2003; 960(1–2):259–262. 
[PubMed: 12505680] 

Nicolae DL. Association tests for rare variants. Annual review of genomics and human genetics. 2016; 
17:117–130.

Paus T. Population neuroscience: Why and how. Human Brain Mapping. 2010; 31:891–903. [PubMed: 
20496380] 

Pezawas L, Meyer-Lindenberg A. Imaging genetics: Progressing by leaps and bounds. NeuroImage. 
2010; 53:801–803. [PubMed: 20816317] 

Plaisier SB, Taschereau R, Wong JA, Graeber TG. Rank–rank hyper-geometric overlap: identification 
of statistically significant overlap between gene-expression signatures. Nucleic Acids Research. 
2010; 38(17-e169):1–17. [PubMed: 19843612] 

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer 
CJ. Locuszoom: regional visualization of genome-wide association scan results. Bioinformatics. 
2010; 26(18):2336–2337. [PubMed: 20634204] 

Huang et al. Page 21

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker 
PIW, Daly MJ, et al. Plink: a tool set for whole-genome association and population-based linkage 
analyses. The American Journal of Human Genetics. 2007; 81(3):559–575. [PubMed: 17701901] 

Rabl U, Meyer BM, Diers K, Bartova L, Berger A, Mandorfer D, Popovic A, Scharinger C, Huemer J, 
Kalcher K, Pail J, Haslacher H, Perkmann T, Windischberger C, Brocke B, Sitte HH, Pollak DD, 
Dreher J, Kasper S, Praschak-Rieder N, Moser E, Esterbauer H, Pezawas L. Additive gene–
environment effects on hippocampal structure in healthy humans. The Journal of Neuroscience. 
2014; 34(30):9917–9926. [PubMed: 25057194] 

Ramsay, JO., Silverman, BW. Functional Data Analysis. Springer-Verlag; New York: 2005. 

Reimherr M, Nicolae D. A functional data analysis approach for genetic association studies. The 
Annals of Applied Statistics. 2014; 8(1):406–429.

Scharinger C, Rabl U, Sitte HH, Pezawas L. Imaging genetics of mood disorders. NeuroImage. 2010; 
53:810–821. [PubMed: 20156570] 

Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD, Foroud T, Pankratz N, Moore JH, 
Sloan CD, Huentelman MJ, Craig DW, DeChairo BM, Potkin SG, Jack CR Jr, Weiner MW, Saykin 
AJ, ADNI. Whole genome association study of brain-wide imaging phenotypes for identifying 
quantitative trait loci in mci and ad: A study of the adni cohort. NeuroImage. 2010; 53:1051–1063. 
[PubMed: 20100581] 

Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive 
impairment and alzheimer’s disease: Meta-analyses of mri studies. Hippocampus. 2009; 19(11):
1055–1064. [PubMed: 19309039] 

Shi J, Thompson PM, Gutman B, Wang Y. Surface fluid registration of conformal representation: 
Application to detect disease burden and genetic influence on hippocampus. NeuroImage. 2013; 
78:111–134. [PubMed: 23587689] 

Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, 
threshold dependence and localisation in cluster inference. NeuroImage. 2009; 44:83–98. 
[PubMed: 18501637] 

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, 
Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tractbased spatial statistics: voxelwise 
analysis of multi-subject diffusion data. NeuroImage. 2006; 31:1487–1505. [PubMed: 16624579] 

Styner M, Lieberman JA, McClure DR, Weinberger RK, Jones DW, Gerig G. Morphometric analysis 
of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific 
factors. Proceedings of the National Academy of Sciences USA. 2005; 102:4872–4877.

Tao C, Nichols TE, Hua X, Ching CRK, Rolls ET, Thompson PM, Feng J. Generalized reduced rank 
latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications. 
NeuroImage. 2017; 144:35–57. [PubMed: 27666385] 

Thompson PM, Ge T, Glahn DC, Jahanshad N, Nichols TE. Genetics of the connectome. NeuroImage. 
2013; 80:475–488. [PubMed: 23707675] 

Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, 
Schumann G, Franke B, et al. The enigma consortium: large-scale collaborative analyses of 
neuroimaging and genetic data. Brain Imaging and Behavior. 2014; 8(2):153–182. [PubMed: 
24399358] 

Tzeng J, Zhang D, Pongpanich M, Smith C, McCarthy MI, Sale MM, Worrall BB, Hsu FC, Thomas 
DC, Sullivan PF. Studying gene and gene-environment effects of uncommon and common variants 
on continuous traits: A marker-set approach using gene-trait similarity regression. The American 
Journal of Human Genetics. 2011; 89(2):277–288. [PubMed: 21835306] 

Wang JL, Chiou JM, Muller HG. Functional data analysis. Annual Review of Statistics and Its 
Application. 2016; 3(1):257–295.

Wang Y, Song Y, Rajagopalan P, An T, Liu K, Chou YY, Gutman B, Toga AW, Thompson PM. 
Surface-based tbm boosts power to detect disease effects on the brain: An n = 804 adni study. 
NeuroImage. 2011; 56:1993–2010. [PubMed: 21440071] 

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data 
with the sequence kernel association test. The American Journal of Human Genetics. 2011; 89(1):
82–93. [PubMed: 21737059] 

Huang et al. Page 22

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wu R, Lin M. Functional mapping — how to map and study the genetic architecture of dynamic 
complex traits. Nature Reviews Genetics. 2006; 7:229–237.

Yan J, Kim S, Nho K, Chen R, Risacher SL, Moore JH, Saykin AJ, Shen L. Hippocampal 
transcriptome-guided genetic analysis of correlated episodic memory phenotypes in alzheimer’s 
disease. Frontiers in genetics. 2015; 6

Yushkevich PA, Zhang H, Simon TJ, Gee JC. Structure-specific statistical mapping of white matter 
tracts. Neuroimage. 2008; 41:448–461. [PubMed: 18407524] 

Zhang J, Chen J. Statistical inference for functional data. The Annals of Statistics. 2007; 35:1052–
1079.

Zhang YW, Xu ZY, Shen XT, Pan W. Testing for association with multiple traits in generalized 
estimation equations, with application to neuroimaging data. NeuroImage. 2014; 96:309–325. 
[PubMed: 24704269] 

Zhao Y, Castellanos FX. Annual research review: Discovery science strategies in studies of the 
pathophysiology of child and adolescent psychiatric disorders: promises and limitations. Journal of 
Child Psychology and Psychiatry. 2016; 57:421–439. [PubMed: 26732133] 

Zhu H, Kong L, Li R, Styner M, Gerig G, Lin W, Gilmore JH. Fadtts: functional analysis of diffusion 
tensor tract statistics. NeuroImage. 2011; 56:1412–1425. [PubMed: 21335092] 

Zhu H, Fan J, Kong L. Spatially varying coefficient model for neuroimaging data with jump 
discontinuities. Journal of the American Statistical Association. 2014; 109:977–990.

Zhu HT, Li RZ, Kong LL. Multivariate varying coefficient model for functional responses. Annals of 
Statistics. 2012; 40:2634–2666. [PubMed: 23645942] 

Zipunnikov V, Caffo BS, Yousem DM, Davatzikos C, Schwartz BS, Crainiceanu C. Functional 
principal components model for high-dimensional brain imaging. Neuroimage. 2011; 58:772–784. 
[PubMed: 21798354] 

Huang et al. Page 23

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic overview of FGWAS
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Fig. 2. 
Simulation settings: Green and blue regions in each panel respectively represent the right 

hippocampal surface and the affected ROI associated with the causal SNPs. From left to 

right, the radii of the affected ROIs are respectively set to 3, 6, and 9.
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Fig. 3. 
Simulation results for the association between SNPs and subregions: (a) size in the number 

of vertices of false positive subregions in each causal SNP; (b) number of false positive 

subregions in each causal SNP; and (c) Dice overlap ratio (DOR) in each causal SNP. 

Parameters (β1
∗, β2

∗), Ω, and r are set to (0.01, 0.01), 0.5I2, and 6, respectively.
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Fig. 4. 
Simulation results for comparisons among FVGWAS, standard functional GWAS, and FG-

WAS in identifying significant voxel-locus pairs: (a) Case 1. ROC curves of all three 

methods with β* = 0.005 and β* = 0.01, whereas other parameters Ω, n, N0, and r are set to 

0.5, 1000, 1000, and 6, respectively. (b) Case 2. ROC curves of all three methods with N0 = 

500 and N0 = 1, 000, whereas other parameters Ω, n, β*, and r are set to 0.5, 1000, 0.01, and 

6, respectively. (c) Case 3. ROC curves of all three methods with r = 3 and r = 9, whereas 

other parameters Ω, n, N0, and β* are set to 0.5, 1000, 1000, and 0.01, respectively.

Huang et al. Page 27

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
ADNI hippocampal surface GWAS: (a) Manhattan plot (left hippocampal surface); (b) 

Manhattan plot (right hippocampal surface); (c) QQ plot (left hippocampal surface); (d) QQ 
plot (right hippocampal surface).
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Fig. 6. 
ADNI hippocampal surface GWAS: Density plot of Tn(g) and its χ2 distribution 

approximation from the GSIS procedure on the (a) left and (b) right hippocampal surfaces. 

The density plot of Tn(g*, d) and its χ2 distribution approximation from the bootstrapping 

procedure on (c) the left and (d) right hippocampal surfaces.
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Fig. 7. 
ADNI hippocampal surface GWAS: LocusZoom plot showing the regional association 

results near (a) the top 1 SNP (rs657132) from the GSIS procedure on the left hippocampal 

surface and (b) the top 1 SNP (rs4681527) from the GSIS procedure on right hippocampal 

surface.
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Fig. 8. 
ADNI hippocampal surface GWAS: (a) corrected −log10(p)–values across all vertices 

corresponding to top 2 SNPs on both the left and right hippocampal surfaces (rs657132 and 

rs604345 for the left hippocampal surface, rs4681527 and rs3108514 for the right 

hippocampal surface); (b) −log10(p)–values for significant subregions to top 2 SNPs on both 

the left and right hippocampal surfaces (rs657132 and rs604345 for the left hippocampal 

surface, rs4681527 and rs3108514 for the right hippocampal surface).
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Fig. 9. 
ADNI hippocampal surface GWAS: Cytoarchitectonic subregions mapped on blank MR-

based models at 3T of the hippocampal formation (Duvernoy, 2005; Frisoni et al., 2006, 

2008).
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Fig. 10. 
ADNI hippocampal surface GWAS: Rank-rank scatter plots. The rank information of both 

the top 2000 genes on the left hippocampal surface and those on the right hippocampal 

surface, which were calculated based on the largest −log10(p)–values of SNPs associated 

with each gene.
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Fig. 11. 
ADNI hippocampal surface GWAS: Estimated R2 for the imaging measurement (radial 

distance) across all vertices in multiple thresholds of p-values ((a) 0.001, (b) 0.01, (c) 0.05, 

and (d) 0.1).
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Fig. 12. 
ADNI hippocampal surface GWAS: Estimated R2 for the imaging measurement 

(determinant of Jacobian matrix) across all vertices in multiple thresholds of p-values ((a) 

0.001, (b) 0.01, (c) 0.05, and (d) 0.1).
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