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Summary

We consider a functional linear Cox regression model for characterizing the association between 

time-to-event data and a set of functional and scalar predictors. The functional linear Cox 

regression model incorporates a functional principal component analysis for modeling the 

functional predictors and a high-dimensional Cox regression model to characterize the joint effects 

of both functional and scalar predictors on the time-to-event data. We develop an algorithm to 

calculate the maximum approximate partial likelihood estimates of unknown finite and infinite 

dimensional parameters. We also systematically investigate the rate of convergence of the 

maximum approximate partial likelihood estimates and a score test statistic for testing the nullity 

of the slope function associated with the functional predictors. We demonstrate our estimation and 

testing procedures by using simulations and the analysis of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) data. Our real data analyses show that high-dimensional 

hippocampus surface data may be an important marker for predicting time to conversion to 

Alzheimer’s disease. Data used in the preparation of this article were obtained from the ADNI 

database (adni.loni.usc.edu).
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1. Introduction

Roughly more than 5 million Americans are suffering from memory loss and dementia 

caused by Alzheimer’s Disease (AD) and it costs the nation approximately 203 billion 

dollars in medical expenses solely in 2013. An earlier and more accurate diagnosis of AD is 

considered to be an important goal for researchers because therapeutic intervention is more 

likely to be more beneficial during the early development of the disease. This led to the 

development of Mild Cognitive Impairment (MCI), which is a transitional stage between 

normal aging and the development of AD (Petersen, 2004). MCI is characterized by 
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insidious onset and gradual progression, and commonly arises as a result of underlying 

neurodegenerative pathology. There is a substantial interest in delineating a set of 

biomarkers that provide evidence of such neurodegenerative pathology in living individuals, 

with the goal of specifying the likelihood that the pathophysiological process is due to 

Alzheimer’s disease (MCI-AD) and will lead to dementia within a few years. Accordingly, 

increasing attention has been devoted to investigate the utility of various imaging, genetic, 

clinical, behavioral, and fluid data to predict the conversion from MCI to AD (Risacher et 

al., 2009).

The development of functional linear Cox regression model (FLCRM) is motivated by 

addressing a critical question: “how do we accurately predict the time to conversion in 

individuals who harbor AD pathology, as well as assess the predictive role of surface 

morphology?” There is a long-term interest in answering this question. Li et al. (2013) 

employed data from 139 MCI subjects in ADNI to evaluate the predictive power of brain 

volume, ventricular volume, hippocampus volume, APOE status, cerebrospinal fluid (CSF) 

biomarkers, and behavioral scores. Da et al. (2014) used 381 MCI subjects from ADNI to 

evaluate several biomarkers for predicting MCI to AD conversion including spatial patterns 

of brain atrophy, ADAS-Cog score, APOE genotype, and cerebrospinal fluid (CSF) 

biomarkers. To the best of our knowledge, no prior study has examined the role of 

neuroimaging data in predicting time to conversion from MCI to AD, while adjusting for 

low-dimensional behavioral and clinical measures.

The aim of this paper is to consider a FLCRM to examine the relationship of the survival 

distribution to a set of functional and scalar predictors in large-scale biomedical studies. Let 

the random variables T, C, and T̃ = min{T, C} be, respectively, the failure time, censoring 

time, and observed time, and f(t) and S(t), respectively, denote the probability density 

function and the survival function of T. The Cox regression model (Cox, 1972) has been 

widely used to model survival time T as a function of p predictors, denoted by Z = (z1, ⋯, 

zp)T. The hazard function for the Cox regression model has the form

(1.1)

where h0(t) is a completely unspecified baseline hazard function and γ = (γ1, ⋯, γp)T. 

Although the Cox regression model and its various extensions have been widely investigated 

for a small number of predictors (Kalbfleisch and Prentice, 2002; Ibrahim et al., 2001; Cox, 

1975), there is a great interest in developing accurate risk prediction models with high-

dimensional genomic and clinical data to predict censored survival outcomes (Cai et al., 

2011; Li and Ma, 2013).

Existing survival models for high-dimensional genomic data, however, suffer from a major 

limitation of incorporating infinite-dimensional imaging data to predict survival outcomes. 

Compared with genetic and clinical data, a key unique feature of imaging data is that they 

are high dimensional and intrinsically continuous functions measured at a large number of 

grid points. The effect of imaging data on survival outcomes is often non-sparse, which 

makes inference notoriously difficult based on existing regularization methods (Huang et al., 
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2013; Xu, 2012). Therefore, it is imperative to use some dimension reduction methods to 

extract and select “low-dimensional” important features, while eliminating redundant 

features (Johnstone and Lu, 2009).

Functional linear regression has become a standard method in functional data analysis for 

incorporating functional predictors. Most functional linear regression models focus on 

modeling the relationship between a functional or continuous response, Y, and a one-

dimensional functional predictor X(s), in which s varies in a compact set . Functional 

linear regression usually assumes

(1.2)

where ε is a noise term independent of X(s) and β(s) is an unknown function of interest. 

Two popular estimation methods for β(s) include the functional principal component 

analysis (FPCA) and methods of penalization. A few examples include Hall and Horowitz 

(2007); Reiss and Ogden (2007, 2010); Morris (2015) and the references therein. However, 

very little has been done on modeling survival outcomes and scalar and functional 

predictors.

We consider a FLCRM that incorporates (1.1) and (1.2) for modeling the relationship 

between survival outcomes and a set of finite and infinite dimensional predictors. 

Specifically, the hazard function for the FLCRM has the form

(1.3)

At the time of submission, we are aware of three recent papers on the development of 

various estimation methods for model (1.3). Gellar et al. (2015) and Qu et al. (2016) 

proposed to maximize penalized partial likelihood functions for model (1.3), whereas Lee et 

al. (2015) developed a Bayesian framework for the same model. In particular, Gellar et al. 

(2015) combined penalized signal regression with methods developed for mixed effects 

proportional hazards models under penalized B-spline framework, and Qu et al. (2016) 

estimated the model under the reproducing kernel Hilbert space framework.

Compared to the existing literature, we make several new contributions. To deal with the 

nonparametric function β(s), we employ a FPCA method and then approximate β(s) by the 

eigenfunctions of the covariance operator of the functional predictor X(s). Such a FPCA 

method has been widely used in various functional linear regression models (Yao et al., 

2005; Hall and Hosseini-Nasab, 2006). In particular, we use the first several functional 

principal components (FPCs) to represent the infinite dimensional process X(s), and the 

number of FPCs is treated as a tuning parameter diverging with the sample size, which 

distinguishes our work from the ones that fix the number of FPCs (Li, Wang, and Carroll, 

2010). Subsequently, our FLCRM reduces to a Cox regression model with a growing 

number of predictors. We also examine both estimation and testing for FLCRM, and none of 
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the recent papers on the development of various estimation methods for model (1.3) (Gellar 

et al., 2015; Qu et al., 2016; Lee et al., 2015) consider the testing problem. We further 

establish their associated asymptotic properties, and study the asymptotic theories when the 

number of scalar parameters diverges at a polynomial rate of sample size. In addition, we 

shed lights on how to choose the number of FPCs for both estimation and testing procedures. 

It turns out that we need to use different criteria for estimation and testing procedures.

2. Functional Linear Cox Regression Models

2.1 Model setup

Let  be a compact set of ℝ and Xi(·) be the true trajectory of the ith individual. We observe 

the curve on grid points {sim ∈ , 1 ≤ m ≤ Mi} with some measurement errors such that 

Wim = Xi(sim) + εim, where the εim’s are independent and identically distributed random 

variables with zero mean and variance . We consider a random sample of n subjects and 

observe ({W1m, 1 ≤ m ≤ M1}, Z1, δ1, T̃
1), …, ({Wnm, 1 ≤ m ≤ Mn}, Zn, δn, T̃

n), where δi = 

1(Ti ≤ Ci), which equals 1 if the observed event is a failure and 0 otherwise. In neuroimaging 

studies, Wim and Zi, respectively, denote the imaging measure at sim and scalar predictors 

such as age, gender, or candidate genetic marker.

For model (1.3), we obtain the hazard function of the i-th subject under Cox regression as

(2.1)

where Zi = (zi1, ⋯, zip)T, and t ∈ [0, τ] for some finite τ > 0. The FLCRM is determined by 

the unknown coefficient function β(·), the unknown parameter vector γ = (γ1, ⋯, γp)T, and 

the baseline hazard function h0(·).

The second component of FLCRM is the FPCA model of both X(s) and β(s). Let μ(s) and 

K(s, s′) be, respectively, the mean and covariance functions of the stochastic process {X(s) : 

s ∈ S} determined by the functional predictors. Let the spectral decomposition of the 

covariance function , where {λj, j ≥ 1} are the eigenvalues in 

decreasing order with  and the ϕj’s are the corresponding eigenfunctions. Thus, 

the i-th trajectory Xi(·) can be represented by using the Karhunen-Loève expansion as

The i-th observed trajectory is defined as Wi(s) = Xi(s) + εi(s), where εi(s) is measurement 

error with mean zero and variance σ2(s) at s and is independent of εi(s′) for s ≠ s′. 

Moreover, ξij = ∫{Xi(s)−μ(s)}ϕj(s)ds is the FPC score and has mean zero with cov(ξij, ξik) = 

λj1(j = k). We also consider the FPCA model of β(s). Based on the basis {ϕj(s) : 1 ≤ j < ∞}, 

it is assumed that the projection of β(·) onto the span of K is identifiable, we can expand β(s) 
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as . Thus, we can calculate , where βj = ∫
β(s)ϕj(s)ds.

Based on the FPCA model, the hazard function of FLCRM can be rewritten as

(2.2)

where . Since the number of predictors in (2.2) is infinite, 

we propose to approximate hi(t) by truncating the number of FPC scores, denoted as rn, 

which increases asymptotically as n → ∞. Thus, FLCRM reduces to a Cox regression 

model with high-dimensional predictors as

(2.3)

The approximation (2.3) depends on whether the slope function β(·) is efficiently 

represented in terms of the leading eigenfunctions or equivalently . We 

will discuss how to choose rn in Section 2.4.

2.2 Estimation procedure

We develop a three-step estimation procedure as follows.

• Step (I):We use the local linear regression technique to smooth all individual 

functions {Xi(sm) : m = 1, ⋯, M}. It leads to a smoothed estimate of Xi(s), 

denoted by X̂
i(s).

• Step (II): Estimate K(s, s′) and its eigenvalues and eigenfunctions and then 

calculate the estimated FPC scores of all subjects.

• Step (III): Calculate the maximum approximate partial likelihood estimate of 

, where βn = (β1, ⋯, βrn)T. Finally, we use the Nelson–Aalen 

method to estimate the baseline hazard function.

Step (I) is to estimate X̂
i(s) for all s ∈  and i = 1, …, n by using the well-known local 

linear regression technique (Fan and Gijbels, 1996). Let ∂sXi(s) be ∂Xi(s)/∂s and Kloc(·) be a 

kernel function. For each i, we calculate X̂
i(s) = (1, 0) Ĉi(s) by minimizing the weighted 

least squares function as

Kong et al. Page 5

Biometrics. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Ci(s) = (Xi(s), h{∂sXi(s)}T)T, Zh(sm − s) = (1, (sm − s)/h)T are two dimensional 

vectors with each component a nonparametric function, and Kh(sm − s) = Kloc{(sm − s)/h} is 

the rescaled kernel function with a bandwidth h. We pool the data from all n subjects and 

select the optimal bandwidth h̃ by minimizing the generalized cross-validation score (Zhang 

and Chen, 2007).

In Step (II), we calculate  and the sample covariance function of 

{X̂(s) : s ∈ } given by

where {λ̂
j, j ≥ 1} are the estimated eigenvalues in decreasing order with  and 

{ϕ̂j(·), j ≥ 1} are the corresponding estimated eigenfunctions. Finally, the estimated 

eigenscores can be calculated by ξîj = ∫ {Xi(s) − μ̂(s)}ϕ̂j(s)ds for all j ≤ rn, where choice of 

the truncation number rn would be discussed in Section 2.4.

In Step (III), we plug the first rn estimated FPCs scores into (2.3) to obtain a Cox regression 

model with rn + p predictors. Let Ni(t) = 1(T̃
i ≤ t, δi = 1), , and R(t) = {j : 

T̃
j ≥ t} be the set of subjects who are at risk and uncensored prior to time t. For i = 1, …, n, 

we define Yi(t) = 1(T̃
i ≥ t) = 1(i ∈ R(t)). In this paper, we assume that the observed failure 

times are distinct. If there are ties, one may use Efron’s approximation (Efron, 1977) for 

example. Thus, the log-approximate partial likelihood function of η, denoted as Q(η), is 

given by

(2.4)

where ŵi = (ξ̂i1, …, ξ̂irn, zi1, …, zip)T. We use the Newton-Raphson algorithm as 

implemented in the R function “ coxph()” under the survival package to calculate the 

maximum approximate partial likelihood estimate, denoted as , which 

maximizes Q(η), and their standard errors. Subsequently, we use the Nelson–Aalen method 

to estimate the cumulative baseline hazard function, , by 

. After we get { β̂j, 1 ≤ j ≤ rn}, we can calculate 

the estimated coefficient function by . A limitation of our method is that 

it is difficult to obtain the confidence bands of β̂(·), which is an interesting topic for future 

research.
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2.3 Testing procedure

In real applications, evidence for the association between a functional predictor and the 

survival outcome is as valuable as, if not more than, estimation of the actual effect size. For 

example, in the ADNI dataset, it would be of great interest to test whether the hippocampus 

shape information is an important biomarker for predicting time to conversion to Alzheimer 

disease in patients with MCI. We propose a score test to statistically test the null effect of a 

functional predictor on the time-to-event data with the presence of other scalar predictors. 

Specifically, we are interested in testing

(2.5)

The testing problem under the functional linear regression context has been studied in the 

literature (Cardot et al., 2003; Kong et al., 2016).

Since β(s) is an infinite dimensional parameter, we instead truncate the number of basis 

functions for β(s) and then test Our test

(2.6)

Our test is based on the score test statistic for FLCRM (2.3). We first derive the score 

function and the information matrix of η for the approximate partial likelihood function 

(2.4) as:

where a⊗2 = aaT. Denote  as the maximum approximate partial likelihood 

estimate of η under . We have

Assume the (rn + p) × (rn + p) dimensional information matrix I(η̂
0) is invertible, the score 

test for testing , denoted by TS, is given by
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Similar to the traditional score statistic in the Cox regression model, we will show that 

provides a good approximation to the null distribution of the score statistic TS.

2.4 Choice of rn

We introduce two different methods of choosing rn for our testing and estimation 

procedures. The first one used in testing is to threshold the percentage of variance explained 

by the first rn FPCs, denoted by . For instance, one may set the 

threshold values of PV(rn) as 70%, 85%, or 95%. We have found in our simulation studies 

that the testing procedure is relatively robust under different threshold values, and thus we 

use PV(rn) = 85% throughout the paper. The second one used in estimation is to choose an 

appropriate rn for accurately estimating β(t). We have found that changing rn can have a 

relatively large effect on the accuracy of estimating β(t). Generally, a smaller rn would lead 

to a larger bias, whereas a larger rn could lead to a larger variance. To achieve a balance 

between bias and variance, we use AIC to choose rn (Yao et al., 2005). Let η̂(rn) be the 

estimate of η when the truncation integer is set as rn, AIC is defined as AIC(rn) = 2rn − 2 

log{Q(η̂(rn))}. Numerically, we can use the grid search method to select an optimal rn that 

minimizes AIC. We will show in our simulations that AIC does not work well in testing, 

whereas thresholding the percentage of variance does not work well in estimation.

2.5 Computational Efficiency and Asymptotic Theory

Our method is easy to implement even for two- or higher dimensional images. Specifically, 

we only need to fit a typical cox regression model after we obtain the functional principal 

component (FPC) scores. Both steps are computationally fast. It takes 33 seconds to run the 

real data analysis by using our method. Among them, majority of time is spent on the 

construction of FPCA since we have 30, 000 grid points on each image. We also 

systematically investigate the asymptotic properties of the maximum approximate partial 

likelihood estimator η̂ as well as the asymptotic null distribution of the score statistic TS. We 

have included them in Section 4 of the supplementary material.

3. Simulations

3.1 Estimation

We simulated datasets from the FLCRM with the hazard function (2.1), in which four scalar 

predictors (p = 4) and one functional predictor were considered. Specifically, the failure time 

T was independently generated from an exponential distribution with parameter

in which we set h0(t) = 1, γ0 = (0.2, 0.2, 0.2, 0.2)T, and β0(s) = 0.3[sin(πs) − cos(πs) + 

sin(3πs/10)−cos(3πs)+sin(5πs)/9−cos(5πs)/9+sin(7πs)/16−cos(7πs)/16+sin(9πs)/

25−cos(9πs)/25 + (2π)−1/2 exp{−2−1(s − 0.5)2}] for 0 ≤ s ≤ 1. The censoring time was then 

independently simulated from a uniform distribution U(0, c0), where c0 was chosen to 

achieve a desired censoring rate of 10%, 30% or 50%. We independently simulated 
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, where ui1 ~ N(0, 

1), ui2 ~ N(0, 1), and υij1, υij2 ~ N(0, 1/j2). The scalar covariates Zi were simulated from a 

multivariate normal distribution with zero mean and covariance matrix Σ = (ρ|j−k|)1≤j,k≤4 

with ρ = 0.5. We allow some correlation between Zi andXi(s). In particular, we set Cov(zik, 

υi11) = 0.1 for all 1 ≤ k ≤ 4. We took 101 dense observations on grid points sim = 0.01m 
− 0.01 with 1 ≤ m ≤ 101 for each curve Xi(s). The noisy observations were obtained by Wim 

= Xi(sim)+εim for 1 ≤ i ≤ n, where εim were independently generated from N(0, 0.5).

We considered sample sizes of n = 200, 500, and 1, 000 for each censoring rate and 

generated 100 datasets for each case. We fitted the FLCRM to each simulated dataset. To 

select the number of principal components, we use AIC method. We calculated the relative 

mean square errors of estimated coefficient function and parameter estimates according to 

 and RMSEγ = ‖γ̂ − γ0‖2/‖γ0‖2. These relative 

mean square error values characterize the accuracy of β̂(·) and γ̂. We also report the 

prediction performance by using the concordance index (Harrell et al., 1996; Heagerty and 

Zheng, 2005), which can be implemented using the R function “ concordance.index()” 

in the R package “ survcomp”. To examine the effects of rn on the estimation of parameters, 

we varied rn from 1 to 10. We have also compared our method with the methods proposed in 

Gellar et al. (2015) and Qu et al. (2016). We include the estimation results for n = 200 and 

censoring rate 0.1 in Table 2. For all other eight settings, we include them in the 

supplementary document, Tables S1–S8.

The results reveal that the estimation of β(s) is quite sensitive to rn. Specifically, changing rn 

can have a large effect on the estimation of β(s). This indicates that selecting rn by 

thresholding the percentage of variance explained would not work well in estimation since 

we do not know which PV(rn) we should use. However, it turns out that the AIC tuning 

method performs reasonably well in selecting rn, leading to good estimates of β(s). In 

contrast, the estimation of γ and the predictive accuracy are quite robust to the selection of 

rn. For the method of Gellar et al. (2015), it performs similarly as our method for all the 

scenarios. However, for the method of Qu et al. (2016), it fails to estimate β(s) and γ 
accurately. We guess that it may be caused by not using the traditional Newton-Raphson 

algorithm to obtain the estimator from penalized cox regression model. Specifically, they use 

the simplex search method of Lagarias et al. (1998), which is not guaranteed to converge to a 

local minimum, and therefore their method is not stable especially when the number of 

parameters is large.

3.2 Testing

We assess the Type I and II error rates of our score statistic by testing the hypotheses H0 : 

β0(·) = 0 versus H1 : β0(·) ≠ 0. We used the same simulation method as that in Section 3.1 

except that we set β0(s) = βC1,C2(s) = 0.3[C1{sin(πs) − cos(πs) + sin(3πs/10) − cos(3πs) + 

sin(5πs)/9 − cos(5πs)/9+sin(7πs)/16−cos(7πs)/16+sin(9πs)/25−cos(9πs)/

25}+C2(2πσ2)−1/2 exp{−(2σ2)−1(s−0.5)2}], where C1,C2 ≥ 0 are scalars that control the 

degree of departure from H0. We consider the censoring rates 10%, 30%, and 50% under 

sample sizes of n = 200, 500, and 1, 000. We selected the number of principal components 
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using percentage of variance explained and AIC method. In particular, we compare the type-

I error performance by thresholding six different percentages of variance explained, i.e. 

PV(rn) = 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and AIC method. For each simulated dataset, we 

calculated the score statistic and its associated p–value. The level of significance was set as 

0.05. We used 5, 000 simulated datasets to estimate the Type I error rate when C1 = C2 = 0, 

that is βC1,C2(·) = 0.

Table 3 summarizes type-I error rates of TS at the nominal level of 5%. Inspecting Table 3 

reveals that the Type I error rates are relatively accurate for all censoring rates and sample 

sizes when we use the percentages of variance explained. In contrast, when we use AIC 

selection method, the Type I error rates are significantly inflated. This indicates that we 

cannot use AIC method for testing.

Consequently, we only study the power analysis for thresholding percentages of variance 

explained method. In particular, we used 500 simulated datasets to estimate the power for 

two different alternative settings. The first alternative setting is to set C2 = 0 and C1 = 0.1 × j 
for j = 1, …, 10. The second alternative setting is to set C1 = 0 and C2 = 0.1 × j for j = 1, …, 

10. We include simulation results when we use different thresholds PV(rn) = 0.70, 0.75, 

0.80, 0.85, 0.90, and 0.95 to select the number of FPCs. See Tables S9 and S10 of the 

supplementary document. From the results, we can see that the power of the test is quite 

robust to the choice of PV(rn). Thus, we use PV(rn) = 0.85 throughout the paper. Figure 

1(a)–(c) give the statistical power of rejecting H0 under the first set of alternative hypotheses 

and Figure 1(d)–(f) give the power of rejecting H0 under the second setting. As expected, 

both increasing n and reducing the censoring rate improve the statistical power of rejecting 

the null hypothesis.

4. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The detailed data description including hippocampus image data 

preprocessing and demographic information summary can be found in Section 2 in the 

supplementary document. The hippocampus is one of the key brain areas affected by AD. 

We consider the clinical and imaging measures of 373 MCI individuals in ADNI1 and use 

them to predict the time of conversion from MCI to AD, as well as to assess the predictive 

role of hippocampus surface morphology at baseline. Among the 373 MCI individuals, 161 

MCI individuals progressed to AD before study completion and the remaining 212 MCI 

individuals did not convert to AD prior to study end. Thus, the time of conversion from MCI 

to AD can be treated as time-to-event data.

We fitted the FLCRM model to the ADNI dataset. The scalar covariate includes Gender 

(1=Male; 2=Female), Handedness (1=Right;2=Left), Marital Status (1=Married; 

2=Widowed; 3=Divorced; 4=Never married), Education length, Retirement (1=Yes; 0=No), 

Age, the APOE genetic covariates with two SNPs, and the ADAS-Cog score. The two SNPs 

in APOE together define a 3-allele haplotype, namely, the ε2, ε3 and ε4 variants. For the 

categorical variables, we introduce dummy variables to represent them, resulting in a design 

matrix Z with dimension (n, p) = (373, 12). For the functional predictors, we used 
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hippocampal radial distances of 30,000 surface points on the left and right hippocampus 

surfaces. The radial distance is defined as the distance between the medial core of the 

hippocampus and the corresponding vertex, and it is a summary statistic of the hippocampal 

shape and size. We applied FPCA to such surfaces to estimate the principal component 

scores. We selected the top 34 FPCs that explain 85% of the total variance. We used our 

score test statistic TS to test the null hypothesis of H0 : β(·) = 0, and its associated p-value is 

5 × 10−6. This result may indicate a significant non-zero effect of the hippocampus radial 

distance surface data on the conversion time. We have performed the back-testing procedure 

to validate our testing result. In particular, we considered top 34 FPCs and applied our 

method to test whether each PC is significant compared with the null model with only 

clinical covariates. Then we adjust for multiple comparisons by using Bonferroni correction 

and compare all of the p-values with 0.05/34. The first principal component is still 

significant with its p-value 8 × 10−7. Therefore, the signal is very strong, validating our 

testing results. We also performed the sensitivity analysis of our testing procedure by using 

different percentages of variance explained to select rn. In particular, we consider 70%, 75%, 

80%, 90% and 95%, and the corresponding p-values are 2 × 10−5, 2 × 10−6, 2 × 10−6, 3 × 

10−8, and 7 × 10−7, respectively. Therefore, all the p–values support a significant non-zero 

effect even after the use of Bonferroni adjustment for multiple comparisons.

We then used the estimation procedure of FLCRM to estimate γ and β0(·). The number of 

FPCs is chosen to be rn̂ = 20 by AIC. We fitted the FLCRM and applied the method in 

Grambsch and Therneau (1994) to test the proportional hazards assumption for a Cox 

regression model fit. This can be implemented by the “ cox.zph()” function in the R 

package survival. The p-value is 0.177, which suggests that the proportional hazards 

assumption is not violated. Figure 2(b) includes the estimated coefficient functions. We have 

plotted the hippocampal subfields in Figure 2(c). Inspecting Figure 2 reveals that the 

subfield of CA1 on both hippocampi has negative effects on the hazard function, indicating 

that the thicker these areas on the hippocampus are, the shorter the time is to covert to AD. 

Table 1 presents the estimated γ and their standard errors and p-values. We observe that 

ADAS-Cog score is significant, whereas the APOE genes are not after Bonferroni 

correction. This coincides with the results in Da et al. (2014), which show that a 

combination of spatial patterns of brain atrophy and ADAS-Cog offers good predictive 

power of conversion from MCI to AD, whereas APOE genotype does not significantly 

improve prediction. Our findings support prior MRI studies of volumetric hippocampal 

changes in prodromal AD (Dickerson and Wolk, 2013), and extend them by finding that the 

possible prognostic value of adding hippocampus surface data may be superior to that 

provided by routine clinical cognitive testing data.

We plotted the survival function with the 95% point-wise confidence interval in Figure 2(d), 

where the values of all the covariates are taken as the mean value of the covariates. In 

addition, we performed some sensitivity analysis of rn. In particular, we consider rn = 17, 18, 

19, 21, 22, and 23 and then we estimate γ and β0(·). The estimated coefficient functions are 

presented in Figure S1 in the supplementary document. Compared with Figure 2(b), our 

estimated coefficient functions are quite robust to the choice of rn.
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We investigate the predictive performance of the FLCRM method. We also compared our 

model with a reduced model without the hippocampus surface data, and we fitted a Cox 

regression with only the scalar covariates. We randomly selected 200 subjects as the training 

data. We calculated the concordance index using the remaining 173 data points as the test 

data. We repeated this step for 100 times in order to obtain the mean of the concordance 

indices and its standard error for the two fitted models. The results show that the mean of the 

concordance indices is 0.68 (0.003) for our FLCRM, whereas the mean is 0.65 (0.003) for 

the reduced model, indicating the better prediction of our model. We also want to note that 

the concordance index with 0.68 is not very high, and there is still a lot of unmeasured 

variability driving progression to AD. We also compared with a new model by replacing the 

surface data by the hippocampal size, and the mean of the concordance indices is 0.69 

(0.003). Although the summary statistics provide similar prediction power, the use of the 

whole hippocampal surface allows us to localize the effects of hippocampal subregions on 

conversion from MCI to AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation results for evaluating the rejection rate of TS when PV(rn) = 0.85: panels (a), (b), 

and (c), respectively, correspond to the changes in power for sample sizes of n = 200, 500, 

and 1, 000 under the first setting of alternative hypothesis; panels (d), (e), and (f), 

respectively, correspond to the changes in power for sample sizes of n = 200, 500, and 1, 000 

under the second setting of alternative hypothesis. The solid, dashed and dotted lines 

correspond to censoring rate of 0.1, 0.3 and 0.5, respectively.
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Figure 2. 
ADNI data analysis results: panel (a) is the color bar illustration, panel (b) contains the 

estimated coefficient functions β(s), panel (c) is the hippocampal subfields, and panel (d) is 

the survival function for the time of MCI to AD progression. This figure appears in color in 

the electronic version of this article.
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Table 2

Simulation results for the estimation and predictive accuracy of our estimation method when n = 200 and 

censoring rate is 0.1. We vary rn from 1 to 10, and use AIC to select rn, and we also compare with Gellar et al. 

(2015)’s method. The means of the estimates of RMSEβ, RMSEγ, r̂n and the concordance index with their 

standard errors in the parentheses were reported.

rn RMSEβ RMSEγ Concordance Index r̂n

1 0.22(0.007) 0.24(0.018) 0.731(0.0004) 1

2 0.15(0.008) 0.25(0.019) 0.735(0.0005) 2

3 0.12(0.008) 0.26(0.02) 0.737(0.0005) 3

4 0.09(0.005) 0.26(0.019) 0.738(0.0003) 4

5 0.13(0.008) 0.26(0.019) 0.738(0.0003) 5

6 0.23(0.019) 0.27(0.02) 0.737(0.0004) 6

7 0.46(0.043) 0.28(0.02) 0.736(0.0005) 7

8 0.66(0.051) 0.29(0.02) 0.735(0.0005) 8

9 1.02(0.066) 0.29(0.02) 0.734(0.0005) 9

10 1.42(0.092) 0.29(0.02) 0.733(0.0005) 10

AIC 0.28(0.052) 0.26(0.019) 0.737(0.0005) 3.68(0.16)

Gellar 0.26(0.047) 0.26(0.019) 0.737(0.0004) NA

Qu 3.70 (0.04) 4.27(0.07) NA NA
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