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Summary

We consider a functional linear Cox regression model for characterizing the association between
time-to-event data and a set of functional and scalar predictors. The functional linear Cox
regression model incorporates a functional principal component analysis for modeling the
functional predictors and a high-dimensional Cox regression model to characterize the joint effects
of both functional and scalar predictors on the time-to-event data. We develop an algorithm to
calculate the maximum approximate partial likelihood estimates of unknown finite and infinite
dimensional parameters. We also systematically investigate the rate of convergence of the
maximum approximate partial likelihood estimates and a score test statistic for testing the nullity
of the slope function associated with the functional predictors. We demonstrate our estimation and
testing procedures by using simulations and the analysis of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data. Our real data analyses show that high-dimensional
hippocampus surface data may be an important marker for predicting time to conversion to
Alzheimer’s disease. Data used in the preparation of this article were obtained from the ADNI
database (adni.loni.usc.edu).
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1. Introduction

Roughly more than 5 million Americans are suffering from memory loss and dementia
caused by Alzheimer’s Disease (AD) and it costs the nation approximately 203 billion
dollars in medical expenses solely in 2013. An earlier and more accurate diagnosis of AD is
considered to be an important goal for researchers because therapeutic intervention is more
likely to be more beneficial during the early development of the disease. This led to the
development of Mild Cognitive Impairment (MCI), which is a transitional stage between
normal aging and the development of AD (Petersen, 2004). MCI is characterized by
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insidious onset and gradual progression, and commonly arises as a result of underlying
neurodegenerative pathology. There is a substantial interest in delineating a set of
biomarkers that provide evidence of such neurodegenerative pathology in living individuals,
with the goal of specifying the likelihood that the pathophysiological process is due to
Alzheimer’s disease (MCI-AD) and will lead to dementia within a few years. Accordingly,
increasing attention has been devoted to investigate the utility of various imaging, genetic,
clinical, behavioral, and fluid data to predict the conversion from MCI to AD (Risacher et
al., 2009).

The development of functional linear Cox regression model (FLCRM) is motivated by
addressing a critical question: “how do we accurately predict the time to conversion in
individuals who harbor AD pathology, as well as assess the predictive role of surface
morphology?” There is a long-term interest in answering this question. Li et al. (2013)
employed data from 139 MCI subjects in ADNI to evaluate the predictive power of brain
volume, ventricular volume, hippocampus volume, APOE status, cerebrospinal fluid (CSF)
biomarkers, and behavioral scores. Da et al. (2014) used 381 MCI subjects from ADNI to
evaluate several biomarkers for predicting MCI to AD conversion including spatial patterns
of brain atrophy, ADAS-Cog score, APOE genotype, and cerebrospinal fluid (CSF)
biomarkers. To the best of our knowledge, no prior study has examined the role of
neuroimaging data in predicting time to conversion from MCI to AD, while adjusting for
low-dimensional behavioral and clinical measures.

The aim of this paper is to consider a FLCRM to examine the relationship of the survival
distribution to a set of functional and scalar predictors in large-scale biomedical studies. Let
the random variables 7, C, and 7= min{ 7, C} be, respectively, the failure time, censoring
time, and observed time, and ) and S(9), respectively, denote the probability density
function and the survival function of 7. The Cox regression model (Cox, 1972) has been
widely used to model survival time 7 as a function of p predictors, denoted by 2= (7, -,
zp)T. The hazard function for the Cox regression model has the form

h(t)=f(1)/S(t)=ho(t) exp(Z"7), (1.1)

where /() is a completely unspecified baseline hazard function and y = (4, -, yp)T.
Although the Cox regression model and its various extensions have been widely investigated
for a small number of predictors (Kalbfleisch and Prentice, 2002; Ibrahim et al., 2001; Cox,
1975), there is a great interest in developing accurate risk prediction models with high-
dimensional genomic and clinical data to predict censored survival outcomes (Cai et al.,
2011; Li and Ma, 2013).

Existing survival models for high-dimensional genomic data, however, suffer from a major
limitation of incorporating infinite-dimensional imaging data to predict survival outcomes.
Compared with genetic and clinical data, a key unique feature of imaging data is that they
are high dimensional and intrinsically continuous functions measured at a large number of
grid points. The effect of imaging data on survival outcomes is often non-sparse, which
makes inference notoriously difficult based on existing regularization methods (Huang et al.,
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2013; Xu, 2012). Therefore, it is imperative to use some dimension reduction methods to
extract and select “low-dimensional” important features, while eliminating redundant
features (Johnstone and Lu, 2009).

Functional linear regression has become a standard method in functional data analysis for
incorporating functional predictors. Most functional linear regression models focus on
modeling the relationship between a functional or continuous response, Y; and a one-
dimensional functional predictor X{(s), in which svaries in a compact set .. Functional
linear regression usually assumes

Y:/yX(s)ﬁ(s)ds—i—e, w2

where e is a noise term independent of X(s) and B(s) is an unknown function of interest.
Two popular estimation methods for 5(s) include the functional principal component
analysis (FPCA) and methods of penalization. A few examples include Hall and Horowitz
(2007); Reiss and Ogden (2007, 2010); Morris (2015) and the references therein. However,
very little has been done on modeling survival outcomes and scalar and functional
predictors.

We consider a FLCRM that incorporates (1.1) and (1.2) for modeling the relationship
between survival outcomes and a set of finite and infinite dimensional predictors.
Specifically, the hazard function for the FLCRM has the form

log{h(t)}=log{ho()}+ [ X(s)3(s)ds+2". w9

At the time of submission, we are aware of three recent papers on the development of
various estimation methods for model (1.3). Gellar et al. (2015) and Qu et al. (2016)
proposed to maximize penalized partial likelihood functions for model (1.3), whereas Lee et
al. (2015) developed a Bayesian framework for the same model. In particular, Gellar et al.
(2015) combined penalized signal regression with methods developed for mixed effects
proportional hazards models under penalized B-spline framework, and Qu et al. (2016)
estimated the model under the reproducing kernel Hilbert space framework.

Compared to the existing literature, we make several new contributions. To deal with the
nonparametric function 5(s), we employ a FPCA method and then approximate 8(s) by the
eigenfunctions of the covariance operator of the functional predictor X(s). Such a FPCA
method has been widely used in various functional linear regression models (Yao et al.,
2005; Hall and Hosseini-Nasab, 2006). In particular, we use the first several functional
principal components (FPCs) to represent the infinite dimensional process X(s), and the
number of FPCs is treated as a tuning parameter diverging with the sample size, which
distinguishes our work from the ones that fix the number of FPCs (Li, Wang, and Carroll,
2010). Subsequently, our FLCRM reduces to a Cox regression model with a growing
number of predictors. We also examine both estimation and testing for FLCRM, and none of
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the recent papers on the development of various estimation methods for model (1.3) (Gellar
etal., 2015; Qu et al., 2016; Lee et al., 2015) consider the testing problem. We further
establish their associated asymptotic properties, and study the asymptotic theories when the
number of scalar parameters diverges at a polynomial rate of sample size. In addition, we
shed lights on how to choose the number of FPCs for both estimation and testing procedures.
It turns out that we need to use different criteria for estimation and testing procedures.

2. Functional Linear Cox Regression Models

2.1 Model setup

Let . be a compact set of R and X|(:) be the true trajectory of the th individual. We observe
the curve on grid points {s;,, € ¥, 1 < m< M;} with some measurement errors such that
Wim= X{Sim) + €im Where the e;,/'s are independent and identically distributed random

variables with zero mean and variance 2. We consider a random sample of 77 subjects and
observe Wi, 1< ms M}, 24, 61, Th), .., AW L < m< My}, Zp, 8, T,), Where &=
1(7;< C)), which equals 1 if the observed event is a failure and O otherwise. In neuroimaging
studies, W, and Zj, respectively, denote the imaging measure at s;,, and scalar predictors
such as age, gender, or candidate genetic marker.

For model (1.3), we obtain the hazard function of the /th subject under Cox regression as

hs(t)=ho () exp{kglzik’wf+ / _Xi()B(s)ds, on

where Zj= (zp, -, z,-p)T, and t€ [0, ] for some finite T > 0. The FLCRM is determined by
the unknown coefficient function g(:), the unknown parameter vector y = (1, -, yp)T, and
the baseline hazard function /(:).

The second component of FLCRM is the FPCA model of both X(s) and 5(s). Let /() and
K(s, ") be, respectively, the mean and covariance functions of the stochastic process {X(s) :
S € S} determined by the functional predictors. Let the spectral decomposition of the

o0
covariance function & (s, S'):Zj:l)‘j%(S)%(S/), where {1, j= 1} are the eigenvalues in

o0
decreasing order with ijl)‘y‘<°0 and the ¢;'s are the corresponding eigenfunctions. Thus,
the Fth trajectory Xj(-) can be represented by using the Karhunen-Loéve expansion as

X,L-(s):,u(s)+2&j¢j(5)'

=1

The F~th observed trajectory is defined as W{(s) = X{(s) + (), where g/(s) is measurement
error with mean zero and variance o2(s) at sand is independent of /(s”) for sz s'.
Moreover, &= J {X(9)-1(9)}¢(s)dsis the FPC score and has mean zero with cov(&j; €iw) =
AA(j = k). We also consider the FPCA model of A(s). Based on the basis {#(s) : 1 < j< oo},
it is assumed that the projection of f(-) onto the span of K'is identifiable, we can expand £(5)
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as 5(5)12?;1%(5)51 Thus, we can calculate fyM(S)ﬁ(S)dsﬁLzzj $iil%, where g= [
B(S)¢(9) .

Based on the FPCA model, the hazard function of FLCRM can be rewritten as

p oo
hi(t)=h5(t) exp(D>_zacve+_&iB);
=1 j=1 (2.2)

where hg(t)=ho(t) exp{[ ,u(s)5(s)ds}. Since the number of predictors in (2.2) is infinite,
we propose to approximate A4{f) by truncating the number of FPC scores, denoted as 7,
which increases asymptotically as 7— ©o. Thus, FLCRM reduces to a Cox regression
model with high-dimensional predictors as

p Tn
hi(t) =~ hi(t) exp(>_zucmn+ Y _&ibB))-
k=1 =1 (2.3)

The approximation (2.3) depends on whether the slope function 8(:) is efficiently

o0
represented in terms of the leading eigenfunctions or equivalently Zrn+1|§ij Bil ~ 0. we
will discuss how to choose 1, in Section 2.4.

2.2 Estimation procedure

We develop a three-step estimation procedure as follows.

. Step (1):We use the local linear regression technigue to smooth all individual
functions {X{(s,) : m=1, ---, M}. It leads to a smoothed estimate of Xs),
denoted by X{s).

. Step (I1): Estimate K(s, s’) and its eigenvalues and eigenfunctions and then

calculate the estimated FPC scores of all subjects.
. Step (111): Calculate the maximum approximate partial likelihood estimate of

n=(8Y,~)", where B,= (B1, -, B,)". Finally, we use the Nelson-Aalen
method to estimate the baseline hazard function.

Step (1) is to estimate X{(s) for all S€ . and /=1, ..., nby using the well-known local
linear regression technique (Fan and Gijbels, 1996). Let 0 .X(s) be 0.X{s)/dsand Ky,{-) be a
kernel function. For each 7, we calculate )?,(s) = (1, 0) C{s) by minimizing the weighted
least squares function as

M,
. 2
C’i(s):argminci(ﬂ E {Wim — Ci() Zn(sm — $)} Kp(sm — $),
m=1
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where C{s) = (X{3), Mo XA, Zy(sm— ) = (1, (55— )/H)T are two dimensional
vectors with each component a nonparametric function, and Kxy(Sy, — 9) = Kjocd(Sm — ) A} is
the rescaled kernel function with a bandwidth 4. We pool the data from all /7subjects and
select the optimal bandwidth /by minimizing the generalized cross-validation score (Zhang
and Chen, 2007).

In Step (11), we calculate /1(s) 12 X (s) and the sample covariance function of
{X(s) 1 SE€ 9} given by

K(s,s")=n""> {Xi(s) — p(s)H{Xi(s ZM% ¢
i=1 =

where {/fj, /= 1} are the estimated eigenvalues in decreasing order with Z;;)‘j <0 and
{#("), /= 1} are the corresponding estimated eigenfunctions. Finally, the estimated
eigenscores can be calculated by &= I {XAs) - ()} ${(s)ds for all j< r,, where choice of
the truncation number r,, would be discussed in Section 2.4.

In Step (I11), we plug the first s, estimated FPCs scores into (2.3) to obtain a Cox regression

model with 7, + p predictors. Let V() = 1(Ti< £ &;=1), N()=>_._ Ni(t), and R() = {/:

> £} be the set of subjects who are at risk and uncensored prior to tlme tFori=1,...,n
we define Y{d=1(T;= H = 1(i € R(D). In this paper, we assume that the observed failure
times are distinct. If there are ties, one may use Efron’s approximation (Efron, 1977) for
example. Thus, the log-approximate partial likelihood function of 7, denoted as (), is
given by

n);/;w?ﬁdNi(t) - / log{ZY ) exp (i n)}dN(t),

2.4)

where w;= (f,l, f,-,n, Zily e z,p)T. We use the Newton-Raphson algorithm as
implemented in the R function “ coxph() ” under the sur vi val package to calculate the

R T
maximum approximate partial likelihood estimate, denoted as ﬁ:(ﬁ:, 4™, which
maximizes Q(7), and their standard errors. Subsequently, we use the Nelson—Aalen method

to estimate the cumulative baseline hazard function, H, (t):fgho(u)du, by
7o ()= , oh R
HO(t)_Z.f,< [5’/{2, (1) exp(th; 7’)}]. After we get { B; 1 < /< 1y}, we can calculate

the estimated coefficient function by B(s Z 5 ¢J . A limitation of our method is that
it is difficult to obtain the confidence bands of ,3( ), which is an interesting topic for future
research.
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2.3 Testing procedure

In real applications, evidence for the association between a functional predictor and the
survival outcome is as valuable as, if not more than, estimation of the actual effect size. For
example, in the ADNI dataset, it would be of great interest to test whether the hippocampus
shape information is an important biomarker for predicting time to conversion to Alzheimer
disease in patients with MCI. We propose a score test to statistically test the null effect of a
functional predictor on the time-to-event data with the presence of other scalar predictors.
Specifically, we are interested in testing

Ho:B(s)=0 v.s. Ha:B(s) #0. (2.5)
The testing problem under the functional linear regression context has been studied in the

literature (Cardot et al., 2003; Kong et al., 2016).

Since B(s) is an infinite dimensional parameter, we instead truncate the number of basis
functions for B(s) and then test Our test

Hy:pi=po=...=p,,=0 v.s. H,:8; # 0 for at least one j,1 < j <rp. (2.6)
Our test is based on the score test statistic for FLCRM (2.3). We first derive the score

function and the information matrix of 7 for the approximate partial likelihood function
(2.4) as:

0Q) S Sl expfaln)
S==3, 2/ oD =SSN ety

I(n)=— 7” uw@Y(ﬂ exp(irfn) {z&m?m@ exp(w?m}@ﬂ dN (1)
S Yit) exp(] n) S Yi(t) exp(@fn) [ |

where @2 = aa'. Denote 77,=(0", 4%)" as the maximum approximate partial likelihood
estimate of nunder £7;. We have

NN by m)exp(z?%)_{z;I 10T Yi(t) exp(z; w}®2 N
1Gio)= [ S0 eni) | s eatr) |

Assume the (r; + p) x (r,+ p) dimensional information matrix /(ﬁo) is invertible, the score
test for testing 7, denoted by 7, is given by

Ts:S(ﬁo)T{I(ﬁo)}ils(ﬁO)
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Similar to the traditional score statistic in the Cox regression model, we will show that x2
provides a good approximation to the null distribution of the score statistic 7.

2.4 Choice of ry,

We introduce two different methods of choosing 7, for our testing and estimation
procedures. The first one used in testing is to threshold the percentage of variance explained

by the first r,, FPCs, denoted by PV(’“H):Z:; Aj/ Zil/\j. For instance, one may set the
threshold values of PV(r;;) as 70%, 85%, or 95%. We have found in our simulation studies
that the testing procedure is relatively robust under different threshold values, and thus we
use PV(r;) = 85% throughout the paper. The second one used in estimation is to choose an
appropriate r,, for accurately estimating B(9). We have found that changing 7, can have a
relatively large effect on the accuracy of estimating B(#). Generally, a smaller r, would lead
to a larger bias, whereas a larger r,, could lead to a larger variance. To achieve a balance
between bias and variance, we use AIC to choose 7, (Yao et al., 2005). Let ﬁ(rn) be the
estimate of 7 when the truncation integer is set as 7, AIC is defined as A/C(r) =21, 2
log{ Q(7(r;))}. Numerically, we can use the grid search method to select an optimal 7, that
minimizes AIC. We will show in our simulations that AIC does not work well in testing,
whereas thresholding the percentage of variance does not work well in estimation.

2.5 Computational Efficiency and Asymptotic Theory

Our method is easy to implement even for two- or higher dimensional images. Specifically,
we only need to fit a typical cox regression model after we obtain the functional principal
component (FPC) scores. Both steps are computationally fast. It takes 33 seconds to run the
real data analysis by using our method. Among them, majority of time is spent on the
construction of FPCA since we have 30, 000 grid points on each image. We also
systematically investigate the asymptotic properties of the maximum approximate partial
likelihood estimator ﬁas well as the asymptotic null distribution of the score statistic 75 We
have included them in Section 4 of the supplementary material.

3. Simulations

3.1 Estimation

We simulated datasets from the FLCRM with the hazard function (2.1), in which four scalar
predictors (p = 4) and one functional predictor were considered. Specifically, the failure time
Twas independently generated from an exponential distribution with parameter

h(t|X0(5), Zs)=ho(t) exp { / ;Xi(s),BO(.S)(ls—i-Z;F'yg} ,

in which we set /g(5 = 1, = (0.2,0.2,0.2,0.2), and £y() = 0.3[sin(7s) — cos(rzs) +
sin(37zs/10)—cos(3zs)+sin(57s)/9—cos(5 7zs)/9+sin(7 78)/16—cos(7 rzs)/16+sin(9 zs)/
25-c05(9725)/25 + (271) V2 exp{-271(s- 0.5)?}] for 0 < s< 1. The censoring time was then
independently simulated from a uniform distribution ({0, ¢p), where ¢y was chosen to
achieve a desired censoring rate of 10%, 30% or 50%. We independently simulated
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XZ‘(S):Ui1+Ui28+Z;i1[Uij1 sin{2(2j — 1)ms iz cos{2(2j — 1)ms}] where 1y ~ MO,
1), up ~ MO, 1), and v, vjp ~ MO, 1/). The scalar covariates Z;were simulated from a
multivariate normal distribution with zero mean and covariance matrix £ = (pV‘ki)lsMg
with p = 0.5. We allow some correlation between Z;and X(s). In particular, we set Cov(Zj,
vj1) = 0.1 for all 1 < k< 4. We took 101 dense observations on grid points s;;; = 0.01m

- 0.01 with 1 < m< 101 for each curve X{(S). The noisy observations were obtained by Wj,,
= X{Sim)teimfor 1 < i< n, where g, were independently generated from A0, 0.5).

We considered sample sizes of 7= 200, 500, and 1, 000 for each censoring rate and
generated 100 datasets for each case. We fitted the FLCRM to each simulated dataset. To
select the number of principal components, we use AIC method. We calculated the relative
mean square errors of estimated coefficient function and parameter estimates according to

RMSEs=[{A(s) — Bo(s)} ds/ [ 82 (s)ds and RMSE , = 1y = yll?/ll yl%. These relative
mean square error values characterize the accuracy of 8(:) and y. We also report the
prediction performance by using the concordance index (Harrell et al., 1996; Heagerty and
Zheng, 2005), which can be implemented using the R function “ concor dance. i ndex()”
in the R package “ sur vconp”. To examine the effects of 7, on the estimation of parameters,
we varied 7, from 1 to 10. We have also compared our method with the methods proposed in
Gellar et al. (2015) and Qu et al. (2016). We include the estimation results for 7= 200 and
censoring rate 0.1 in Table 2. For all other eight settings, we include them in the
supplementary document, Tables S1-S8.

The results reveal that the estimation of S(s) is quite sensitive to r,,. Specifically, changing 7,
can have a large effect on the estimation of 5(s). This indicates that selecting 7, by
thresholding the percentage of variance explained would not work well in estimation since
we do not know which PV/(r;) we should use. However, it turns out that the AIC tuning
method performs reasonably well in selecting 7, leading to good estimates of £(s). In
contrast, the estimation of y and the predictive accuracy are quite robust to the selection of
I, For the method of Gellar et al. (2015), it performs similarly as our method for all the
scenarios. However, for the method of Qu et al. (2016), it fails to estimate S8(s) and ¥
accurately. We guess that it may be caused by not using the traditional Newton-Raphson
algorithm to obtain the estimator from penalized cox regression model. Specifically, they use
the simplex search method of Lagarias et al. (1998), which is not guaranteed to converge to a
local minimum, and therefore their method is not stable especially when the number of
parameters is large.

We assess the Type | and 11 error rates of our score statistic by testing the hypotheses A :
Bo(-) = 0 versus Hy : Bo(-) # 0. We used the same simulation method as that in Section 3.1
except that we set By(S) = By, ,(8) = 0.3[Ci{sin(7zs) — cos(rs) + sin(37s/10) — cos(37s) +
sin(578)/9 — cos(57s)/9+sin(7 rzs)/16—cos(7 rzs)/16+sin(9 1zs)/25—cos(9 rzs)/
25}+Cy(20?) Y2 exp{-(26%)~1(5-0.5)2}], where Cy,C, = 0 are scalars that control the
degree of departure from Hy. We consider the censoring rates 10%, 30%, and 50% under
sample sizes of 7= 200, 500, and 1, 000. We selected the number of principal components
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using percentage of variance explained and AIC method. In particular, we compare the type-
I error performance by thresholding six different percentages of variance explained, i.e.
PV(r; =0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and AIC method. For each simulated dataset, we
calculated the score statistic and its associated p-value. The level of significance was set as
0.05. We used 5, 000 simulated datasets to estimate the Type | error rate when C; = & =0,

that is By, (1) = 0.

Table 3 summarizes type-1 error rates of 7gat the nominal level of 5%. Inspecting Table 3
reveals that the Type | error rates are relatively accurate for all censoring rates and sample
sizes when we use the percentages of variance explained. In contrast, when we use AIC
selection method, the Type I error rates are significantly inflated. This indicates that we
cannot use AIC method for testing.

Consequently, we only study the power analysis for thresholding percentages of variance
explained method. In particular, we used 500 simulated datasets to estimate the power for
two different alternative settings. The first alternative setting isto set G;=0and C; =0.1 x
for j=1, ..., 10. The second alternative setting isto set C; =0and & =0.1 x jfor /=1, ...,
10. We include simulation results when we use different thresholds PV/(r,;) = 0.70, 0.75,
0.80, 0.85, 0.90, and 0.95 to select the number of FPCs. See Tables S9 and S10 of the
supplementary document. From the results, we can see that the power of the test is quite
robust to the choice of PV/(r;;). Thus, we use PV(r;;) = 0.85 throughout the paper. Figure
1(a)—(c) give the statistical power of rejecting Hy under the first set of alternative hypotheses
and Figure 1(d)—(f) give the power of rejecting Hg under the second setting. As expected,
both increasing /7 and reducing the censoring rate improve the statistical power of rejecting
the null hypothesis.

4. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The detailed data description including hippocampus image data
preprocessing and demographic information summary can be found in Section 2 in the
supplementary document. The hippocampus is one of the key brain areas affected by AD.
We consider the clinical and imaging measures of 373 MCI individuals in ADNI1 and use
them to predict the time of conversion from MCI to AD, as well as to assess the predictive
role of hippocampus surface morphology at baseline. Among the 373 MCI individuals, 161
MCI individuals progressed to AD before study completion and the remaining 212 MCI
individuals did not convert to AD prior to study end. Thus, the time of conversion from MCI
to AD can be treated as time-to-event data.

We fitted the FLCRM model to the ADNI dataset. The scalar covariate includes Gender
(1=Male; 2=Female), Handedness (1=Right;2=Left), Marital Status (1=Married;
2=Widowed; 3=Divorced; 4=Never married), Education length, Retirement (1=Yes; 0=No),
Age, the APOE genetic covariates with two SNPs, and the ADAS-Cog score. The two SNPs
in APOE together define a 3-allele haplotype, namely, the £2, £3 and &4 variants. For the
categorical variables, we introduce dummy variables to represent them, resulting in a design
matrix Zwith dimension (n, p) = (373, 12). For the functional predictors, we used
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hippocampal radial distances of 30,000 surface points on the left and right hippocampus
surfaces. The radial distance is defined as the distance between the medial core of the
hippocampus and the corresponding vertex, and it is a summary statistic of the hippocampal
shape and size. We applied FPCA to such surfaces to estimate the principal component
scores. We selected the top 34 FPCs that explain 85% of the total variance. We used our
score test statistic 7gto test the null hypothesis of Ay : S(-) = 0, and its associated p-value is
5 x 1076, This result may indicate a significant non-zero effect of the hippocampus radial
distance surface data on the conversion time. We have performed the back-testing procedure
to validate our testing result. In particular, we considered top 34 FPCs and applied our
method to test whether each PC is significant compared with the null model with only
clinical covariates. Then we adjust for multiple comparisons by using Bonferroni correction
and compare all of the p-values with 0.05/34. The first principal component is still
significant with its p-value 8 x 1077, Therefore, the signal is very strong, validating our
testing results. We also performed the sensitivity analysis of our testing procedure by using
different percentages of variance explained to select 7, In particular, we consider 70%, 75%,
80%, 90% and 95%, and the corresponding p-values are 2 x 107>, 2 x 1076, 2 x 1076, 3 x
1078, and 7 x 1077, respectively. Therefore, all the p-values support a significant non-zero
effect even after the use of Bonferroni adjustment for multiple comparisons.

We then used the estimation procedure of FLCRM to estimate y and Sy(:). The number of
FPCs is chosen to be 7, =20 by AIC. We fitted the FLCRM and applied the method in
Grambsch and Therneau (1994) to test the proportional hazards assumption for a Cox
regression model fit. This can be implemented by the “ cox. zph() ” function in the R
package sur vi val . The p-value is 0.177, which suggests that the proportional hazards
assumption is not violated. Figure 2(b) includes the estimated coefficient functions. We have
plotted the hippocampal subfields in Figure 2(c). Inspecting Figure 2 reveals that the
subfield of CA1 on both hippocampi has negative effects on the hazard function, indicating
that the thicker these areas on the hippocampus are, the shorter the time is to covert to AD.
Table 1 presents the estimated y and their standard errors and p-values. We observe that
ADAS-Cog score is significant, whereas the APOE genes are not after Bonferroni
correction. This coincides with the results in Da et al. (2014), which show that a
combination of spatial patterns of brain atrophy and ADAS-Cog offers good predictive
power of conversion from MCI to AD, whereas APOE genotype does not significantly
improve prediction. Our findings support prior MRI studies of volumetric hippocampal
changes in prodromal AD (Dickerson and Wolk, 2013), and extend them by finding that the
possible prognostic value of adding hippocampus surface data may be superior to that
provided by routine clinical cognitive testing data.

We plotted the survival function with the 95% point-wise confidence interval in Figure 2(d),
where the values of all the covariates are taken as the mean value of the covariates. In
addition, we performed some sensitivity analysis of ... In particular, we consider r,,= 17, 18,
19, 21, 22, and 23 and then we estimate y and Sy(:). The estimated coefficient functions are
presented in Figure S1 in the supplementary document. Compared with Figure 2(b), our
estimated coefficient functions are quite robust to the choice of 7,
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We investigate the predictive performance of the FLCRM method. We also compared our
model with a reduced model without the hippocampus surface data, and we fitted a Cox
regression with only the scalar covariates. We randomly selected 200 subjects as the training
data. We calculated the concordance index using the remaining 173 data points as the test
data. We repeated this step for 100 times in order to obtain the mean of the concordance
indices and its standard error for the two fitted models. The results show that the mean of the
concordance indices is 0.68 (0.003) for our FLCRM, whereas the mean is 0.65 (0.003) for
the reduced model, indicating the better prediction of our model. We also want to note that
the concordance index with 0.68 is not very high, and there is still a lot of unmeasured
variability driving progression to AD. We also compared with a new model by replacing the
surface data by the hippocampal size, and the mean of the concordance indices is 0.69
(0.003). Although the summary statistics provide similar prediction power, the use of the
whole hippocampal surface allows us to localize the effects of hippocampal subregions on
conversion from MCI to AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Simulation results for evaluating the rejection rate of 7swhen PV(r;;) = 0.85: panels (a), (b),
and (c), respectively, correspond to the changes in power for sample sizes of /7= 200, 500,
and 1, 000 under the first setting of alternative hypothesis; panels (d), (e), and (f),
respectively, correspond to the changes in power for sample sizes of /7= 200, 500, and 1, 000
under the second setting of alternative hypothesis. The solid, dashed and dotted lines
correspond to censoring rate of 0.1, 0.3 and 0.5, respectively.
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Figure 2.
ADNI data analysis results: panel (a) is the color bar illustration, panel (b) contains the

estimated coefficient functions g(s), panel (c) is the hippocampal subfields, and panel (d) is
the survival function for the time of MCI to AD progression. This figure appears in color in
the electronic version of this article.
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Simulation results for the estimation and predictive accuracy of our estimation method when n =200 and
censoring rate is 0.1. We vary r, from 1 to 10, and use AIC to select r,, and we also compare with Gellar et al.

(2015)’s method. The means of the estimates of RMSEg, RMSE,, T, and the concordance index with their

standard errors in the parentheses were reported.

n RMSEg RMSE,, Concordance Index n
1 0.22(0.007)  0.24(0.018) 0.731(0.0004) 1
2 0.15(0.008)  0.25(0.019) 0.735(0.0005) 2
3 0.12(0.008)  0.26(0.02) 0.737(0.0005) 3
4 0.09(0.005)  0.26(0.019) 0.738(0.0003) 4
5 0.13(0.008)  0.26(0.019) 0.738(0.0003) 5
6 0.23(0.019)  0.27(0.02) 0.737(0.0004) 6
7 0.46(0.043)  0.28(0.02) 0.736(0.0005) 7
8 0.66(0.051)  0.29(0.02) 0.735(0.0005) 8
9 1.02(0.066)  0.29(0.02) 0.734(0.0005) 9
10 1.42(0.092)  0.29(0.02) 0.733(0.0005) 10
AIC  0.28(0.052) 0.26(0.019) 0.737(0.0005) 3.68(0.16)
Gellar  0.26(0.047)  0.26(0.019) 0.737(0.0004) NA
Qu  3.70(0.04) 4.27(0.07) NA NA
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