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Abstract— Magnetic Resonance Imaging (MRI) has been
proven to be an efficient way to diagnose Alzheimer’s
disease (AD). Recent dramatic progress on deep learning
greatly promotes the MRI analysis based on data-driven
CNN methods using a large-scale longitudinal MRI dataset.
However, most of the existing MRI datasets are fragmented
due to unexpected quits of volunteers. To tackle this prob-
lem, we propose a novel Temporal Recurrent Generative
Adversarial Network (TR-GAN) to complete missing ses-
sions of MRI datasets. Unlike existing GAN-based methods,
which either fail to generate future sessions or only generate

Manuscript received 3 December 2021; revised 13 January 2022;
accepted 7 February 2022. Date of publication 11 February 2022; date
of current version 1 August 2022. This work was supported in part
by the National Key Research and Development Program of China
under Grant 2018YFC2001700; in part by the National Natural Science
Foundation of China under Grant 61720106012, Grant U1913601, Grant
62073319, Grant 62003343, and Grant U20A20224; in part by the
Beijing Natural Science Foundation under Grant L172050; in part by
the Beijing Sci&Tech Program under Grant Z211100007921021; in part
by the Youth Innovation Promotion Association of Chinese Academy of
Sciences under Grant 2020140; in part by the Strategic Priority Research
Program of Chinese Academy of Science under Grant XDB32040000; in
part by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health) under Grant U01 AG024904, and in part by the
Department of Defense (DOD) ADNI under Grant W81XWH-12-2-0012.
(Corresponding author: Zeng-Guang Hou.)

Chen-Chen Fan, Zhen-Liang Ni, Guan’an Wang, Sheng Chen, and
Yan-Jie Zhou are with the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing 100190, China, and also with the School of Artificial
Intelligence, University of Chinese Academy of Sciences, Beijing
100049, China (e-mail: fanchenchen2018@ia.ac.cn; nizhenliang2017@
ia.ac.cn; wangguanan2015@ia.ac.cn; chensheng2016@ia.ac.cn;
zhouyanjie2017@ia.ac.cn).

Liang Peng, Hongjun Yang, and Xiao-Hu Zhou are with the State
Key Laboratory of Management and Control for Complex Sys-
tems, Institute of Automation, Chinese Academy of Sciences, Beijing
100190, China (e-mail: liang.peng@ia.ac.cn; hongjun.yang@ia.ac.cn;
xiaohu.zhou@ia.ac.cn).

Tian Wang is with the Neuroscience and Intelligent Media Institute,
Communication University of China, Beijing 100024, China (e-mail:
tian_wang@cuc.edu.cn).

Zeng-Guang Hou is with the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China, also with the School
of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing 100049, China, also with the CAS Center for Excellence in
Brain Science and Intelligence Technology, Beijing 100190, China,
and also with the CASIA-MUST Joint Laboratory of Intelligence Sci-
ence and Technology, Institute of Systems Engineering, Macau Uni-
versity of Science and Technology, Macau 999078, China (e-mail:
zengguang.hou@ia.ac.cn).

Digital Object Identifier 10.1109/TMI.2022.3151118

fixed-length sessions, TR-GAN takes all past sessions to
recurrently and smoothly generate future ones with variant
length. Specifically, TR-GAN adopts recurrent connection
to deal with variant input sequence length and flexibly
generate future variant sessions. Besides, we also design
a multiple scale & location (MSL) module and a SWAP
module to encourage the model to better focus on detailed
information, which helps to generate high-quality MRI data.
Compared with other popular GAN architectures, TR-GAN
achieved the best performance in all evaluation metrics
of two datasets. After expanding the Whole MRI dataset,
the balanced accuracy of AD vs. cognitively normal (CN)
vs. mild cognitive impairment (MCI) and stable MCI vs.
progressive MCI classification can be increased by 3.61%
and 4.00%, respectively.

Index Terms— Alzheimer’s disease, magnetic resonance
imaging, generative adversarial network.

I. INTRODUCTION

ALZHEIMER’S Disease is an irreversible neuro-
degenerative disease, which is the most common form

of dementia, affecting millions of people worldwide. While
there is no cure for AD currently, studies have shown that
AD can be diagnosed in very early stages when interventions
could effectively prevent the deterioration of AD [1].
Neuroimaging techniques can detect brain abnormalities
caused by AD [2]. Magnetic resonance imaging (MRI), one
of the leading diagnostic modalities, offers excellent spatial
resolution and soft-tissue contrast and helps to catch early
AD development [3], [4].

Longitudinal MRI datasets are helpful to study the progres-
sion of AD by collecting multi-session data from a large num-
ber of AD, mild cognitive impairment (MCI), and cognitively
normal (CN) people. Unfortunately, these datasets are incom-
plete due to many participants’ midway withdrawal (Fig. 2).
Ideally, participants will undergo a series of tests that repeat
over several years for a multi-session dataset. However, many
participants’ data collection stopped at different intermediate
stages due to various technical and practical reasons.

As a chronic neuro-degenerative disease, AD gradu-
ally affects brain structure. Comparison between MRI data
obtained at different periods for the same participant provides
better observation of the brain structure changes and con-
tributes to more accurate diagnosis algorithms [5]. To complete
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Fig. 1. Comparison of different GAN frameworks in the expansion
of longitudinal datasets. G represents the generator, the solid arrow
indicates the achievable generation direction, and the dashed line
indicates that the current model cannot generate the data. (a) Unpair
GAN cannot predict future data as no supervision is adopted during
training; (b) Pair GAN can perform future one-to-one prediction tasks,
but they may require multiple models to handle many-to-many prediction
tasks; (c) Multi-Pair GAN can deal with many-to-many prediction tasks
by training multiple sessions data but cannot predict untrained domain
data; (d) Our proposed TR-GAN can deal with many-to-many predictions
with varying inputs and outputs and predict untrained domain data.

Fig. 2. Available real session and multi-session prediction task in
ADNI dataset (Introduced in section IV-A). “Mj” represents the data that
was collected in the j-th month after the first collection. The blue area
represents the distribution of available sessions, which are fragmented.
The multi-session prediction task aims to use the participants’ existing
session data to generate missing data in the future. The green area is
the prediction diagram of [M00, M06] → future session.

the missing dataset, for the first time, we propose the multi-
session prediction task, using the existing MRI data of each
subject to synthesize its data in multiple future periods (Fig. 2).

Generative Adversarial Networks (GAN) have been used
to synthesis 3D MRI images. They can be divided into pair
and unpair GAN according to whether paired data is adopted
in training. Unpair GANs can generate realistic MRI data
[6]–[9]. As no supervision is adopted during training, unpair
GAN can only generate data that belong to the same data
collection time of its training data, failing to predict future
sessions (Fig. 1 (a)). As for pair GANs, they can perform one-
to-one future MRI data prediction tasks. Popular conditional
GAN architectures like Cycle-GAN [10] and Pix2Pix [11]
fail to consider the connection between MRI data acquired
at different times and instead treat each data independently
(Fig. 1 (b)). LDGAN [12] predicts multiple future data by
training multiple models, which training is complex and cannot

predict untrained data. StarGAN [13] and CollaGAN [14]
try to deal with many-to-many prediction tasks (Fig. 1 (c))
by a single model, but they also cannot predict untrained
domain data. Current GAN-based MRI generation methods
can only predict future sessions with fixed-length due to
the finite domain session training or even fail to generate
future data. Synthesizing each subject’s data in multiple future
periods can complete the missing data and contributes to a
more accurate observation of their AD progression. Therefore,
we explore the multi-session prediction task (Fig. 1 (d)) to
perform many-to-many predictions, even untrained domain
data. Specifically, the multi-session prediction task generates
missing future session data by effectively using the existing
session data of the subjects to complement the fragmented
longitudinal dataset.

Several challenges need to be considered when solving this
novel task. The first one is labeled data generation. A well-
labeled dataset is required for diagnosis classification algo-
rithms based on deep learning. The second one is various input
lengths, i.e., inputting different numbers of available 3D MRI
data for different participants. The number of 3D MRI data
may vary significantly among different participants because of
their different data collection times. Neural networks with a
fixed number of neurons in the input layer have trouble dealing
with varying lengths of 3D MRI sequence. The last one is
fine-grained feature extraction. Compared with natural scene
images, 3D MRI images have low contrast and high visual
consistency, making it hard to distinguish MRI data from a
global level. Though 3D MRI scans produce detailed images
of the organs and tissues in the body, the fine structure of 3D
MRI scans might be intricate for GANs to capture, leading to
the loss of essential details.

Based on the above analysis, we propose a Temporal
Recurrent Generative Adversarial Network (TR-GAN) (Fig. 3)
to solve the three challenges mentioned above. It consists
of a SWAP module, a MSL module, a generator, and two
discriminators. First, labeled data is generated by conditional
GAN, which takes each participant’s existing data as prior
information and generates future data that share the same label
with prior input. Second, recurrent connections are adopted in
the generator to deal with variant input lengths. The generator
encodes the memory of previous sessions through its hidden
state. Third, a SWAP module forces the generator to focus
on detailed local information by partitioning the 3D input
MRI and shuffling these partitioned local regions in their 3D
neighborhood. Meanwhile, a multiple scale & location (MSL)
module is proposed to extract multi-scale and multi-location
features and send them to the discriminator for pixel-by-pixel
discrimination. This forces the generator to focus on multi-
scale generation details against the discriminator.

The main contributions of this work can be concluded as
follows:

• To the best of our knowledge, we are the first to explore
the multi-session prediction task of MRI by using a sin-
gle generator model, which can predict the participants’
multiple future sessions based on the existing sessions.

• TR-GAN is proposed to deal with variant input sequence
length and flexibly generate future variant sessions, which
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Fig. 3. The framework of TR-GAN. Recurrent connections are adopted in the generator to deal with variant input lengths. Specifically, as shown in
the dashed box, ∀n ∈ N, for the input sequence data

�
X0,X1, · · · ,Xn−1

�
, the information of the varying length data can be encoded into the hidden

state H through n times feed forward. In the i-th feed forward, the encoder ME randomly (p = 50� probability) takes original Xi−1 or swapped data
Xs

i−1 and the last hidden state Hi−1 as input to obtain Hi, which encodes the information of
�
X0,X1, · · · ,Xi−1

�
. This process of encoding sequence

data is called “Memory code”. Finally, the decoder MD obtains the prediction �Xi for the next session by decoding Hi. The discriminators DGAN and
DSWAP are used to guide the generation of prediction results.

achieve the best performance in all evaluation metrics of
two datasets.

• We design a MSL module and a SWAP module to encour-
age the model to better focus on detailed information,
which helps to generate high-quality MRI data.

• Combining the original and generated images in the
Whole MRI dataset, the balanced accuracy of AD vs.
CN vs. MCI and sMCI vs. pMCI classification tasks can
be increased by 3.61% and 4.00%, respectively.

II. RELATED WORK

A. Longitudinal MRI Analysis

The longitudinal dataset can be considered as a type of time
sequence data because it has data at multiple time points. Pre-
vious longitudinal studies [15]–[17] focused on analyzing the
speed of biomarkers (e.g., hippocampus, enterorhinal cortex)
over time.

With the progress in natural language processing (NLP),
researchers proposed a series of models in exploring sequence
data. Recurrent Neural Network (RNN) [18] was proposed
to process variable-length sequence data by recursing in the
evolution direction of the sequence. Long short-term memory
(LSTM) [19] effectively alleviates the long-term memory
decline problem of RNN by introducing a gating mechanism,
but the structure is complicated. GRU [20] simplifies LSTM
and speeds up training without affecting the effect.

Inspired by these developments, some works use the above
sequence data processing model to analyze the MRI longi-
tudinal dataset. Cui et al. present a classification framework
based on combination of Multi-Layer Perceptron (MLP) neural
network and RNN for longitudinal analysis of MRI images for

AD diagnosis [21]. Wang et al. introduced LSTM to predict
the AD progression for a patient’s next medical visit through
longitudinal data [22]. Ghazi et al. proposes a generalized
algorithm with LSTM applied to model the progression of
AD using six volumetric MRI biomarkers [23]. Jung et al.
devise a novel computational framework that can predict the
phenotypic measurement of MRI biomarkers and cognitive
scores at multiple future time points [24]. The above research
is dedicated to the prediction and completion of biomarkers
and clinical scores. LDGAN [12] attempts to use multiple gen-
erators to complete missing 3D MRI data in the longitudinal
dataset. The number of generators and training complexity of
LDGAN increase linearly with the increase of the sequence
data length. Unlike LDGAN, our work employs a single
generator to model the laws between the data of different
collect times and use the participants’ existing data to predict
their future time data.

B. MRI Synthesis

GANs have been successfully applied to various image
synthesis tasks. Specifically, it can be used for image gen-
eration [25], text to image synthesis [26], image to image
translation [11], to name a few. GAN in image synthesis,
according to whether images are generated from random
noise or any conditional information, can be divided into two
prominent approaches: unconditional GAN and conditional
GAN. Both of them have shown promising results in the field
of medical imaging [27].

Unconditional GANs can generate completely new images
by learning the data distribution itself. Han et al. [6] and
Bermudez et al. [9] used unconditional GANs to generate
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realistic 2D tumor and normal MRI slices from random
variables, respectively. Kwon et al. [8] generated 3D brain
MRI from random vectors. All these works were able to
capture the real data distribution and generate diverse samples.
However, such generation lack synthesis control [28], since the
generation relies on no prior knowledge, different models are
required for generating data with different labels.

On the other hand, conditional GANs have been widely
used in cross-modality synthesis. Several studies have tried
to synthesize Positron Emission Tomography (PET) images
from MRI [29], [30]. As for MRI generation, Rusak et al. [31]
synthesized 3D brain MRI images with more accurate tissue
borders from Partial Volume maps. However, they failed to
take advantage of the connection between MRI data acquired
at different times and instead treated each MRI independently.

C. Detailed Structure Learning

The generation of 3D MRI images with clear and detailed
information helps analyze the changes in the brain areas
of AD patients over time. Since MRI images are grayscale
images and contain less semantic information, different MRI
images have a high visual similarity. The detailed structure
information of 3D MRI images is the basis for generating
high-quality MRI data. In the field of computer vision, the
task of fine-grained classification is to distinguish subordinate
classes of the same superclass, for example, to distinguish
different wild birds. Compared with ordinary images, fine-
grained images have more similar appearance and features,
making this task more difficult. The related work of this
task has certain enlightenment for the extraction of detailed
structure information of 3D MRI. Several studies have tried to
locate important region details by finding informative regions
and then make predictions according to the feature from
them [32], [33]. Chen et al. proposed a Destruction and
Construction Learning method to force the network to learn
from discriminative regions and features by carefully destruct
and then reconstruct the input [34]. Inspired by the work in
this field, we try to make GAN pay attention to the detailed
structure information of 3D MRI data.

III. METHODS

This section illustrates the proposed TR-GAN method,
as shown in Fig. 3. TR-GAN consists of a SWAP module,
a generator, and two discriminators. The SWAP module helps
TR-GAN focus on the detailed local structure by partitioning
and shuffling the input data. The MSL module contributes
to stronger discriminators by sending them multi-scale and
multi-location information. With the recurrent connection, the
generator can process input MRI sequences of any length and
predict future data based on previous inputs. As for the two
discriminators, one learns to distinguish the synthesized data
given by the generator from the real data, the other tries to
differentiate the data generated from normal input or shuffled
input. The generator competes with the discriminators until it
is strong enough to fool them.

The goal of TR-GAN is to predict the patient’s future MRI
data based on the existing available data. Formally, the MRI

data acquired in session i is denoted as Xi ∈ RC×D×H×W

(where C , D, H and W are the channel, depth, height, and
width, respectively).

During training, TR-GAN receives multi-session input
samples {X0, X1, · · · , Xn−1} and the corresponding labels
{X1, X2, · · · , Xn} (where n denotes the number of available
sessions in the training set). The generator GW is based
on encoder-decoder architecture. The encoder and decoder
network are denoted as ME and MD . Given an input sample
Xi−1, the encoder has a probability of p to receive the
swapped input Xs

i−1 generated by the SWAP module and a
probability of 1 − p to get the original sample Xi−1. This
process is denoted as τ (Xi−1, p). ME takes τ (Xi−1, p) as
input and encodes it into the hidden state Hi . Hi is then sent
to MD to generate the prediction of the next session �Xi . We set
H0 = 0. The train phase can be indicated as:

Hi = ME (τ (Xi−1, p), Hi−1) i = 1, 2, · · · , n (1)�Xi = MD (Hi) i = 1, 2, · · · , n (2)

In the inference phase, we generate prediction for future
sessions {Xn+1, · · · , Xn+m} (where m denotes the number of
sessions needs to be predicted). ME receives the input data
and its corresponding hidden state. The output of ME is sent
to MD . The inference phase can be indicated as:

Hi =
�

ME (Xi−1, Hi−1) ; i = 1, 2, . . . , n + 1

ME
��Xi−1, Hi−1

� ; i = n + 2, · · · , n + m
(3)

�Xi = MD (Hi) i = n + 1, n + 2, · · · , n + m (4)

A. SWAP Module

The proposed SWAP module “swaps” the local regions in
the input, forcing the generator to learn useful local informa-
tion and generate complete MRI according to these features.
Inspired by [34], the SWAP module first uniformly partition
the MRI data into sub-regions Ns × Ns × Ns denoted by
Rl,m,n , where l,m, n are the depth, height, width coordinate
indices respectively and 1 ≤ l,m, n ≤ Ns . SWAP module
shuffles partitioned local regions in their 3D neighbourhood.
For the mth column of Rl,m,n , a random vector sm of size
Ns is generated, where the lth element sm,l = l + r and
r ∼ U(−K , K ) is a random variable following a uniform
distribution in the range of [−K , K ]. Here, K is a tunable
parameter (1 ≤ K < Ns ) defining the neighbourhood range.
Then we can get a new permutation σ col

m of regions in mth

column by sorting the array sm , verifying the condition: ∀m ∈
{1, . . . , Ns },

��σ col
m (l)− l

�� < 2K . We use similar permutation
in the other two dimensions.

While competing with the discriminator, which distin-
guishes whether the current MRI is generated based on
swapped MRI input, the generator can gradually learn to focus
on informative local regions from the swapped input.

B. Generator

The generator GW is designed based on encoder-decoder
architecture. Both encoder ME and decoder MD are con-
structed based on U-net [35]. Each U-net consists of
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Fig. 4. The architecture of generator GW. It contains an encoder ME and a decoder MD based on the U-Net structure. ME encodes the current
input Xi−1 and the previous hidden state Hi−1 into the current hidden state Hi. MD decodes Hi to generate next session’s prediction �Xi.

four down-sampling layers followed by four corresponding
up-sampling layers, maintaining the same size of input and
output data, as shown in Fig. 4.

Because of the inconsistency of the number of existing
MRI data for each patient, the generator needs to deal with
variant input lengths when predicting the future MRI data.
Therefore, we adopt a recurrent connection which is inspired
by the architecture of Recurrent Neural Network (RNN) [18],
as shown in Fig. 3. Specifically, as shown in the dashed box,
∀n ∈ N , for the input sequence data {X0, X1, · · · , Xn−1},
the information of the varying length data can be encoded
into the hidden state H through n times feed forward. In the
i -th feed forward, the encoder ME randomly (p = 50%
probability) takes original Xi−1 or swapped data Xs

i−1 and
the last hidden state Hi−1 as input to obtain Hi , which
encodes the information of {X0, X1, · · · , Xi−1}. This process
of encoding sequence data is called “Memory code”. Finally,
the decoder MD obtains the prediction �Xi for the next session
by decoding Hi .

C. MSL Module

The MSL module receives the predicted session or the real
data, denoted as �Xi , Xi ∈ RC×D×H×W . As shown in Fig. 5,
it randomly crops the input into Np patches with different
shapes, indicated by Xr

i ∈ RC ·Np ×δ1×δ2×δ3 (where δ1, δ2, δ3
represents the random value of the depth, height and width,
respectively). These random sized patches are then resized
into the same fixed size denoted as Xmsl

i ∈ RC ·Np ×θ×θ×θ .
These multi-scale and multi-location patches are then sent to
discriminators, leading to stronger discriminators.

D. Discriminator

We propose a multiple scale & location pixel discriminator
by combining the MSL module with pixel discriminator [11].
As shown in Fig. 5, the original 2D pixel discriminator is
converted into 3D pixel discriminator to deal with the 3D MRI
data. The two discriminators have different roles, and both

Fig. 5. The architecture of discriminator. Both DGAN and DSWAP use
the network structure in this figure. The MSL module randomly crops the
input into Np patches and then resize them to a fixed size. The DGAN
learns to classify real vs. synthetic input data while the DSWAP learns to
classify original vs. swapped input data.

of them receive the output of the MSL module. The GAN
discriminator DGAN learns to distinguish whether the data is
synthetic or real; the SWAP discriminator DSWAP learns to
classify whether the data is generated from normal MRI data
or the SWAP module.

E. Loss Function

1) Generator Loss: The generator loss LG consists of the
generation loss Lg , the SWAP loss Lg

s , and the reconstruction
loss Lr . Loss term for each �Xi is multiplied with session
weight λi to control their relative contribution.

LG = Lg + Lg
s + Lr (5)
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Lg is based on binary cross entropy (BCE) loss, measuring
the ability for GW to fool DGAN.

Lg =
n	

i=1

λiξBCE(DGAN(κ(�Xi )), ψ(1)) (6)

where κ(·) represents the operation of MSL module,
DGAN(κ(�Xi )) is the output of DGAN, ψ(a) is the respective
ground-truth with a tensor of integer a that shares the same
size with the output of DGAN, ξBCE is BCE with logits loss.
Lg

s measures how well the generator is able to find out
useful local information from the swapped MRI input and
generate realistic MRI accordingly.

Lg
s =

n	
i=1

λiξBCE(DSWAP(κ(�Xi )), ψ(1 − ys)) (7)

where ys is the swap domain label, if the input swapped,
ys = 1, otherwise, ys = 0.

Lr adopt smooth L1 loss to evaluate the difference between
the output of generator �Xi and the corresponding real MRI
data Xi :

Lr =
n	

i=1

λiξsl(�Xi , Xi ) (8)

where ξsl is smooth L1 loss with hyper-parameter β, i.e.:

ξsl =

⎧⎪⎨⎪⎩
|�Xi − Xi )|2

2β
, if |�Xi − Xi | < β

|�Xi − Xi | − β

2
, else

(9)

2) Discriminator Loss: The discriminator loss LD is com-
posed of the discrimination loss Ld and the SWAP loss Ld

s .

LD = Ld + Ld
s (10)

Ld estimates the ability of DG AN to distinguish between the
real and forged data, and Ld

s evaluates how well DSWAP can
discriminate whether the data is generated from swapped MRI
input.

Ld =
n	

i=1

1

2
λi (ξBCE(DGAN(κ(Xi)), ψ(1))

+ ξBCE(DGAN(κ(�Xi )), ψ(0))) (11)

Ld
s =

n	
i=1

λiξBCE(DSWAP(κ(�Xi )), ψ(ys)) (12)

IV. EXPERIMENTS

A. Dataset

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD.

ADNI is a longitudinal multi-site observational study of CN,
MCI, and AD. The subjects have collected data in multiple
periods (usually once every half year). “M j” represents the
data that was collected in the j -th month after the first
collection. For example, We use “M00”, “M06”, “M12”, etc.
to represent the data collected after the subjects for the first
time, after 6, 12 months, etc.

MRI longitudinal time sequence data in ADNI
have 1453 subjects. The total record is randomly shuffled
split into training (1153) and testing (300) set at subject-level.
The testing set contains data for AD, CN, and MCI, each
group with 100 subjects. As shown in Fig. 2, the amount of
available data gradually decreases over time. More than 88%
of subjects have M06 data, but only 28% have M36 data.
Therefore, the dataset size of different prediction tasks might
be inconsistent.

According to the different preprocessing methods, two
datasets are constructed, the grey matter (GM) tissue map
dataset and the Whole MRI dataset.

1) GM Tissue Map Dataset: Original dataset passes through
the t1-volume pipeline of Clinica [37], [38] to process 3D
MRI directly. The Unified Segmentation procedure [39] is
used to simultaneously perform tissue segmentation, bias
correction, and spatial normalization. After that, t1-weighted
volumetric images are segmented into grey matter (GM), white
matter (WM), and cerebrospinal fluid (CSF). The detailed
preprocessing process and toolbox help can be obtained on
this web page.1 Only a GM tissue map is used in the following
experiments as it is more related to the AD diagnosis. Finally,
all 3D GM tissue maps are resized to 128 × 128 × 128.

2) Whole MRI Dataset: Whole MRI dataset have been
obtained using the t1-linear pipeline of Clinica [5], [37] to
process 3D MRI directly. More precisely, bias field correction
was applied using the N4ITK method [40]. Next, an affine
registration was performed using the SyN algorithm [41]
from ANTs [42] to align each image to the MNI space with
the ICBM 2009c nonlinear symmetric template [43], [44].
The detailed preprocessing process and toolbox help can be
obtained on this web page.2 Finally, all 3D MRI images are
resized to 128 × 128 × 128.

B. Implementation Details

The models are implemented using Python 3.6.12, PyTorch
on a workstation with Nvidia Tesla V100-SXM2-32GB-LS.
We select the model with the minimum MSE loss dur-
ing 100 epochs training for evaluation. Adam optimizer is used
for both generator and discriminator. The learning rate for M12
and M18 prediction are 9e-4 and 7e-4, respectively. And the
hyper-parameter λ for M12 and M18 prediction are [0.8, 1.0]
and [0.3, 0.5, 1.0], respectively. For the SWAP module, it is
implemented only in the first 50 epochs. The value of division
number Ns is set to 8 and the neighborhood range K is 2.
In the MSL module, the number of randomly cropped patches

1https://aramislab.paris.inria.fr/clinica/docs/
public/latest/Pipelines/T1_Linear/

2https://aramislab.paris.inria.fr/clinica/docs/
public/latest/Pipelines/T1_Volume/
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TABLE I
SINGLE SESSION PREDICTION RESULTS FOR TWO DATASET

Np is 128 and parameters controlling the output size, θ , is set
to 32, β is set to 0.06.

Three image metrics: MSE, multi-scale structural similarity
metric (MS-SSIM) [45], and peak signal to noise ratio (PSNR)
are adopted to evaluate the authenticity of the generated MRI
results. MSE is used to evaluate the reconstruction error
between the predicted image and the real image. MS-SSIM
is a commonly used image evaluation metric, which considers
the similarity between the generated image and the real image
in terms of brightness, contrast, structure and resolution. PSNR
is the most common and widely used objective measurement
method for evaluating image quality.

C. Results

To the best of our knowledge, TR-GAN is the first work to
perform a many-to-many 3D MRI generation task by using a
single generator model. It predicts the participants’ subsequent
multiple session data based on the existing multi-session data.

For comparison, we adopt three popular conditional GAN
frameworks, AdaIN-GAN, Pix2Pix and Cycle-GAN, to per-
form the one-to-one predict task (M00→M∗). To study
whether the increase of input data can improve the quality of
the generated image, we changed the input of Pix2Pix from a
single session to the concatenate of multi-session data, denoted
as Pix2Pix(M). This direct concatenating multi-session input
method is also used to compare with the recurrent connection
method we used. In addition, we also adopt two popular many-
to-many models (Star-GAN and CollaGAN) and an LDGAN
model that try to use multiple generators to complement the
longitudinal dataset for comparison.

1) Single Session Prediction: In this experiment, we evaluate
TR-GAN’s performance on single future session prediction by
M12 and M18 generation tasks in two datasets. The loss of
training history are shown in Fig. 6 and Fig. 7. Quantitative
comparison results are illustrated in Table I, we have annotated
the methods in the table according to whether to perform
multi-domain generation or accept more than one session of
data. TR-GAN achieved the best performance on all evaluation
metrics on the two datasets.

Fig. 6. L1 loss training history of [M00, M06]→M12 task.

Fig. 7. L1 loss training history of [M00, M06, M12]→M18 task.

On the GM tissue map dataset, the performance of the
Multi-domain model (performs multi-domain generation) is
not as good as the single-domain model (performs single-
domain generation tasks) such as Pix2Pix. This may be
because these multi-domain models need to be trained for
different generation domains during the training phase, which
leads to inferior performance in specific generation tasks.
By comparing the predictions of M12 and M18, it can be found
that the Multi-domain model performs worse as the number of
generated domains increases. LDGAN is not affected because
each domain generation has its own generator, and the effect
is improved due to the increase of supervision information.
It is worth noting that TR-GAN uses a single generator to
perform multi-domain generation tasks but still achieves the
best results, which shows that the recurrent connection method
we adopted is more suitable for multi-domain generation tasks.
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TABLE II
UNTRAINED MULTI-SESSION PREDICTION RESULTS

In addition, we also found that CollaGAN performs better than
StarGAN, while Pix2Pix(M) is better than Pix2Pix. This shows
that inputting multiple sessions data can effectively improve
performance. The AdaIN-GAN method achieved the worst
results. The AdaIN-GAN method achieved the worst results,
which may be because the adaptive instance normalization
method is more suitable for RGB images of natural scenes,
which is quite different from the grayscale images of MRI.

On the Whole MRI dataset, CollaGAN, which receives
multi-session data input, performs better than StarGAN. It is
worth noting that Pix2Pix(M) achieved the worst performance,
which shows that simply connecting multiple input session
data in the channel dimension to the model has poor gen-
eralization. TR-GAN also achieved the best performance.
When predicting M12 and M18, MSE was 19.6% and 8.8%
lower than the second-placed CollaGAN and Cycle-GAN,
respectively.

Additionally, Fig. 8 presents the comparison of error maps
on GM tissue map and whole MRI datasets, showing that
data generated by TR-GAN is more realistic than others.
Fig. 9 presents the center-cut slices of real and generated
samples. To better distinguish the difference between real and
generated data, we zoomed in on the local detail, indicated by
the DETAIL part. The result shows that TR-GAN can better
capture the fine structure than other methods. Meanwhile, the
histogram (Fig. 10) provides a clear indication of the data
distribution for each sample. It can be observed that TR-GAN
shares the most similar distribution to the real data.

2) Untrained Multi-Session Prediction: We use [M00, M06,
M12] and [M00, M06, M12, M18] to train two models to
predict forward till to M24. M18 and M24 predicted by
the first model and M24 predicted by the second model are
untrained session data. TR-GAN predicts untrained future
session data based on existing data through multiple feed-
forwards. As shown in Table II, for untrained session data,
the predicted performance deteriorates over time. We use
TR-GAN’s worst-performing prediction result on M24 to make
a simple comparison with other methods in Table I that use
the same training data, and find that the result is acceptable.
Specifically, on the GM tissue map dataset, TR-GAN trained
with [M00, M06, M12] performed better than AdaIN-GAN,
StarGAN, and LDGAN, and TR-GAN trained with [M00,
M06, M12, M18] performed better than AdaIN-GAN, Star-
GAN, and CollaGAN. On the Whole MRI dataset, TR-GAN
trained with [M00, M06, M12] outperforms AdaIN-GAN,
StarGAN, LDGAN, and Pix2Pix(M), and TR-GAN trained

TABLE III
THE NUMBER OF REAL AND FAKE 3D IMAGES IN

TRAINING SET FOR VARYING SETTINGS

with [M00, M06, M12, M18] GAN outperforms AdaIN-GAN,
StarGAN, CollaGAN, LDGAN, and Pix2Pix(M). There is no
doubt that TR-GAN has accumulated errors in its predictions
on untrained future session data. In order to find a reasonable
number of predictions, we use AD diagnostic experiments in
the section (IV-C.3) to study the validity of the predicted data.

3) AD Diagnosis Classification: To demonstrate TR-GAN
is able to generate realistic data with reasonable diagnosis
labels, we test the performance of AD vs. CN vs. MCI
and stable MCI (sMCI: MCI patients who did not progress
to AD in 36 months) vs. progressive MCI (pMCI: MCI
patients who progress to AD in 36 months) classification.
We divide the dataset into training, validation (each cate-
gory contains about 30 images), and testing (each category
contains 100 images) sets. For the training set, use [M00,
M06] as input to infer M12, M18, etc. The fake data of
[M12, …, M(n + 1) ∗ 6] is obtained by infer n times, denoted
as TR-GAN-n. Fake M12 data generated by other methods
are used to study the impact of fake data generated by
different GAN methods on MRI classification tasks. As shown
in Table III, we designed various combinations of real and
fake 3D MRI data to study the classification performance of
fake data. The 3D-ResNet101 is adopted as the backbone for
classification and the balanced accuracy [46] as the evaluation
metric. For each setting, we train for 50 epochs. The model
with the best validation balanced accuracy is used to evaluate
the testing set, and the test balanced accuracy is reported in
Fig. 11.

Overall, under two classification tasks and two datasets,
the balanced accuracy of TR-GAN-1 and other methods
in “Only Fake” is slightly lower (or approximately) than
that of “Part Real” using the same amount of real data.
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Fig. 8. Comparison of error maps along sagittal (SAG), coronal (COR) and axial (AXI) planes on GM tissue map and whole MRI datasets. For
visualization, we use |�Xi − Xi|/2 to construct the error map. The pixel value in the figure represents the error between the real image and the
fake image generated by different GAN models. Therefore, the closer the pixel color is to blue (0 in the colormap), the smaller the error. Through
comparison, we can find that TR-GAN’s errors are smaller than those of other methods in the two datasets.

The accuracy of some methods approximates random guess-
ing. The comparison of “Part Real” and “Only Fake” shows
that the classification performance of the generated fake data
is weaker than the real data. In the “Only Fake” configuration,
the balanced accuracy of TR-GAN-3 and TR-GAN-6 gradu-
ally increased, while the balanced accuracy of TR-GAN-12
decreased. This shows that the increase in fake data generated
by TR-GAN within a specific range can improve classification
balanced accuracy. The more forward inferences, the greater
the accumulation of errors and the lower the quality of the
fake data obtained. Therefore, the classification performance
of TR-GAN-12 has declined.

In the “All Real+Fake” configuration, TR-GAN-1 has
achieved performance that exceeds (or approximates) other
comparison methods. As the data generated by TR-GAN
increases, the classification balanced accuracy first increases
until TR-GAN-6 reaches the highest point, and there is a
decline in TR-GAN-12. TR-GAN-1 improves the correspond-
ing classification balanced accuracy in both classification tasks
of the two datasets. TR-GAN-6 is 2.56%, 2.50%, 3.61%, and
4.00% higher than using only real data under the four tasks in
Figure 11, respectively. These results show that under a reason-
able number of predictions, the data predicted by TR-GAN can
effectively improve the accuracy of the diagnosis algorithm.
In the “Part Real+Fake” configuration, the performance of

TABLE IV
ABLATION STUDY FOR SWAP AND MSL MODULE

each model is higher (or approximately) than its performance
in the “Only Fake” configuration.

4) Ablation Study: We conduct ablation studies to evaluate
the effectiveness of different components in our proposed
TR-GAN. The baseline is referred to as the TR-GAN archi-
tecture without the SWAP and MSL module. Performance for
different models is evaluated on the task of M18 prediction.
According to the results in Table IV, compared with the
baseline model, when the SWAP module and the MSL module
are adopted, MSE drops by 2.60% and 4.35%, respectively.
The best performance is achieved when this two modules are
used simultaneously, decreasing the MSE by 5.84% compared
with the baseline model. These performance improvements
prove the potency of the two modules. The multi-scale infor-
mation extracted by the MSL module can cultivate better
discriminators, forcing the generator to focus on multi-scale

Authorized licensed use limited to: University of Southern California. Downloaded on September 22,2022 at 17:25:41 UTC from IEEE Xplore.  Restrictions apply. 



1934 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 8, AUGUST 2022

Fig. 9. Comparison of fake images generated by different methods on GM tissue map and whole MRI datasets. “REAL” represents the ground truth.
To better distinguish the difference between real and generated images, we zoomed in on the local detail, indicated by the “DETAIL” part. The result
shows that TR-GAN can better capture the fine structure than other methods.

Fig. 10. Comparison of data distribution histograms in fake images generated by different methods on GM tissue map and whole MRI datasets.
“REAL” represents the ground truth. It can be observed that TR-GAN shares the most similar distribution to the ground truth on the two datasets.

features. The SWAP module makes the generator stronger by
helping it concentrate on detailed valuable local information.

V. DISCUSSION

A. Number of Sub-Regions in the SWAP Module

The number of partitions Ns for the SWAP module is an
important parameter. Table V presents the GM tissue map
synthesis quality of the TR-GAN trained with different feasi-
ble Ns . We can observe that the synthesis quality decreases
while Ns goes bigger. The best performance is achieved at
Ns = 8. In general, if we set Ns as a large number, information
contained in each sub-region might be limited because of the

destructed brain structure. On the other hand, it might be easier
for us to keep the proper local information and take advantage
of it with a smaller Ns .

B. Number of Patches in MSL Module

Table VI presents the GM tissue map synthesis quality
of the TR-GAN trained with different feasible Np . It can
be observed that the performance first increases and then
decreases while Np increases. When Np is set to 128, the best
performance is obtained. We guess that the advantage of our
MSL module would likely be restricted with a small Np, as a
lot of information might be lost when only a limited number of
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Fig. 11. The test balanced accuracy comparison of the ADNI dataset expanded by different GAN models. We designed various combinations of
real data and fake data to study the classification performance of fake data (see Table III for details). The experiment uses 3D-ResNet101 as the
classification backbone and performs AD vs. CN vs. MCI and sMCI vs. pMCI classifications under the GM tissue map and Whole MRI datasets,
respectively. In the “All Real+Fake” configuration, TR-GAN-6 is 2.56%, 2.50%, 3.61%, and 4.00% higher than using only real data under those four
tasks, respectively.

TABLE V
THE GM TISSUE MAP SYNTHESIS QUALITY OF THE MODEL

TRAINED WITH A DIFFERENT VALUE OF Ns

TABLE VI
THE GM TISSUE MAP SYNTHESIS QUALITY OF THE MODEL

TRAINED WITH A DIFFERENT VALUE OF Np

patches are selected. However, if the Np is too big, redundant
information might be adopted, which contributes negatively to
the performance.

C. Discussion on State Encode

To better understand how the previous session data is
encoded by the generator’s encoder, we visualize the left
hippocampus in the hidden state during the training process.

As shown in Fig. 12, the horizontal and vertical axis represents
different training times and different sessions, respectively.
Having trained for one epoch, the hidden state can roughly
show the shape of the left hippocampus, but is accompanied by
grid-like noise. As the training progresses, the noise gradually
decreases, and the left hippocampus becomes more explicit
and is filled with more detailed brain structure informa-
tion. These results indicate that the recurrent connection in
TR-GAN can capture the information of previous sessions,
which is constantly updated and enriched during the training.

D. Limitation

Some limitations should be noted in our work. First, the
development of AD disease is affected by many factors, such
as genes, lifestyle habits, academic qualifications, etc. From
a clinical perspective, the future session MRI data generated
by TR-GAN may not be directly used to predict the disease
progression of AD patients. Fortunately, the data generated
by our model can indeed be combined with real data to
expand existing datasets and improve the accuracy of existing
data-driven diagnostic algorithms. Second, the comparison of
computing resources in the [M00, M06, M12]→M18 task is
shown in Table VII. The memory occupation of TR-GAN
in the training phase is 7073M, which is large than Pix2Pix
and Pix2Pix(M). Cycle-GAN and LDGAN with multiple gen-
erators occupy the most memory. Compared with StarGAN
and CollaGAN, which also perform multi-domain generation
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Fig. 12. Evolution of the left hippocampus in the hidden state with different training processes on Whole MRI dataset. The hippocampus on the
left was extracted from the AAL template [47]. As the hidden state encodes the memory of previous sessions, the hidden state contains the general
information of the MRI data and gradually becomes clear during the training.

TABLE VII
COMPARISON OF REQUIRED TRAINING TIME AND COMPUTING

RESOURCES ([M00, M06, M12]→M18)

tasks, TR-GAN’s recurrent connection method saves mem-
ory. In terms of model parameters, TR-GAN’s generator
parameters are 133.2M, which is lower than Pix2Pix and
Pix2Pix(M). TR-GAN’s discriminator has the smallest amount
of parameters. In general, TR-GAN has a moderate amount of
memory and parameters, but it has achieved the best prediction
performance. We will explore the generation of MRI data
based on the combination of lower resolution MRI input and
super-resolution techniques. Third, due to TR-GAN adopting
a recurrent connection method, multiple forward propagations
are required in the inference stage, which causes the inference
time of TR-GAN to be longer than other methods. In terms
of training time, the training time of the Multi-domain
model (performs multi-domain generation) is longer than

the single-domain model (performs single-domain generation
tasks). The training time of TR-GAN is 59.86 hours, which
is less than (or similar to) other models that perform multi-
domain generation tasks. There is no real-time requirement
for multi-session MRI prediction tasks, so it is acceptable to
sacrifice inference time to obtain higher accuracy prediction
results. Like other related works mentioned in the paper,
TR-GAN cannot carry out mini-batch training. We are working
on a better network architecture to achieve batch-level gradient
updates.

VI. CONCLUSION

In this paper, we explore the challenging problem of multi-
session MRI prediction. TR-GAN is proposed to learn from
existing data and predict future sessions for each patient by
using a single generator model. Compared with other popular
GAN architectures, TR-GAN achieved the best performance in
all evaluation metrics of two datasets. In two datasets expanded
by TR-GAN, the balanced accuracy of AD vs. CN vs. MCI
classification tasks can be increased by 2.56% and 3.61%,
respectively. The balanced accuracy of sMCI vs. pMCI task
can be increased by 2.50% and 4.00%, respectively.
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