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Abstract: Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases. Structural magnetic
resonance imaging (MRI) would provide abundant information on the anatomical structure of human organs. Fluorodeoxy-
glucose positron emission tomography (PET) obtains the metabolic activity of the brain. Previous studies have demonstrated
that multi-modality images could contribute to improve diagnosis of AD. However, these methods need to extract the
handcrafted features that demand domain specific knowledge and image processing stage is time consuming. In order to tackle
these problems, in this study, the authors propose a novel framework that ensembles three state-of-the-art deep convolutional
neural networks (DCNNs) with multi-modality images for AD classification. In detail, they extract some slices from each subject
of each modality, and every DCNN generates a probabilistic score for the input slices. Furthermore, a ‘dropout’ mechanism is
introduced to discard low discrimination slices of the category probabilities. Then average reserved slices of each subject are
acquired as a new feature. Finally, they train the Adaboost ensemble classifier based on single decision tree classifier with the
MRI and PET probabilistic scores of each DCNN. Evaluations on Alzheimer's Disease Neuroimaging Initiative database show
that the proposed algorithm has better performance compared to existing method, the algorithm proposed in this study
significantly improved the classification accuracy.

1 Introduction
In common dementia worldwide, Alzheimer's disease (AD) has
always been an important domain in psychology and medicine. It
has been reported that AD has become the sixth leading cause of
death in 2015 [1]. AD usually has concealed onset and advances
gradually, which is diagnosed only after the patients have
irreversible behavioural and cognitive impairments. However, there
are no available drugs and methods to cure AD. Thus, early
detection at the prodromal stage, also known as mild cognitive
impairment (MCI), is very important for delaying the onset and
therapy of AD.

With the rapid progress of computer technology, medical
imaging technology has been unprecedentedly developed. An
increasing number of medical images with different modalities
contribute to computer-aided diagnosis. Different modalities
provide different kinds of information to identify AD and MCI or
healthy normal control (NC) [2, 3]. Structural magnetic resonance
imaging (MRI) with high-resolution and contrast enhancement of
soft tissue would provide more structural details [4–6].
Fluorodeoxy-glucose positron emission tomography (PET) could
capture the cerebral metabolic activation of glucose [7–9]. The
modal of biomarkers, such as pathological amyloid depositions
measured through cerebrospinal fluid (CSF) [10, 11]. Functional
magnetic resonance imaging measures functional brain activity and
changes in the brain [12–14]. Many studies have demonstrated that
the use of integrated information from multi-modality images
could contribute to improve diagnosis of AD.

In the last decades, pattern recognition and machine learning
methods have been widely used in brain disease diagnosis, which
extracts different kinds of the features from neuroimaging
modalities to learn a model and predict class labels on an unknown
object. In general, these feature extraction methods can be
summarised into four categories: voxel-based morphometry
(VBM) approach, region of interest (ROI)-based approach, patch-
based approach and landmark-based approach. The VBM approach
is a simple and direct approach that analyses the changes in brain
grey matter (GM) and white matter volume of each voxel in MRI

[15–18]. Although this method is simple and easy to implement, it
can easily cause the curse of dimensionality and ignorance of
regional information. The ROI-based approach uses MRI to
compute the volume of GM tissue with that ROI region as a
feature. PET is aligned to MRI and the average intensity of ROI is
computed as a feature [19–21]. However, these feature extraction
methods are tedious and require expert knowledge in practice. The
ROI-based segment may not adapt well to the diseased-related
pathology. The patch-based approach dissects brain areas into
small patches and extracts features from each selected patch,
combining the features hierarchically in each classification level
[22–25]. However, the disease-related structural changes occur in
multiple brain regions or span several patches, so that whole brain
information could not be captured by using only these independent
patches. The landmark-based approach does not require non-linear
image registration or brain tissue segmentation [26] reducing these
two time-consuming steps. It mainly includes the landmark
definition, landmark detection and extracting morphological
features around the detected landmarks for AD diagnosis [27–29].
This method relies on a large training set, and limited training
subjects could affect the accuracy of identifying landmarks so that
final classification effect is not good [26].

Recently, the performance of deep learning has been
dramatically improved in speech recognition, image recognition,
natural language processing and many other domains [30–32]. In
particular, the deep convolutional neural network (DCNN) and
stack auto-encoder network (SAE), by stacking layers of the
neuron, can utilise more abstract hierarchical feature
representations of the image data. Some researchers have used
SAE to mine the potential feature representations form of multi-
modality images, i.e. MRI, PET and CSF independently,
constructing a multi-kernel support vector machine (SVM) for
classification [33, 34]. Several studies have proposed extracting
features using a deep belief network [35, 36], then training
classification model. Meanwhile, a large number of neuroimaging
studies focus on CNN for diagnosis of AD. In particular, some
classic DCNN such as VGG [37], GoogLeNet [38], ResNet [39,
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40], DenseNet [41, 42] networks, obtained better classification
results and were superior in AD diagnosis.

In this paper, to address the limitations of traditional machine
learning and inspired by the idea of the aforementioned deep
learning models, we propose a novel classification framework
based on the ensemble DCNNs of multi-modality images by
Adaboost learner, named DCMA for short. The main contributions
are as follows:

(i) There is no need to registration and segment required for pre-
processing multi-modality images and defined the ROIs or
extracted patch images for handcrafted features. Our method
directly extracts 2D slices of the original image to input DCNN
network, which simplifies data pre-processing and reduce the time
consumption.
(ii) By employing three different state-of-the-art DCNNs to
automatically learn the hierarchical representations from the
images data. We use a stacking strategy for each DCNN to improve
the stability of the model and introducing a ‘dropout’ mechanism
to discard image slices of the lower probabilistic score. We used
‘dropout’ in single quotes to distinguish it from the dropout method
in neural networks, We acquired the average probabilistic scores of
each DCNN as a new feature for subjects.
(iii) The MRI and PET probabilistic scores are fused by the
Adaboost algorithm based on a single decision tree (DT) classifier
for the final classification.

The remainder of this paper is organised as follows. In Section 2,
we present the preliminary knowledge of the proposed method.
Section 3 describes the proposed framework in detail. The
experimental materials and experimental setup are presented in
Section 4. Section 5 shows the experimental results and discusses
the effects of the proposed method. Finally, the conclusion of this
paper is drawn in Section 6.

2 Preliminaries
2.1 CNN model

CNN [41] is a special artificial neural network, its main
characteristic is weight sharing and local perception. It has
excellent performance in many fields, especially in image-related
tasks such as image classification. Usually, a basic architecture of
the CNN includes input layer, convolution layer, activation layer,
batch normalisation (BN) [43] layer, dropout layer, pooling layer,
fully connected layer and softmax layer.

GoogLeNet is the champion of the ImageNet ILSVRC
classification challenge in 2014 [44]. It contains 22 layers of deep
networks and its main contribution was to introduce the inception
model [45]. The function of employing inception layers is to
increase depth and width simultaneously without additional
computational overhead. Another advantage is to simultaneously
extract abstract features from different scales.

ResNet won first place on the ImageNet ILSVRC 2015
classification and detection task [46]. ResNet introduced the
‘shortcut connections’, where the outputs are added to the outputs
of the stacked layers. Through residual learning, it effectively
solves the notorious problem of vanishing/exploding gradients. It is
easy to train the deeper neural network. Additionally, it neither
adds an extra parameter nor increases computational complexity.
Experimental results show that the accuracy gains from increasing
depth are better than that of the previous network. It mainly
includes 18/34-layers of the style ResNets and 50/101/152-layers
of the style ResNets.

DenseNet [47] different from ResNet [46], adds outputs to each
layer that has direct connections to all subsequent layers. Each
layer obtains feature-maps from all previous layers. It can achieve
feature reusing throughout the architecture, relieve the vanishing-
gradient problem and substantially reduce the number of
parameters. With the different number of the dense blocks, it
mainly includes DenseNet-121/169/201/264 architectures.

2.2 Decision tree

DT learning is used to produce a tree with a strong ability to
generalise unseen instances. The basic process that follows the
tree-structured decision is simple and intuitive in a divide-and-
conquer way. DT learning algorithms are generally the recursive
processes of splitting the dataset. The key of the DT algorithm is
how to select the splits. The classification and regression tree
(CART) algorithm [48] is well known. It was employed for
splitting selection in the information Gini index. For training set D,
the proportion of samples of class k is pk(k = 1, 2, …, Y ), suppose
there is a feature a with V possible values {a1, a2, …, aV}. Equation
(1) used Gini index to define the purity of D. It reflects the
inconsistent probability of the label's category. Thus, the smaller
the value of Gini(D) is, the higher the purity of the data D

Gini(D) = ∑
k = 1

Y

∑
k′ ≠ k

pkpk′ = 1 − ∑
k = 1

Y
pk

2 (1)

where the defined feature Gini index of a is as follows:

Gini(D, a) = ∑
v = 1

V Dv

D Gini(Dv) (2)

For the candidate feature set A, which selected the minimum Gini
index of feature-value pair for the split

a∗ = arg min
a ∈ A

Gini_index(D, a) (3)

The CART use a binary tree model that improves the
computational efficiency, and could solve classification and
regression tasks. It can handle both discrete and continuous values.

2.3 Adaboost

Boosting is a famous ensemble algorithm that is able to convert
weak learners to strong learners. A weak learner is slightly better
than a random guess, and a strong learner is very close to perfect
performance. Adaboost (adaptive boosting) [49] is the specific
implementation of the boosting algorithm. For the data distribution
D, let f denote the ground-truth function and h denote weak
classifier. Each iteration t raises the weight of misclassified
subjects so that they add up to 1/2 and lowers those of the correctly
classified ones, so that they too add up to 1/2. When it is unable to
do so, the algorithm takes a break; or else, it continues until a
predetermined number of T classifiers are generated. The different
weights αt for every classifier are learned, using an additive
weighted combination of weak learners as follows:

H(x) = ∑
t = 1

T
αtht(x) (4)

That achieved by minimising the exponential loss function as
follows:

(h D) = Ex ∼ D e− f (x)h(x) (5)

3 Propose framework
Fig. 1 shows the flow chart of the proposed DCMA method. Our
method is an ensemble of three DCNNs models – GoogLeNet,
ResNet-50 and DenseNet-121 based multi-modality (i.e. MRI and
PET) by Adaboost algorithm. Algorithm 1 (see Fig. 2) summarises
the detailed procedure of the DCMA algorithm. 

3.1 DCNN fine-tuning

We first acquired the same size slice of MRI and PET individually
by pre-processing and fine-tuning the DCNN model that had been
pertained on the ImageNet [50] natural image dataset. In order to
accommodate the DCNN for AD diagnosis, we replaced the last
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fully connected layer for two classes. The initial DCNN filer
weights that come from the ImageNet pertained model were then
fine-tuned by back-propagation algorithm. We can better apply the
model in AD dataset. In order to prevent over-fitting, we add BN
[43] and dropout in the network.

For the train stage, especially, we construct stacking strategy for
every DCNN model, schematic diagram as shown Fig. 3. We
random split the training data into l equal parts, one is used as the
validate data and the others are used as training data in turn. Owing
to the differences between the training data and testing data in
every training model, which improve the stability of the model and
effectively avoid the phenomenon of overfitting. The specific
parameters setting are presented in Section 4.3.

3.2 Probabilistic score

We used the fully trained network by fine-tuning to predict the
brain disease of different stages. Our proposed DCMA framework
includes two stages: the first stage is acquiring a probabilistic score
for the subjects by DCNN, and the second stage is the Adaboost
ensemble algorithm that fuses MRI and PET. The procedural
details of the DCMA algorithm are shown in Algorithm 1 (Fig. 2).

With the every DCNN, we acquired l trained network models.
Take the MRI modality for example, after the softmax layer, a
probabilistic score for each input slices pi j

G(m) is generated, where

superscript G denote the GoogLeNet, R denote the ResNet, D
denote the DenseNet, m denote the MRI. Averaging the l times
probabilistic score of each gets as the slice probabilistic score
pi j

G(m) as follows:

pi j
G(m) = 1

l ∑
s = 1

l
pi j

Gs(m), s = 1, …, 5. (6)

For example, as shown in Fig. 1, in the classification of AD and
NC, for the image slices, the proportion of green colour denotes a
classification as an AD probabilistic score and the proportion of
blue colour denotes a classification as an NC probabilistic score.
The more proportion there is, the higher the probabilistic score.
The dotted line in the middle denotes a probabilistic score of 0.5.
The left dotted line of probabilistic score used α denotes and the
right dotted line of probabilistic score used β denotes. The
hypothesis that the probabilistic score between α and β is a low
discrimination or noise. Suppose the number of slices probabilistic
score between α and β is d. In order to decrease the effects of the
noise and improve the accuracy of classification, we remove the
low discrimination slices of the category probabilities score. In the
middle part of Fig. 1, we can see that the slices proportion of
probabilistic score between α and β were removed, and do not
participate in the next calculation. That is, we introduce a ‘dropout’
mechanism and its schematic diagram as shown in Fig. 4. The
discrimination image slices probabilistic score is retained, the
function of retained slice probabilistic score p~i j

G(m) is defined as
follows:

Fig. 1  Flow chart of the proposed DCMA method
 

Fig. 2  Algorithm 1: The algorithm of DCMA
 

Fig. 3  Schematic diagram stacking strategy
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p~i j
G(m) = pi j

G(m) if 0 < pi j
G(m) < α or β < pi j

G(m) < 1
0 otherwise

(7)

where α + β = 1. All probabilistic scores of the retained slices are
averaged as the subject probabilistic score pi

G(m) is defined as

pi
G(m) = 1

n − d ∑
j = 1

n − d
p~i j

G(m) (8)

Meanwhile, we can obtain the pi
R(m) and pi

D(m). The method for
the PET modality is similar to that of the MRI modality, and we
can obtain the pi

G(p), pi
R(p) and pi

D(p).

3.3 Adaboost classification

Different modal images can in future learn the complementary
features information to enhance classification accuracy [16, 17]. In
the second stage, we fused the MRI and PET modalities by the
Adaboost algorithm. In detail, from the first stage, we acquired the
subject probability score of each DCNN model for each modality
individually. For each subject, we combined six scores as the
feature. We selected the single CART as the base learner (i.e. weak
learner). The single CART is simple in construction and does not
easily lead to overfitting.

First for the train set D with N subjects, as shown in Algorithm
1 (Fig. 2), the sample distribution, Dt(x) essentially assigns a
weight to each training subject xi, i = 1, 2, …, N, from all training
data D are drawn for each consecutive classifier (hypothesis) ht.
The distribution is initialised to be uniform; hence, all subjects
have equal probability to be drawn into the first training dataset.
The training error et of classifier ht is then evaluated as the sum of
these distributing weights of the subjects misclassified by ht

et = Px ∼ Dt(ht(x) ≠ f (x)) (9)

The algorithm requires that this error be <0.5. If et > 0.5, the
iteration is stopped, if et < 0.5, it continues until predetermined T
classifiers are generated. Then, determine the weights of ht as at are
learned as follows:

at = 1
2ln 1 − et

et
(10)

Then sampling distribution Dt + 1(x) is updated as follows:

Dt + 1(x) = Dt(x)
Zt

×
exp( − at) if ht(x) = f (x)
exp(at) if ht(x) ≠ f (x) (11)

where the Zt is a normalisation factor which enables Dt + 1 to be a
proper distribution, the weights of the misclassified subjects are
effectively increased. The Zt formulation is as follows:

Zt = ∑
i = 1

N
Dtexp( − at f (x)ht(x)) (12)

Finally, with each new classifier added to the ensemble, an additive
weighted combination of weak learners as strong learner H(x) is
defined as

H(x) = sign ∑
t = 1

T
atht(x) (13)

3.4 Discussion

In this part, compared with some existing DCNN-based
approaches, we have introduced the advantages of the DCMA
method. The DCMA method does not need to segment images to
GM or extracted GM patches and directly uses slices of the original
image as the input of the DCNN network compared with the
existing DCNN-based methods [39, 41], which simplifies the stage
of data pre-processing and reduce the time consumption. We
employed the stacking trick, similar to cross-validation, which
effectively avoids over-fitting and improve the stability of the
model. Ensemble methods [51] that train multiple learners and then
combine them for use are usually significantly more accurate than
a single learner. In our method, we ensembled three different state-
of-the-art DCNN models. Compared with the only ensemble single
network of DenseNet style [41], the DCMA method acquired a
better result. We exploited the ‘dropout’ mechanism for the
probabilistic score of a slice to discard the slices of low
discrimination to that increase the robustness of the model. In the
final stage, different from the single modal methods [4, 7], the
DCMA model combines the multi-modality (i.e. MRI and PET)
probabilistic score of subjects with the Adaboost method rather
than using a simple equal-weighted method [23, 52]. Due to the
above advantages, the experiment results (Section 5) show that the
DCMA method is able to significantly improve the accuracy of
classification.

4 Materials and experimental setup
4.1 Dataset

We used the dataset acquired from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.usc.edn). In
total, 398 subjects were used. Although there are more than 800
subjects in the ADNI database, only 398 subjects had baseline data
containing the modalities of both MRI and PET [23]. In particular,
it includes 93 AD subjects, 204 MCI subjects and 101 NC subjects.
The demographics of the subjects and the general exclusion criteria
are detailed in Table 1. 

We used 1.5T T1-weighted MRI, in NIFTI format downloaded
from the ADNI. Details include: 256 × 256 × 166 voxel and 192 × 
192 × 160 voxel, and 1.2 mm slice thickness. The PET image with
fluorine 18 (18F) fluorodeoxyglucose were acquired 30–60 min
post-injection, smoothed, averaged, spatially aligned, AC-PC
orient baseline corrected, interpolated to a standard voxel size and
intensity normalised.

Fig. 4  Schematic diagram of the ‘dropout’ mechanism
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4.2 Experimental platform and pretreatment

Our hardware of experimental environment is a desktop PC
equipped with Inter core i7, 8 GB memory and GPU with 16G
NVIDIA P100 × 8. The software for the environment is MATLAB
2014b with statistical parametric mapping (SPM12) for image pre-
processing and an Ubuntu 16.04 system with a Tensorflow and
Keras framework for training and testing. The Python
programming language was used.

Based on MATLAB 2014b with SPM software, the steps for
pre-processing were as follows: (i) motion correction and
conformation, (ii) non-uniform intensity normalisation, (iii)
Talairach transform computation, (iv) intensity normalisation and
(v) resliced to 192 × 192 × 160. After the pre-processing, from the
coronal view, the size of the image was 192 × 160 and there were
192 slices. For these slices, only the slices with indices 92–107
were used in the study, on account that these slices included the
important regions of whole brain information. The slices were
resized to 224 × 224 and conversion to a 3-channel pseudo-colour
in jpg format. Similarly, slices of the PET modality with indices of
35 to 60 were used in the study. The slices were pre-processed as
shown in Fig. 5. 

4.3 Experimental setup

The three DCNNs adopt the same preferences. Detailed parameters
are as follows: (i) batch size is set to 64; (ii) the initial learning rate
is set to 1 × 10−3, and the decay rate is set to 1 × 10−6; (iii) the
number of iterations is set to 100; (iv) training the network with
SGD plus momentum and using a weight decay of 1 × 10−4 and
momentum of 0.9; (v) loss function adopts the ‘categorical-
crossentropy’; (vi) dropout rate is set to 0.5; (vii) the l is set to 5. In
the experimental data, 65% of the data were randomly selected for
training, 10% of the data were randomly selected for validation
data and the remaining 25% of subjects were used as the test data.
We repeated experiments for each classification problem ten times.
The final result is an average of ten times. For the test stage, α is
set to 0.35 and β is set to 0.65.

For the Adaboost we use the ‘scikit-learn’ machine learning
package, and based on classification, we selected single CART; the
number of weak learners is set to 200, and the learning rate is set to
1. The algorithm of boosting selected ‘SAMME.R’.

5 Experimental results
We validated the effectiveness of DCMA on 398 ADNI
participants using the corresponding MRI and PET. Therefore, we
considered three binary classification experiments: AD versus NC,
AD versus MCI and MCI versus NC. The proposed method was
compared with three individual DCNN models, GoogLeNet,
ResNet-50 and DenseNet-121, for a single modality. We also
compared the effective mechanism of the ‘dropout’ and ensemble
three DCNN model using the Adaboost ensemble method
combined with the MRI and PET probabilistic scores.

5.1 Assessment criteria

We evaluated the performance of different methods by
classification accuracy (Acc), sensitivity (Sen), the specificity
(Spe) and area under the receiver operating characteristic curve
(ROC), where TP, FN, TN and FP represent true positives, false
negatives, true negatives and false positives, respectively

Acc = TP
TP + FN + TN + FP (14)

Sen = TP
TP + FN (15)

Spe = TN
TN + FP (16)

5.2 Results of AD versus NC classification

In the classification result of AD versus NC, as presented in
Table 2, for the MRI modal, the ensemble method showed a better
accuracy of classification than any independent DCNN model (i.e.
GoogLeNet, ResNet and DenseNet), which was improved by 3.11,
1.52 and 1.37%, respectively, compared to the best performances
(DenseNet) among the three independent DCNN. It is clear that the
ensemble method outperforms the independent DCNN. By
employing the ‘dropout’ mechanism with ensemble (D-Ensemble),
the accuracy of classifying was improved by 0.42% compared with
the ensemble method, which achieved 98.58% accuracy. It shows
the effectiveness of the ‘dropout’ mechanism to enhance the
classification accuracy. In the same way, for the PET modality, the

Table 1 Demographic and clinical information of the subjects (SD: standard deviation)
AD MCI NC

Mean SD Range Mean SD Range Mean SD Range
age 75.49 7.4 55–58 74.94 7.2 55–89 75.39 4.8 62–78
education 14.66 3.2 4–20 15.75 2.9 7–20 15.83 3.2 7–20
MMSE 23.45 2.1 18–27 27.18 1.7 24–30 28.93 1.1 25–30
CDR 0.8 0.25 0.5–1 0.5 0.03 0–0.5 0 0 0
MMSE: mini-mental state examination, CDR: clinical dementia rating.
 

Fig. 5  Examples of different modal of different stages. Category of the
MRI (a–c) and category of the PET (d–f)
(a) Alzheimer's disease, (b) Mild cognitive impairment, (c) Normal control, (d)
Alzheimer's disease, (e) Mild cognitive impairment, (f) Normal control

 
Table 2 Performance comparison of the different methods
for AD versus NC
Modal Model Acc Sen Spe
MRI GoogLeNet 95.05 94.61 96.28

ResNet 96.64 94.18 96.63
DenseNet 96.79 94.67 96.25
Ensemble 98.16 95.74 97.77

D-Ensemble 98.58 98.26 98.30
PET GoogLeNet 90.23 84.81 92.08

ResNet 91.58 92.65 93.03
DenseNet 91.97 93.33 94.69
Ensemble 93.51 94.59 95.17

D-Ensemble 94.56 95.58 95.21
MRI + PET DCMA 99.27 95.89 98.72
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ensemble method also showed a better classification accuracy than
any other independent DCNN model and improved by 3.28, 1.93
and 1.54%, respectively. The classification accuracy of the D-
Ensemble model was improved by 1.05% compared with the
ensemble method. Finally, combining the MRI and PET modalities,
the accuracy of classification under the DCMA method achieved
99.27%, sensitivity achieved 95.89% and specificity achieved
98.72%, which showed the best classification performance. The
accuracy was improved by 0.69 and 4.71% compared to the best
performance among the same method with single modality of MRI
and PET, respectively. Fig. 6 further shows the ROC curves of the
different methods for AD classification (prefixes with ‘P’ or ‘M’
for their modal acronym). The ROC curves of the D-Ensemble
method are higher than the ensemble method and show the
effectiveness of the ‘dropout’ mechanism. The ROC curves of
DCMA contain all other curves indicating excellent diagnostic
power. Based on these results, we believe that the proposed
ensemble and ‘dropout’ method achieved the best results,
outperforming all the other methods.

5.3 Results of AD/NC versus MCI classification

The classification results of AD versus MCI and MCI versus NC
produced by different methods are listed in Table 3. From Table 3,
the DCMA method consistently achieved the best performance
than other methods for the classification between AD/NC and
MCI. Specifically, for AD versus MCI, the ensemble method
outperformed for three independent models of DCNN, which were
improved by 2.57, 2.32 and 1.25%, respectively. For the single-
modality method, the D-Ensemble method showed the best
accuracy of 89.98% on MRI and 85.00% on PET, which was
improved by 1.09 and 1.31%, respectively. The sensitivity and
specificity also showed the best results of 89.22 and 90.67% on
MRI. That explained the effectiveness of the ‘dropout’ mechanism
to enhance the classification result. The improvement of accuracy
through the proposed DCMA was 2.59 and 7.57%, respectively,
compared to the best performances among the competing method

with individual modality. The DCMA method achieved a
sensitivity up to 89.71% and a specificity up to 93.59%, also
outperformed than the single modality. We also compare the ROC
curves of the other methods on classification AD versus MCI and
MCI versus NC problems in Fig. 7. Fig. 7a shows the ROC curve
of the different methods for AD versus MCI. For the classification
of NC from MCI, the DCMA method achieved a classification
accuracy of 90.35%, a sensitivity of 88.36% and a specificity of
92.56%. The right of Fig. 7b shows the ROC curve of the different
methods for NC versus MCI. It is clear that the ROC curve of the
DCMA method, closer the left-hand border and top border,
demonstrates the best model performance. Based on these results,
we believe that proposed ensemble and ‘dropout’ method achieved
the excellent diagnostic power, outperforming all the other
methods.

5.4 Comparison with existing methods

Meanwhile, we compared the classification results of the DCMA
method with some existing methods, as shown in Table 4,
including the data of single modality and multi-modality of the
ADNI. Suk et al. (2014) [23] used 93 AD subjects, 204 MCI
subjects and 101 NC subjects, and derive a algorithm for unique
feature representation based on the paired patches of MRI and PET
with a multimodal deep Boltzmann machine. Finally, they obtained
an accuracy of 95.35% with of AD versus NC. Liu et al. [32]
proposed cascaded CNNs to learn the multi-level and multimodal
features for AD classification. However, this method needs to
extract image patch that damaged the integrity of ROI. Shi et al.
(2015) [53] used 51 AD, 99 MCI and 52 NC subjects with three
modalities based on stacked auto-encoder network (i.e. MRI, PET
and CSF) and obtained an excellent accuracy of 98.8% for AD
versus NC, 83.7% for AD versus MCI and 90.7% for MCI versus
NC. It demonstrated that the multi-modality images (i.e. MRI, PET
and CSF) could contribute to improving diagnosis of AD. Zhu et
al. [20] used the same dataset with two modalities (MRI and PET)
and proposed a relational regularisation feature selection method

Fig. 6  ROC curves of different methods for classification of AD versus NC
 

Table 3 Performance comparison of the different methods for AD/NC versus MCI
Modal Model AD versus MCI MCI versus NC

Acc Sen Spe Acc Sen Spe
MRI GoogLeNet 86.32 85.26 87.91 86.62 80.24 89.39

ResNet 86.57 85.61 89.25 87.89 84.06 90.31
DenseNet 87.64 85.64 89.71 88.24 83.27 90.16
Ensemble 88.89 89.16 90.10 88.73 86.17 91.58

D-Ensemble 89.98 89.22 90.67 88.93 86.33 91.88
PET GoogLeNet 80.26 78.35 80.14 80.31 75.36 82.21

ResNet 81.61 79.98 81.56 81.59 77.28 83.10
DenseNet 82.25 80.29 83.27 81.34 78.64 83.19
Ensemble 83.69 80.31 85.28 82.49 80.51 84.08

D-Ensemble 85.00 81.75 87.55 84.21 82.46 85.82
MRI + PET DCMA 92.57 89.71 93.59 90.35 88.36 92.56
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and reported an accuracy of 95.7% for AD versus NC and an
accuracy of 75.9% for MCI versus NC. Shi et al. [53] exploited
stacked deep polynomial networks to fusion of multimodal
neuroimaging data. Li and Liu [24] proposed multiple cluster
DenseNets to obtained the various local features based on MRI
modal. However, the classification accuracy was less than
satisfactory. Altaf et al. (2018) [4] used 287 subjects (92 AD + 105
MCI + 90 NC) extracted hybrid feature based MRI modality and
obtain accuracies of 97.8, 85.3 and 91.8% for AD, NC and MCI,
respectively. Lu et al. [7] exploited the deep neural network
method of the PET modality and obtained an accuracy of 93.58%
for AD from NC.

Table 4 indicates that our proposed method consistently
outperformed the existing methods, based on these results, we
firmly believe that our DCMA method achieved best performances
among the competing methods, which further validates the efficacy
of the DCMA method for AD diagnosis.

5.5 Effect of Adaboost learner

We compared the proposed method with different classifiers such
as SVM and logistic regression (LR). The LR model which use
maximum likelihood to determine the parameters for two-class
classification. The softmax classifier is a multi-class LR, which is
generalised linear model, the extension of LR in multi-category. In
this paper, we considered the three binary classifications. Table 5
summarises the classification result of competing methods for AD
versus NC. The proposed method outperformed than SVM and LR
methods in experiments. Our method improved the classification
accuracy by 1.17% compared to SVM and 2.09% compared to LR,
respectively. Meanwhile, the Adaboost method improved the
classification sensitivity by 1.35% (SVM) and 1.27% (LR),

respectively. The classification specificity is better than the other
method. We argue that the proposed method helped enhance
classification performances.

We also investigated the effect of the number of base learners
on the classification performance of our proposed method. For
example, AD versus NC. As seen from Fig. 8, ordinate represents
error rate and the abscissa represents the number of base learner. 
With the increasing number of base learners, the training error and
testing error gradually declines. The accuracy of classification is
gradually increasing, and can achieve a relatively stable value.
When the number of base learners is set to 150, the training error
and the testing error tend to be stable, achieving a small value, in
which the training error tends to be 0, and the testing error tends to
be 0.08. This demonstrates the effectiveness of the Adaboost
algorithm with the MRI and PET modalities for AD classification.

6 Conclusion
This paper proposed a new multi-modality data fusion and
classification method based on ensemble DCNN by the Adaboost
algorithm. Compared with conventional machine learning with the
feature fusion method, we provided a new way to use deep
learning, which employed three state-of-the-art DCNNs for the
prediction of each modality, especially employing the ‘dropout’
mechanism to discard the low discrimination slices, and fuse their
probabilistic scores by the Adaboost ensemble method for the
modality data. In our lot of experiments, we validated the
effectiveness of the DCMA algorithm by comparing both the single
modality and multi-modality. In future work, we will continue to
improve our proposed framework to predict the MCI stage, which
aims to classify the MCI converters and MCI non-converters.

Fig. 7  ROC curves of different methods for classification of AD/NC versus MCI
(a) AD vs MCI, (b) NC vs MCI

 
Table 4 Performance comparison of the different existing methods
Articles Subject Modalities AD versus NC AD versus MCI MCI versus NC
Suk et al. [23] 93AD + 204MCI + 101NC MRI + PET 95.35 — 85.67
Liu et al. [32] 93AD + 204MCI + 100NC MRI + PET 93.26 — 74.34
Heung-II et al. [34] 51AD + 99MCI + 52NC MRI + PET + CSF 98.8 83.7 90.7
Zhu et al. [20] 51AD + 99MCI + 52NC MRI + PET 95.7 — 75.9
Shi et al. [53] 51AD + 99MCI + 52NC MRI + PET 97.13 — 87.24
Li et al. [24] 199AD + 403MCI + 229NC MRI 89.5 — 73.8
Altaf et al. [4] 92AD + 105MCI + 90NC MRI 97.8 85.3 91.8
Lu et al. [7] 304AD + 226NC PET 93.58 — —
proposed 93AD + 204MCI + 101NC MRI + PET 99.27 92.57 90.35
 

Table 5 Performance comparison of the different classifier for AD versus NC
Classifier Acc Sen Spe
SVM 98.10 94.54 96.19
LR 97.18 93.61 96.34
Adaboost 99.27 95.89 98.72
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